
Deadline-Aware Co-Scheduling Using Anycast Advance Reservations
in Wavelength Routed Lambda Grids

Hitesh Kulkarni, Arush Gadkar, and Vinod M. Vokkarane
Department of Computer and Information Science

University of Massachusetts Dartmouth
Email: vvokkarane@ieee.org

Abstract—As grid applications evolve, the need for user con-
trolled network infrastructure is apparent in order to support
emerging dynamic and interactive services. Due to the inherent
bandwidth offered by optical wavelength division multiplexed
(WDM) networks, they prove to be a potential candidate to
support the bandwidth intensive grid applications. In a grid
environment, the available resources can be classified into two
broad categories: grid resources which consist of computing and
storage components that reside on each node of the network and
network resources which provide bandwidth for the execution of a
grid application. A typical grid application (job) is usually divided
into a number of smaller tasks which need to be scheduled,
on possibly different nodes of the network in order to ensure
job completion. There usually exists some dependency between
these tasks and a strict time-deadline within which the job needs
to be completed. Rather than using an independent scheduling
approach (at the grid and network levels), we address the co-
scheduling problem in lambda-grids for advance reservation
requests and aim at minimizing the job blocking probability.
We use the anycasting communication paradigm referred to as
co-anycasting, to allocate grid and network resources to all tasks
of a job. We propose three heuristics: first free (FF), shortest hop
(SH), and least used (LU) to solve the co-scheduling problem.
Moreover, we compare the proposed co-anycasting approach to
a grid-anycasting approach, wherein the anycasting flexibility
is offered only at the grid level, and show through extensive
simulations the performance benefit of using co-anycasting to
support grid applications in a time-deadline environment.

Index Terms—Lambda-Grid, Co-Scheduling, Grid Computing,
Network-Bandwidth, Co-Anycasting, Advance Reservations.

I. INTRODUCTION

Recently, a growing number of scientific applications re-
quire large amounts of data (usually in the scale of petabytes)
generated by experiments to be accessible and analyzed by a
large number of geographically dispersed users. Such large-
scale applications can easily overwhelm the computing sys-
tems capacity of an organization. Hence the need for coop-
eration of computing devices from different organizations to
run these applications is critical. The grid can help to solve
this problem. A grid, simply defined, is the integration of
distributed facilities that offer computing and storage resources
to the clients as a service.

In order to efficiently realize such an environment, one must
also take into account the support from underlying networks,
which are required to provide high capacity and communica-
tion capabilities that are service oriented. Due to the inherent
bandwidth offered by optical wavelength division multiplexed
(WDM) networks, they prove to be a potential candidate for
such a backbone network. This integration of grid resources
interconnected by WDM fiber links is termed as Lambda-Grid.

A key difference between a Lambda-Grid request and the tra-
ditional network connection request is location transparency.
In a network connection request, the location (destination node
ID) needs to be specified. This request is provisioned by
finding an end-to-end route over the physical topology on
a particular wavelength1. This is known as the routing and
wavelength assignment (RWA) problem and is known to be
NP-Complete [1]. The combination of the physical route and
wavelength is called a lightpath. On the other hand, a grid
request supports location transparency, wherein the request
specifies only the requirement of resources, but not the exact
location or ID of the destination node. Hence, a grid request
is provisioned in two steps: 1) finding a node with sufficient
available resources that can be allocated to the request and
2) establishing a lightpath (from the source node, i.e., the
node where the request originates) to the selected destination
node. This problem of jointly finding a node (with sufficient
resources) and establishing a lightpath to it is termed as co-
scheduling.

A grid request, referred to as a job can be divided into a
number of modules, referred to as tasks that can be dependent
on each other. Dependent tasks of a job are modeled using a
directed acyclic graph (DAG) [2], wherein the nodes of the
graph denote the task and the arcs denote the dependency
between the tasks. Hence a particular job can be represented
by a uni-directional graph. A user’s grid request can be
broadly classified into two categories: immediate-reservation
(IR) and advance-reservation (AR) requests. IR requests are
provisioned (if possible) immediately upon their arrival, i.e.,
the scheduler checks if sufficient resources (grid and network)
are available to provision the request, else it is deemed
blocked. On the other hand, AR requests provide a time-
deadline within which the request can be provisioned. This
flexibility provides the ability to the scheduler to guarantee
the availability of resources at a particular time in the future.
This increases the predictability of the system and results
in improved performance. Note that in the context of AR
jobs (request), each task of the job needs to be scheduled
within the specified time-deadline, taking into account the task
dependencies, i.e., for example, if task B is dependent on task
A, we need to ensure that prior to scheduling task B, we have
successfully completed scheduling task A. We refer to this
as the deadline-aware co-scheduling in lambda-grids (DACL)
problem.

