
Parallel Circuit Provisioning in ESnet’s OSCARS
Jeremy M. Plante∗, Dylan A.P. Davis†, and Vinod M. Vokkarane∗

∗Department of Electrical and Computer Engineering, University of Massachusetts, Lowell
†Department of Computer Science, University of Massachusetts, Lowell

{Jeremy Plante, Dylan Davis}@student.uml.edu, Vinod Vokkarane@uml.edu

Abstract—Large-scale science applications generate great vol-
umes of data, which are frequently stored in remote data reposi-
tories or shared with cooperating laboratories across the network
through the use of advance reservation connections. The groups
that utilize these data transfers would benefit from having their
applications simultaneously transmit data over multiple channels
in parallel. Many of today’s networks do not however provide
the resource-aware scheduling to support this parallelization.
As part of a framework for providing said applications with
parallel resource-optimized provisioning of end-to-end requests,
we propose and develop a scheduling enhancement to ESnet’s
On-demand Secure Circuits and Advance Reservation System
(OSCARS). This enhancement comes in the form of a front-
end client, the behavior of which we quantitatively evaluate to
compare the performance of parallel resource-provisioning to
serial resource usage for both unicast and anycast scenarios.

I. INTRODUCTION

Data generation and archival rates are increasing dramati-
cally as large-scale science applications grow in sophistication.
Virtually all fields of science require inter-laboratory cooper-
ation or data sharing infrastructures. Emerging petascale and
exascale scientific applications demand investigation by teams
of research scientists who may be distributed across nations
and even continents. Optical networks have proven ideal for
supporting the growing needs of scientific experiments which
require large volumes of data to be distributed and analyzed
by a number of geographically dispersed users.

There are a number of applications wherein a priori knowl-
edge of a network’s state may be beneficial to maintaining
the health and availability of the network. Consider large-
scale off-site backups or updates to remote data repositories.
These backups may be regular and predictable, and so it
makes sense to schedule them in advance, allowing appli-
cations to be scheduled around other existing connections.
Most e-Science applications involve large quantities of data
being transferred, to the point that if the transfers become
blocked, the retransmission attempts may become costly. These
Advance Reservation (AR) connections allow the network to
better schedule and provision applications that benefit from
window- or deadline-scheduled events [1]–[3].

ESnet’s On-demand Secure Circuits and Advance Reser-
vation System (OSCARS) has been largely adopted by the
science and networking community to automate the process of
establishing end-to-end dedicated Virtual Circuits (VCs) for
guaranteed AR service. OSCARS circuits make up half of
the 60 petabyte annual traffic load carried by the Department
of Energy’s backbone Energy Sciences Network (ESnet) [4].
OSCARS presently supports only directed end-to-end unicast
transfers, limiting the degree of parallelism for any data
transfer.

In current large- or extreme-scale science architectures,
data is stored, processed, and analyzed in parallel. However,

the underlying core network is not currently used to har-
ness parallelism, instead necessitating serial resource usage.
A discrepancy exists between the availability and usability
of parallel technologies. The network is capable of parallel
transfers, which can be used to increase the volume of trans-
missions by reserving resources along parallel paths for a
single request. These parallelisms however, are not yet fully
usable to researchers in today’s networks, such as ESnet, due to
the lack of a resource-aware, intelligent, and flexible scheduler.
To this end, we have proposed a framework for parallel
resource-optimized provisioning of end-to-end requests [5]. A
major contribution of this DOE-funded project is a scheduling
enhancement to OSCARS which allows for parallel resource
provisioning across multiple link-disjoint paths for a single
request. We enforce link-disjointedness due to the frequency
of link failure in networks, as the resulting loss of data can be
tremendous if several parallel circuits share a link. At present,
applications or users must currently reserve additional network
resources for additional paths through OSCARS individually.
A multipath transfer service allows applications to utilize more
than the maximum bandwidth available along a single network
path for parallel storage and retrieval operations. In this work,
we propose and develop a front-end client to enable multipath
communication using OSCARS as the underlying provisioning
controller. We further extend our proposed multipath solution
to cooperate with an anycast enhancement to OSCARS, which
was previously proposed and evaluated in detail [6].

