PROPER
Parallel Resource-Optimized Provisioning of End-to-End Requests

Principal Investigator:
Dr. Vinod Vokkarane
UMass Lowell
Vinod_Vokkarane@uml.edu

External Collaborators:
Alex Sim (LBNL)
Chin Guok (ESnet)

Acknowledgement:
DoE ASCR Grant DE-SC0012115TDD (June 2014-2017)
Introduction

• “Big Data” application requirements necessitate evolution in data distribution paradigm.
 – Faster distribution of data to/from multiple storage centers.
 – Provide survivable backup paths for data transmission.
 – Split transfer of large data sets across multiple sites for quicker transmission.

• There is a discrepancy between availability and invocation of parallel technologies.
 – Data typically stored at multiple sites/repositories (Eg: Climate).
 – Networks can support guaranteed parallel transmissions via virtual circuits (OSCARS).
 – Applications/Schedulers do not currently take advantage of these parallelisms due to lack of storage and network resource awareness.
PROPER Project Objectives

• We propose a co-scheduler that takes advantage of:
 – **Flexibility**: harness both time (advance reservation) and space (replicated data at multiple sites) domains.
 – **Parallelism**: incorporate parallel nature of storage and network resources into the scheduler.
 – **Survivability**: protection of both network and storage resources.
 – **Negotiation**: co-scheduler will return a set of What-If scenarios that satisfy the user/application constraints.
Proposed Work

The proposed co-scheduler interfaces with the end-user application to identify areas of flexibility in both network and storage domains.
Proposed Work

Task 1: Parallel transfers over multipath circuits.
• Facilitate parallel transfer from a single sender to a single receiver.
Proposed Work

Task 2: “Reverse Manycast” Data Retrieval (Many to One)

• Transfer multiple chunks of a single data set from multiple repositories to a single user/datacenter.

“Reverse Anycast”: Transfer a single copy of replicated data from the best storage repository (any to one).
Proposed Work

Task 3: Survivable Anycast

- Resiliency not only against network failure, but also destination node/datacenter failure.

Anycast Path Protection

Anycast Path Protection with Destination Relocation
Proposed Work

Task 4: Survivable Manycast (1:M and M:1)

- Survivable solutions that protect against node failure.
- Preliminary work: Network biconnectivity.
 - A biconnected graph becomes disconnected if and only if, at least two nodes are removed.
 - Objective: Create biconnected subgraphs that include all resource nodes in a set.

Manycast Survivability using Network Biconnectivity

Simple example: Ring
Proposed Work

Task 5: Berkeley Storage Manager (BeStMan) Tasks (with Alex Sim)

1. Extend the browsing capability of the BeStMan for its managed storage space.
2. Implement dynamic cataloging of file-system contents including database design and caching implementation.
3. Develop queuing algorithms for meta-data queries.
Proposed Work

Task 6: What-If Co-scheduler
What question(s) does your research motivate you to now ask?

3 months in, we don’t have a lot of insight

• How do users discover these new network services?
 – Is What-If module the best place to “hide” new services like
 – anycast, manycast, multi-path, survivability?
• How do we implement this on a multi-domain network and storage?
 – ESnet now supporting NSI for multi-domain transfers.
Multipath Client for OSCARS

Demo
Multipath Client Design

User Application

Multipath Client

API

OSCARS

Coordinator
• Workflow Coordinator

PCERuntime

Resource Manager
• Reserve paths

PCE

Connectivity PCE

Bandwidth PCE

VLAN PCE

Modified Dijkstra PCE

UMass Lowell - ECE - Vokkarane
Sample Multipath GUI – New Unicast

[Image of a multipath GUI with details]

New Reservation

- **Source Node:** CHIC: port-5: link1
- **Bandwidth (Mbps):** 100
- **Number of Paths:** 1
- **Reservation Start Time:** 01/01/2014 05:30
- **Reservation End Time:** 01/02/2014 07:59

Multipath GRI

- PNIW: port-3: link1
- SUSC: port-1: link1
- STAR: port-1: link1
- STAR: port-2: link1
- STAR: port-3: link1
- STAR: port-4: link1

Unicast GRI(s)

- es.net-1
- es.net-2
- es.net-3
- es.net-4
- es.net-5
- es.net-6

[Reserved information]

RESERVED
Bandwidth: 100 Mbps
Start Time: Wed Jan 01 05:30 EST 2014
End Time: Thu Jan 02 07:59 EST 2014
Hops in Path: CHIC -> STAR -> PNIW -> SUNN -> SUSC
Sample Multipath GUI – New Multipath

New Reservation

Source Node:
- SUNN: port-1: link1
- Bandwidth (Mbps): 100
- Number of Paths: 3

Destination Node:
- ATLA: port-3: link1
- ATLA: port-4: link1
- ATLA: port-5: link1
- CHIC: port 1: link1
- CHIC: port 2: link1
- CHIC: port 3: link1
- CHIC: port 4: link1

Reservation Start Time:
- 01 / 01 / 2014 05 : 30

Reservation End Time:
- 01 / 05 / 2014 11 : 59

Create Reservation

Multipath GRI
- MP-1

Grouped GRI's
- es.net-9
- es.net-10
- es.net-11

Cancel Reservation
Add to Group
Sub from Group
Sample Multipath GUI – MP Group Cancel
Sample Multipath GUI – MP Group Cancel

New Reservation

Source Node: WASH: port-1
Bandwidth (Mbps): 25
Number of Paths: 2
Reservation Start Time: 01 / 01 / 2014 05:30
Reservation End Time: 01 / 05 / 2014 11:59

Destination Node:
ATLA: port-3: link1
ATLA: port-4: link1
ATLA: port-5: link1
CHIC: port-1: link1
CHIC: port-2: link1
CHIC: port-3: link1
CHIC: port-4: link1

Multipath GRI

MP-1
MP-2
MP-4
MP-5

Grouped GRIs

os.net-10
es.net-20

Create Reservation
Reset Fields
Cancel Reservation
Add to Group
Sub from Group
Questions?