1Using the same wavelength on all the physical links a connection tra-
verses, helps avoid the need to incorporate wavelength converters which are
expensive. This property is commonly referred to as the wavelength continuity
constraint (WCC).

2013 International Conference on Computing, Networking and Communications (ICNC) Workshop on Computing, Networking and
Communications

978-1-4673-0009-4/13/$26.00 ©2013 IEEE 257



In this paper, we use the anycasting communication
paradigm to solve the DACL problem. Anycasting is defined
as the communication paradigm in which the user, has the
ability to choose a single destination from a group of candidate
destinations. Note that in the context of Lambda-Grids, this
functionality is offered, both at the grid and network levels.
We refer to this as co-anycasting. We propose three heuristics
and aim at minimizing the job blocking probability. We show
how time-deadline affects the performance of the grid and
how the resources available on the node are utilized using
these anycasting algorithms. Moreover, we also compare the
co-anycasting approach to solve the DACL problem to a
grid-anycast approach, wherein the anycasting functionality
is offered only at the grid level. Our study establishes the
effectiveness of using the anycasting communication paradigm
to schedule resources in a time-deadline environment. The
remainder of this paper is organized as follows: we discuss the
related work in Section II and formally define the problem in
Section III. We present the anycasting heuristics in Section IV.
In Section V, we present the results of our performance
evaluations and finally conclude the paper in Section VI.

II. RELATED WORK AND MOTIVATION

There is a lot of work in the literature on scheduling
methods in both optical networks [3] and grid computing
[4]. However these methods are too restrictive to be directly
used to achieve optimal grid-network scheduling. In [5], the
authors address the problem of co-scheduling in grid networks
and propose various job scheduling heuristics, such as greedy,
earliest start time first (ESTF), largest job first (LJF), and
random selection. They show that adaptive routing schemes
perform better than using a fixed routing method. A Tabu
search algorithm to perform joint scheduling is proposed by
the same authors in [6].

In [7] and [8], the authors propose various anycast algo-
rithms to improve the job acceptance rate, in the context of
grid over OBS networks. [7] considers jobs which have tasks
dependent sequentially on each other and proposes various
cost assignment policies to pick up a combination of nodes,
providing the required services and routes based on a n-partite
graph. [9] and [10] have considered advanced reservations on
grid-networks. In [9], the authors have considered advanced
reservation of resources for both homogeneous and hetero-
geneous environments. The authors provided scheduling algo-
rithms using best fit strategy to utilize the maximum amount of
resources. [10] addresses the resource provisioning in WDM
networks by providing ILPs and heuristics for maximizing the
number of connections accepted and minimizing the number of
wavelength links. Note that these works address the problem
of advanced reservations on grid networks only, and do not
solve the joint problem (co-scheduling) in grid networks.

Various frameworks are built for grid and network co-
scheduling. PHOSPHORUS [11] and EnLIGHTened [12] are
projects focusing on providing on-demand and in-advance
advanced reservation for grid resources. G-Lambda [13] is
another project with a goal of providing a standardized web in-
terface between grid resource scheduler and network resource

management systems. Practical grid applications, such as the
large-scale scientific experiments (Large Hadron Collider)
and high energy particle physics applications (Fusion Energy
Science) have strict time-deadlines within which a particular
job needs to be completed. With this in mind, we extend
the work conducted in [5] and propose efficient heuristics to
minimize the job blocking probability (for AR requests) in a
time-deadline driven environment. Moreover, in [5] the authors
imposed a limitation, that every computing node can execute
only one task at a time and only a sequential dependence
between the tasks was assumed. In this work, we assume a
random dependence between the tasks and allow multiple tasks
to be executed on a particular node, provided it has sufficient
resources.

III. PROBLEM DEFINITION AND METHODOLOGY

In this section we formally define the DACL problem and
discuss the assumptions used in this paper. Given a network
G = (V,E,Rv,W ), (V is the set of nodes, E is the set of
edges, W is the number of wavelengths per fiber, and Rv is the
number of resources available on node v ∈ V ), we consider
a time-slotted network with fixed-size time slots. A job is in
form of a DAG which can be modeled as J = (T,A), where T
is the set of tasks and A specifies the set of arcs which connect
the tasks in the manner of their dependencies. Each task can
be further defined as Tj = (Taj , Duj , Sj , Rj , Dlj), where Taj

is the arrival time of the task j, Duj is the duration, Sj is the
source node2, Rj is the number of resources required by the
task, and Dlj is the deadline for task scheduling. A network
scheduler maintains the state information which is updated
for every new task. The network scheduler’s state information
consists of which time slots are in use on all the wavelengths
and on all links across the network. It can be thought of as a
table U [E,W ], where E is the set of links and W is the set
of wavelengths on that link. A similar information of which
resources are occupied across all the nodes is maintained by
the grid scheduler. With this in mind the DACL problem can
be formally stated as follows:

Definition (DACL): Given a network G = (V,E,Rv,W ),
and a dynamic arrival process for the tasks (that comprise a
job), one must assign sufficient resources for each task and
schedule a lightpath from the client node to the resource node
in such a manner that the number of jobs scheduled is max-
imized while satisfying the wavelength continuity constraint
and adhering to the time-deadline constraint of each task.