There exist several destination-agnostic applications that
can take advantage of anycast request provisioning, such as
database replication and off-site backups. Anycasting refers to
the transmission of data from a source node to any one member
among a candidate destination set of D nodes. Such requests
may be denoted as anycast D/1. By providing more than
one candidate destination, the overall success rate of request
provisioning can be dramatically improved by selecting the
“best” destination at runtime based on the current network
state [7]. Anycast can not only aid in load-balancing, but
can select destinations based on various cost metrics, such as
distance from the source, Grid/Cloud resource availability at
the destination datacenters and supercomputing sites [8], or
energy consumption along routes to each destination [9].

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the OSCARS modules that are
fundamental to the understanding of our proposed multipath
client’s operation, along with a summary of the previous
work to create an anycast OSCARS deployment. A thorough
description of the proposed multipath solution, as well as mod-
ifications required to the core OSCARS components in order
to support the client, is offered in Section III-A. Section III-B
details our multipath client’s operation for anycast circuit
requests, and offers two heuristics for selecting the appropriate
destination according to the end-user’s requirements. The
client’s behavior is quantitatively analyzed in Section IV for

Notification Broker
• Manage Subscriptions
• Forward Notifications

AuthN
• Authentication

Resource Manager
• Manage Reservations

• Auditing

PCE
• Constrained Path

Computations

Topology Bridge
• Topology Information

Management

IDC API
• Manages External WS

Communications

Path Setup
• Network Element

Interface

Lookup
• Lookup service

AuthZ
• Authorization

• Costing

Web Browser User
Interface

Coordinator
•Workflow Coordinator

Fig. 1: OSCARS modular framework.

both unicast and anycast request scenarios. Section V discusses
some areas of future work to the proposed and implemented
multipath client solution, and Section VI concludes the paper.

II. OSCARS OVERVIEW

Our proposed and implemented multipath solution is a
mostly front-end client that is dependent on the core OS-
CARS functionality.We present a brief overview of the circuit-
provisioning process and interfaces provided by OSCARS.
This section provides a high-level description of the OSCARS
structure and the circuit request workflow, as well as a
summary of the modifications that contributed to the anycast
OSCARS deployment presented in [6].

A. Traditional OSCARS Deployment

OSCARS allows users to reserve network resources, such
as bandwidth and VCs in both the space- and time-domains.
Designed to support long-lived, large-scale data transfers, the
OSCARS software package is the controller and operator for a
network which configures the physical components and Virtual
LANs (VLANs) for carrying and supporting dedicated AR VC
reservations. OSCARS is an open-source project and can be
modified as necessary based on network, ISP, or application
requirements. The latest release of OSCARS, version 0.6,
accomplishes its guaranteed service delivery goals through the
use of a number of service modules, each of which is deployed
as a WebService that communicates with the other modules,
as shown in Fig. 1. Each service provided by OSCARS can
be deployed, customized, and disabled separately due to the
modular nature of the system. Given the nearly two dozen
service modules currently incorporated into the system, only
those that are directly related to the core circuit-provisioning
functionalities will be covered in this subsection.1

Coordinator: As the key workflow engine for OSCARS,
the Coordinator module serves as a central message passer,
enabling communication between each other module to allow
for establishing, canceling, or querying the status of VCs.

PCE: The Path Computation Engine (PCE) stack determines
which path to reserve based on provided input constraints, such
as start-time or required bandwidth, and is made up of sub-
modules, each playing a different role in the routing process.
User-defined constraints are combined with the up-to-date

1For greater detail on OSCARS modules, the reader is referred to [4].

network topology information and a set of optional-constraints
(further explained in Section II-B) as input into each sub-
module. The sub-modules each output a pruned topology with
elements, each given a Universal Resource Name (URN),
removed based on the module’s criteria. Each URN represents
a combination of a node, port, and link in the topology. The
constraints and modified topology are passed down the stack
until a final network topology is returned, which will consist
only of the selected path, established on a dedicated VLAN.

Resource Manager: Responsible for keeping track of up-to-
date information on the currently available network resources,
e.g., bandwidth or VLANs, the Resource Manager provides
this critical information to the PCE stack during path com-
putation to ensure that pruning and network state updating is
performed correctly.

IDC API: The Inter-Domain Controller (IDC) API supplies an
interface for front-end clients to make use of the VC services
provided by OSCARS. Clients issue a request to OSCARS,
which then performs its standard internal processing based
on the client inputs and issues a reply with relevant response
details. Considering this architecture, client applications, such
as our proposed multipath client, can create, modify, query, and
cancel circuit reservations using the underlying tools provided
by OSCARS, while also performing additional front-end tasks
independent of the core OSCARS system.

B. Anycast PCE Design

The PCE stack, as previously described, is comprised of
sub-modules that together compute paths given the curren-
t network topology, user-provided details, such as request
start-time and bandwidth requirement, and a set of optional-
constraints. Optional-constraints are loosely-defined input ob-
jects that can be used within the PCEs, with some modification,
to manipulate their behaviors. For the purpose of performing
anycast routing, the entire set of candidate-destinations can
be passed in as a collection of optional-constraints, and then
the modified PCE stack considers these candidate destinations
rather than the traditionally expected single-destination. To this
end, we have proposed and implemented an enhanced PCE
stack implementation, composed of several new sub-modules
to support anycast communication [6]. This subsection sum-
marizes the proposed structure, which must be deployed as an
alternative to the default unicast-only PCE stack. The anycast
PCE, which is available via ESnet’s OSCARS repository [10],
processes a network topology composed of URNs, and returns
a single path from the source to the destination selected via
anycast routing. The anycast PCE is comprised of four ordered
modules:

(i) Anycast Connectivity PCE: A network topology
graph corresponding to the network connectivity graph
between the source and candidate destination nodes is
output by this PCE module. Every pair of nodes that
is not physically connected is pruned, ensuring that the
domain is accurately interpreted by the subsequent PCEs.

(ii) Anycast Bandwidth PCE: Any URNs that do not
meet the bandwidth requirements specified by the user’s
anycast request, whether by design or due to competitive
allocation, are pruned by this PCE.

(iii) Anycast VLAN PCE: This PCE module prunes
out all URNs that do not have enough VLAN
tags, a representation of the maximum number of
accommodated VCs at a node, in order to support the
intended circuit. This ensures that logical connection
establishment for successful requests will be properly
secured.

(iv) Anycast Dijkstra PCE: To select the final anycast
destination, this PCE module computes the separate paths
from the source to each destination that meet certain
criteria (such as shortest path), and selects the destination
that can be reached with the best available path.

Within each of the specified PCEs, each destination is
examined to see if it can be reached under the specified
constraints, with any infeasible candidates marked with a flag,
enabling modules later in the chain to ignore those invalid
destinations. The worst-case runtime complexity of the anycast
PCE implementation is increased over the standard unicast
procedure by a factor of D, the number of destinations in
the anycast set. Requests sent through the anycast PCE stack
with only a single destination will be serviced identically to
the default unicast OSCARS implementation.

III. PROPOSED MULTIPATH OSCARS EXTENSION

In this section we detail the behavior of our proposed
multipath OSCARS client (code available [11]) and detail
modifications to the OSCARS PCE stack necessary to support
the expected multipath behavior for both unicast and anycast
requests.