Methodology: The tasks of a job follow a dependency
graph. The grid scheduler picks up a job from the job list and
selects a task which has no parent in order to schedule it. The
grid scheduler then checks if there are any nodes available
with the number of resources, greater than or equal to the
resources required by the task to be executed. All the node’s
which are available with the number of resources required,
are added to the set of potential destination nodes given by
Gl. This destination list, Gl is then passed on to the network

2For sake of simplicity, we use the following definition through the
remainder of this paper: The source node is called as the client node i.e.,
the node where the request originates and we denote the node which services
this client node with the required number of resources as the resource node.

2013 International Conference on Computing, Networking and Communications (ICNC) Workshop on Computing, Networking and
Communications

258



scheduler in order to find a ligthpath from the client node to a
possible resource node. The network scheduler then evaluates
(depending on it’s current state), the possible RWA’s that can
be successfully achieved to the nodes in Gl, and creates a list
of those nodes, Dlj . Then depending upon the flavor of the
anycast algorithm (described in the next section), a destination,
Dj , is picked from Dlj . Note that this destination Dj becomes
the client node for every task (child) dependent on this current
task.

We assume following constraints for scheduling tasks on
grid and network level.

• Before scheduling a task, all of its parent tasks should be
completed.

• For any task Ti, its deadline, Dli is greater than the
maximum deadline from the set of deadlines of its parent
task(s).

• The task cannot be scheduled to be executed on its source
node, i.e., Si ̸=Di.

• The duration of time required by the task, Dui, is same
for the lightpath and resources on destination (resource)
node Di.

• If a task Ti belonging to job J is blocked, all the
consecutive tasks of J are blocked, thereby blocking the
job.

• There are no wavelength converters in the network, so
any given task must use the same wavelength on all the
links on its lightpath, i.e., we adhere to the WCC.

Every task after being scheduled can be represented as Tj =
(Taj , Duj , Sj , Dj , Rj , Dlj , Pj ,Wj), where Dj is the selected
destination, Pj is the lightpath scheduled from Sj to Dj , and
Wj is the wavelength chosen for transmission. Note that we
do allow multiple tasks to be executed concurrently on a given
node and aim at minimizing the job blocking probability.

IV. ANYCAST CO-SCHEDULING HEURISTICS

In this section, we present the anycast heuristics for grid and
network co-scheduling. Our algorithms employ a fixed routing
scheme. We first present three different anycast heuristics for
resource node selection: first free (FF), shortest hop (SH), and
least used (LU) and then describe the co-scheduling algorithm.

A. First Free (FF)

We denote all the nodes of the network by some node ID
(index number) and include them in a set N . To schedule
a particular task, we select the nodes from N which have
sufficient resources (as that required by the task) and add them
to a set Gl (Gl ⊂ N ). Gl is then sorted according to the
index number of the nodes in an increasing order and passed
to the network scheduler in order to perform an RWA, i.e., to
check if a lightpath can be established from the client node
to the current node under consideration in Gl. If the network
scheduler cannot successfully schedule a lightpath to any node
in Gl, the task is deemed blocked. Note that the FF heuristic
does not incorporate any network/grid parameter to choose
the resource node, in contrast to the two heuristics proposed
below.

B. Shortest Hop (SH)

The SH heuristic finds all the possible nodes that satisfy
the task’s grid resource requirements and adds them to the set
Gl, which forms the anycast destination set. Gl is then sorted
based on the shortest hop count (from the client node) in an
increasing order. The heuristic then scans all the paths and
wavelength combinations to find all the available lightpaths
with duration Dui (of task Ti) for each destination in the
anycast destination set. The heuristic selects a destination with
the shortest hop count and tries to schedule a lightpath to it.
If the requested number of time slots are not available on any
path connecting the client node, Si, to this current node under
consideration in Gl, the network scheduler moves to the next
node and tries to schedule a lightpath to it, and so on until the
all the nodes from Gl are exhausted. If a lightpath cannot be
scheduled the task is deemed blocked, thus blocking the job.