A. Unicast Multipath

OSCARS only supports unicast VCs between a single
source and destination, thereby placing the burden of managing
several related parallel paths on our client. The proposed
multipath client groups together several independent OSCARS
unicast requests, each of which is issued a unique OSCARS
ID, into a single multipath request with a shared multipath
group ID that can be operated on as a unit. OSCARS will
have no inherent knowledge about the relationships between
members of a multipath group. Our client’s API is modeled
on the OSCARS IDC, allowing users to use nearly identical
processes to query, cancel, and modify existing VCs or request
new VCs, as if they were working directly with OSCARS. The
notable difference between the two interfaces is that multipath
users will be prompted to include the number of parallel paths
they wish to reserve for each circuit.

Figure 2 provides a detailed view of the clients interaction
with OSCARS when creating a multipath group reservation.
One iteration through the client-API loop represents the result
of creating a single VC reservation in OSCARS. The multipath
client interacts directly with the OSCARS API, forwarding
the request to the Coordinator, which invokes a call to the
PCE stack to reserve the shortest available path. The details
of the reservation, successful or not, are passed back through
the OSCARS API to the multipath client. The first iteration
from the client through the OSCARS PCE is identical to the
procedure for establishing a unicast OSCARS request. Note
however, that we have modified the Dijkstra PCE to support

OSCARS
PCE

API

Coordinator
•Workflow Coordinator

PCERuntime

Connectivity
PCE

Bandwidth
PCE

VLAN
PCE

Modified
Dijkstra

PCE

Resource Manager
• Reserve paths

Multipath
Client

Fig. 2: Interaction between the Multipath client and OSCARS.

the expected behavior for all following iterations through the
reservation loop.

The Dijkstra PCE modifications make use of the optional-
constraint objects offered by OSCARS, as detailed in Sec-
tion II-B. The client populates the optional-constraints with
the ordered set of URNs that comprise the path reserved in
the previous iteration(s) of the reservation loop. When a pri-
mary path reservation is unsuccessful, the client exits without
attempting to secure additional parallel paths and blocks the
request. When a request is successful however, an additional
iteration of the loop occurs using a new VC request object
containing the first path’s list of URNs. The modified Dijkstra
PCE uses this list to prune out all of the included URNs
from the current topology so that they are unavailable for this
iteration, which results in a completely link-disjoint second
VC. Note that during URN-pruning, the source/destination
URNs must remain in the topology in order to establish a
circuit between them. This reservation looping continues until
network resource availability prohibits the establishment of
further link-disjoint paths, or the user-specified number of
paths have been successfully established.

Multipath requests may be specified as either flexible or in-
flexible. In flexible scenarios the client will perform best-effort
VC establishment, such that K paths may be requested, and
M ≤ K paths will be successfully provisioned. For example,
in heavily loaded networks, it is possible for M = 1, which
is still considered a successful flexible multipath reservation.

Fig. 3: Given the nodal degree of the source node, only four of the
five requested parallel paths may be successfully provisioned. Note
that the topology includes separate, parallel links between some node
pairs.

Blocking occurs only when M = 0. The value of M depends
on network resource availability and network connectivity.
Consider the example shown in Fig. 3 where five parallel
paths are requested on the ESnet topology from Sunnyvale
to Chicago, each with a bandwidth requirement of 100 Mbps.
The source node has a nodal degree of five, but only four
of those adjacent links are connected to Chicago. Using link-
disjoint routing, there is no solution for routing the fifth path
that does not intersect the resources allocated to the first four
paths.

For inflexible requests, the client will attempt to reserve the
specified number of parallel paths, and if that quantity cannot
be reached, the entire request is deemed a failure. For example,
if a request demands three parallel paths, but only two can be
provisioned, the multipath client will then issue a cancellation
order to OSCARS for the first two paths in the group and
mark the entire multipath request as blocked. In either scenario,
the worst-case runtime complexity for multipath reservation
is increased by a factor of K, the number of parallel paths
requested.

B. Anycast Multipath

We have considered two alternative approaches for the
incorporation of multipath reservation with anycast OSCARS
requests.2 The first is Anycast Before Multipath (ABM), where-
in the nearest anycast destination is selected from the can-
didate set, and then multiple parallel paths are provisioned
to that node. The alternative approach is Anycast Multipath
with Minimum Hops (AMMH) which calls for an iterative
assessment of each anycast candidate in turn. In each iteration,
a set of parallel paths will be established to a single candidate
destination, and the total cost in terms of physical hop count
is calculated. The destination which yields the lowest total
cost is selected as the best destination and the corresponding
set of parallel paths is provisioned. AMMH only considers
the cost as a tie-breaker in cases where the same quantity of
parallel paths can be established from the source, otherwise the
solution which best conforms to the user’s requested degree of
parallelization is preferred. Note that AMMH is, in essence,
an iterative variation of ABM, wherein the simpler heuristic
is repeated D (the number of destinations in the anycast set)
times. After the Dth iteration, the best destination is selected
and the same set of parallel paths is finally provisioned as
a unicast multipath request. The AMMH heuristic therefore
has a worst-case run-time complexity greater than ABM by a
factor of D + 1.

IV. PERFORMANCE EVALUATION

We have evaluated our client on the ESnet science data
network core topology, shown in Fig. 3, and considered various
multipath traffic scenarios for both unicast and anycast request-
s. The considered topology is assumed to have bidirectional
links, all with a uniform capacity of 10 Gbps. The source and
destination(s) are uniformly distributed amongst all nodes, and
the request bandwidth is uniformly distributed in the interval
[1 Gbps, 5 Gbps], in increments of 1 Gbps. K paths are

2In order to support anycast multipath reservations, the multipath client
must be used with the anycast OSCARS deployment, which is separate from
the default unicast OSCARS.

requested for each multipath request, where K ≥ 1, and each
of those paths is expected to have the same bandwidth and
duration as the next. To-date, OSCARS has been responsible
for approximately 5, 000 VC reservations on ESnet, when
considering all demonstration circuits [4], and so we have con-
sidered small, realistic traffic sets of one hundred requests to
evaluate our client’s behavior when interacting with OSCARS.
All requests are scheduled to reserve, transmit, and release
network resources within a two-hour time window. A request
set’s correlation factor corresponds to the probability that
requests overlap during this time window. As the correlation
factor increases, more requests overlap in time; a correlation
factor of zero provides a set of completely time-independent
reservations. The formula for calculating the correlation factor
for a set of requests is given as

∑
j Cj/n(n− 1), where n is

the number of requests to schedule, and Cj is the number of
requests which overlap in time with request j [12]. Please note
that the correlation factor does not directly represent load on
the network, as the overlapping requests are in fact multipath
requests targeting multiple parallel paths at any given point in
time. All results shown in this section represent the average of
30 unique sets of reservation requests, and we have included
the 95% confidence intervals, which are quite narrow, on each
graph.

A. Unicast Multipath Evaluation

We first evaluate our multipath client for unicast-only
reservations. This is a quantitative evaluation of our client
in a configuration that can be deployed alongside the default
OSCARS system, with a modified Dijkstra PCE as detailed
in Section III. We have considered traffic wherein requests
aim to provision either two or three parallel paths. We have not
considered four-path or five-path requests because the physical
connectivity of the topology and the nodal degrees of most
nodes would not support that many simultaneous paths. We
have not distinguished between requests that are blocked due
to bandwidth oversubscription and requests that are blocked as
a result of exceeding the physical nodal degree limitations of a
node. We investigate these multipath request scenarios for both
flexible and inflexible routing and compare them to traditional
single-path unicast OSCARS requests.

Figure 4a shows the blocking comparison between the
considered request types. Unsurprisingly, when more path-
s are requested, there is more blocking due to bandwidth
oversubscription. For inflexible requests, a two-path scenario
blocks as much as 30% of the incoming requests, even at
low correlation factors. The three-path requests are blocked
twice as often at low loads. Note however that given that two-
path AR necessitates a 100% increase in bandwidth requested,
a 30% increase in blocking is quite attractive. There is not
much observed difference between the two-path and three-
path flexible requests. By observing Fig. 4b, we can see
that this is because as more requests enter the system, the
number of provisioned paths decreases. The average number
of paths reserved per request (excluding the blocked requests)
for flexible two-path requests is only 1.8 paths, and the
corresponding value for flexible three-path requests is just over
2.1 paths for low correlation factors. Even when the load is
not high, requests are not being completely fulfilled. It can
be observed however that even at high correlation factors, the
average number of paths per successful request is still quite a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 0.3 0.5 0.7 0.9

B
lo

c
k
in

g
 P

ro
b
a

b
ili

ty

Correlation Factor

K = 1
Flexible, K = 2
Flexible, K = 3

Inflexible, K = 2
Inflexible, K = 3

(a) Blocking probability.

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0.1 0.3 0.5 0.7 0.9

N
o
.
P

a
th

s
 p

e
r

R
e

q
u
e
s
t

Correlation Factor

Flexible, K = 2
Flexible, K = 3

(b) Average path count per successful request.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.1 0.3 0.5 0.7 0.9

A
v
e
ra

g
e
 N

o
.
H

o
p
s
 p

e
r

R
e
q

u
e
s
t

Correlation Factor

K = 1
Flexible, K = 2
Flexible, K = 3

Inflexible, K = 2
Inflexible, K = 3

(c) Average hop count per successful request.

Fig. 4: Unicast multipath evaluation for requests with K paths.

bit higher than 1, indicating that the multipath functionality is
not going to complete waste and many early requests are still
being satisfied to their maximum potential.

The total hop cost for multipath requests is shown in
Fig. 4c, which has been normalized against blocking. OSCARS
reserves the shortest available primary path, and each addi-
tional disjoint path must be at least as long as the previously
allocated route. For each additional path reserved, the relative
hop count for the request will increase, with the second or third
paths taking inefficient routes in order to avoid the previously
allocated links. We can see that traditional unicast routes are
between two and four hops long for all correlation factors,
whereas the addition of another (inflexible) path doubles the
number of traversed hops at low loads and triples it at high
loads. This trend is scaled higher when K = 3.

B. Anycast Multipath Evaluation

Like we have done for the unicast evaluation, we have
also considered both flexible and inflexible anycast requests
using both the ABM and AMMH routing heuristics described
in Section III-B. Each request is given a candidate destination
set of size two or three, i.e. anycast 2/1 and 3/1.3

Figure 5a depicts the blocking probability for anycast 2/1
with flexible multipath reservation. Similar trends to those
observed for unicast scenarios are apparent, though unsurpris-
ingly, all blocking rates are lower than those corresponding
to the unicast multipath reservations evaluated in Fig. 4a.
Blocking does increase as more paths are requested, but the
flexibility in the degree of required parallelism prevents any
noticeable difference between two-path and three-path results.
Furthermore, AMMH outperforms ABM by only the slightest
of margins, and since the behavior of the heuristics is identical
for single-path scenarios, there is no difference in their relative
blocking. Note also that AMMH reserves on average, fewer
paths successfully than ABM for each multipath request,
as shown by Fig. 5b. The addition of a second candidate
destination has not however improved the degree of parallelism
for flexible reservations over corresponding unicast analogues
when K = 2. Setting K = 3 does result in slightly more paths
on average for the anycast scenario. Allowing destination-
selection flexibility for anycast also decreases the total hop cost

3We have omitted the anycast 3/1 results, as they exhibit similar trends to
anycast 2/1. This decision is also informed by our findings in [6], wherein
we learned that adding more candidate destinations does not severely impact
performance.

of multipath requests as shown in Fig. 5c. Here we can observe
that the inclusion of a candidate destination set significantly
reduces path length over comparable unicast requests; at a
correlation factor of 0.9, the anycast solutions reduce overall
hop cost by more than 2.5 hops for both K = 2 and K = 3.
Furthermore, AMMH successfully reserves shorter paths than
ABM for all values of K, thereby using the network more
efficiently.

Given these results, we are confident that we can provide
some guarantee for the degree of parallelism on the network.
In future works, we will examine the potential for guaranteeing
a minimum quality of parallelism wherein a user desiring
parallel paths can be offered a guarantee of some number of
parallel paths given the current state of the network.

Figure 6 offers a blocking analysis of inflexible anycast
multipath reservations. Similarly to flexible multipath requests,
AMMH yields nearly identical results to ABM; we therefore
omit the AMMH results from this figure. For these reservation-
s, as the degree of desired parallelism increases, so too does
overall blocking. Note that ABM solutions result in blocking
rates slightly lower than unicast blocking for flexible scenarios
for K = 2 at correlation factors above 0.1. This demonstrates
the enormous advantage of destination-selection. The impact
of this advantage is diminished however when K = 3, which
results in blocking performances only slightly better than the
inflexible unicast results for K = 3.

V. DISCUSSION AND FUTURE ENHANCEMENTS

Multipath solutions offer issues such as differential latency,
packet reordering, and failovers, which can be evaluated as
future work through deployment in a real world testbed. There
are also some design limitations to the current multipath client.
As mentioned in Section III-A, on each iteration through
the multipath reservation loop, all previously allocated URNs
are pruned from the topology, except for the source and
destination, which must remain in order to define a VC’s
origin and termination points. Consider the specific case in
which these URNs are just one physical hop apart. Here, the
entire shortest path consists of just two URNs which cannot
be pruned out. Thus, each subsequent iteration would merely
return the same single-hop path from source to destination
until bandwidth or VLAN resources are exhausted. We have
taken care to disallow single-hop requests in our evaluations,
but an area of future enhancement includes the proposal of an
alternate multipath solution for single-hop scenarios.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.3 0.5 0.7 0.9

B
lo

c
k
in

g
 P

ro
b
a

b
ili

ty

Correlation Factor

ABM, K = 1
ABM, K = 2
ABM, K = 3

AMMH, K = 1
AMMH, K = 2
AMMH, K = 3

(a) Blocking probability.

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 0.1 0.3 0.5 0.7 0.9

N
o
.
P

a
th

s
 p

e
r

R
e

q
u
e
s
t

Correlation Factor

ABM, K = 2
ABM, K = 3

AMMH, K = 2
AMMH, K = 3

(b) Average path count per successful request.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0.1 0.3 0.5 0.7 0.9

A
v
e
ra

g
e
 N

o
.
H

o
p
s
 p

e
r

R
e
q

u
e
s
t

Correlation Factor

ABM, K = 1
ABM, K = 2
ABM, K = 3

AMMH, K = 1
AMMH, K = 2
AMMH, K = 3

(c) Average hop count per successful request.
Fig. 5: Anycast 2/1 multipath evaluation for flexible requests with K paths.

An additional area of future work is the evaluation of our
multipath solution for fault tolerances. If a fiber-link were
cut, or a serious failure occurred at a node or datacenter
along the primary route, our multipath client could provide
survivable backup solutions to maintain the user’s expected
quality of service and meet the specified, guaranteed deadline.
Our multipath solution emphasizes the link-disjoint nature of
the provisioned parallel paths, and thus each path may serve as
a survivable solution to the next. We therefore plan to evaluate
our client on fault-prone systems for path protection.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 0.3 0.5 0.7 0.9

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

Correlation Factor

Unicast, K = 1
Unicast Flexible, K = 2
Unicast Flexible, K = 3

Unicast Inflexible, K = 2
Unicast Inflexible, K = 3

ABM, K = 1
ABM, K = 2
ABM, K = 3

Fig. 6: Blocking probability of anycast 2/1 requests with inflexible
multipath routing of K paths.

Routing the shortest available set of paths may be too
greedy when available capacity on the selected links is limited.
In future extensions, we will further analyze the selected path
sets based on cumulative bandwidth consumption to try and
uniformly maintain some level of unused capacity for future
requests across the entire network. We also aim to enhance our
multipath client to support sets of paths with heterogeneous
transfer rates and bandwidth needs. Such a study will benefit
greatly from cumulative bandwidth consumption and capacity-
driven evaluations.

VI. CONCLUSION

With the ever-increasing amount of data produced by scien-
tific communities, solutions for efficient and safe transmission
are increasing in importance. Large file transfers can benefit
from simultaneous transmissions over parallel channels. In
this paper, we introduced a multipath solution to ESnet’s
OSCARS VC provisioning software and have quantitatively
and qualitatively compared it to both the traditional unicast
and enhanced anycast deployments of the system. With only

minimal modification to the OSCARS Dijkstra PCE module,
we have developed our solution as a mostly front-end client
that provides end-users and applications with familiar and flex-
ible interfaces by which to reserve multipath VCs. The work
we have presented herein has resulted in a novel contribution
to the scientific community, and has yielded the first parallel
multipath solution that cooperates with OSCARS.

ACKNOWLEDGMENT

This work has been supported by the Department of Energy
(DOE) PROPER project under grant DE-SC0012115TDD [5].

REFERENCES

[1] J. Zheng and H. T. Mouftah, “Supporting advance reservations in
wavelength-routed WDM networks,” in Proc., IEEE Int. Conf. on
Computer Communications and Networks (ICCCN), 2001, pp. 594 –
597.

[2] ——, “Routing and wavelength assignment for advance reservation in
wavelength-routed WDM optical networks,” in Proc., IEEE Int. Conf.
on Communications (ICC), vol. 5, 2002, pp. 2722–2726.

[3] N. Charbonneau and V. M. Vokkarane, “A survey of advance reserva-
tion routing and wavelength assignment in wavelength-routed WDM
networks,” IEEE Communications Surveys Tutorials, vol. 14, no. 4, pp.
1037–1064, Dec. 2012.

[4] “OSCARS,” Apr. 2014, [Online]. Available:
http://www.es.net/services/oscars/read-more/.

[5] V. M. Vokkarane, “PROPER: Parallel Resource-Optimized
Provisioning of End-to-end Requests,” [Online]. Available:
http://faculty.uml.edu/Vinod Vokkarane/proper/.

[6] M. Boddie, T. Entel, C. Guok et al., “On extending ESnet’s OSCARS
with a multi-domain anycast service,” in Optical Network Design and
Modeling (ONDM), 2012, pp. 1–6.

[7] D. Din, “A hybrid method for solving ARWA problem on WDM
network,” Elsevier Computer Communications, vol. 30, no. 2, pp. 385–
395, Jan. 2007.

[8] T. Stevens, M. D. Leenheer, C. Develder et al., “Anycast routing
algorithms for effective job scheduling in optical grids,” in Proc.
of European Conference on Optical Communication (ECOC) 2006,
Cannes, France, Sep. 2006, pp. 371–372.

[9] B. G. Bathula, M. Alresheedi, and J. Elmirghani, “Energy efficient
architectures for optical networks,” in Proc. London Communications
Symposium (LCS) 2009, London, UK, Sep. 2009.

[10] UMass Dartmouth and ESnet, “Anycast Multi-Domain OSCARS,” [On-
line]. Available: https://oscars.es.net/repos/oscars/branches/common-
anycast/.

[11] J. M. Plante, D. A. P. Davis, and V. M. Vokkarane,
“Multipath service OSCARS client,” [Online]. Available:
http://faculty.uml.edu/Vinod Vokkarane/proper/multipath oscars/.

[12] N. Charbonneau and V. M. Vokkarane, “Static routing and wavelength
assignment for multicast advance reservation in all-optical wavelength-
routed WDM networks,” IEEE/ACM Transactions on Networking,
vol. 20, no. 1, pp. 1–14, 2012.