C. Least Used (LU)

The LU heuristic finds all the possible nodes that satisfy
the task’s grid resource requirement and adds them to the set
Gl, in an increasing order of the tasks which are currently
being executed on them. This heuristic thus ensures that all
the nodes participating in the grid are used, which in turn
helps reduce the blocking probability from the network layer
perspective. The network scheduler then scans all the nodes
from Gl and tries to schedule a lightpath to any one node. If
an RWA cannot be achieved to any node in Gl, the task, and
in turn the job, is deemed blocked.

D. Co-scheduling Grid and Network Resources

Algorithm 1 depicts the co-scheduling algorithm imple-
mented in this paper. For a particular job, J , (under con-
sideration to be scheduled) the grid-scheduler selects a task,
T , in such a way that its dependency is satisfied. Depending
upon the current availability, we populate a list, Gl, with nodes
that can satisfy the resource requirement of T (as shown in
Lines 1 − 4). To populate Gl, we also consider nodes that
do not have the required number of grid resources free at
the present time (task’s arrival time), but would have free
resources at some time in the future, before the deadline of
the task is reached (as shown in Lines 6 − 8). In such cases
an advance reservation is performed on the grid and network
resources. Once all the nodes have been added to the set Gl, we
sort them (Line 9) according to the policies discussed earlier
(first free, shortest hop, and least used) and pass them to the
network scheduler to perform the RWA operation. Note that
the request is blocked at the grid level in case Gl is empty.
The RWA function determines how many consecutive time
slots are available starting at the arrival time (Ta) on a specific
lightpath, or it does an advanced reservation in case the grid
destination is to be scheduled for (Ta+SA), where SA is the
number of slots from the arrival time slot after which allocation
should occur. The co-schedule() function (Line 15) schedules
and reserves the resources on network and grid level and holds
them until their completion times. A request is deemed blocked
at the network level only when a successful RWA cannot be

2013 International Conference on Computing, Networking and Communications (ICNC) Workshop on Computing, Networking and
Communications

259



performed on any node in Gl. Finally, when all the tasks of a
particular job are completed, the job is marked completed.

Algorithm 1: Co-Scheduling Algorithm
Input: Tj = (Ta, Du, S, R,Dl), G = (V,E,Rv,W ), U [E,W ]
Output: co-schedule(T ) where T = (Ta, Du, S,D,R,Dl, P,W )

1 for v = 1 to V and v ̸= S do
2 Rvf = Check Free Now(v)
3 if Rvf ≥ R then
4 Gl.add(v)

5 else
6 Rvf = Check Free Before Deadline(v,D)
7 if Rvf ≥ R then
8 Gl.add(v)

9 Sort Anycast Destinations Gl based on the anycast algorithm(SH,LUorFF )
10 then
11 for d = 1 to Gl do
12 for w = 1 to W do
13 if RWA(S,Gld, w, P ) then
14 T = (Ta, Du, S,Gld,R,Dl, P, w)
15 co-schedule(T )

V. PERFORMANCE EVALUATION

We evaluate our anycast heuristics on the 14-node National
Science Foundation network (NSFnet), shown in Fig. 1. Jobs
arrive according to a Poisson process with average arrival rate
λ and have exponentially distributed holding times with an
average service rate of µ. Note that the time-deadline for
the jobs are also generated exponentially with service rate
greater than µ. The horizon is large enough so that none of
the requests are blocked due to their durations. The number of
tasks per job is uniformly distributed across the range [1, 5].
For each job, the dependencies between the tasks are randomly
generated. Note that the tasks with no parents have randomly
generated source nodes. The time slot size greatly depends
upon the type of traffic that a network operator expects. It
could be fine tuned by the operator to range from seconds to
hours. We simulate 105 jobs per run and plot an average of
30 runs in all the following figures.

Fig. 1. Simulation topology: NSFnet.

We first evaluate the benefits of providing the anycasting
functionality, both at the grid and network level (referred to as
co-anycast) as opposed to providing it only at the grid level
(referred to as grid-anycast). In the anycast communication
paradigm, the client node communicates with any one resource
node from the set of candidate nodes (Gl). We further use the
parameter k = {2, 3, 5} to represent the number of nodes

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50  60  70  80  90  100

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

Load

grid anycast
k=2
k=3
k=5

comp. anycast

(a)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  10  20  30  40  50  60  70  80  90  100

B
lo

c
k
in

g
 P

ro
b

a
b
ili

ty

Load

grid anycast
k=2
k=3
k=5

comp. anycast

(b)

Fig. 2. Co-Anycasting vs Grid-Anycasting (a) FF (b) SH.

(from the set of N − 1 nodes) that can be potentially added
(depending upon resource availability) to the set Gl. We
also evaluate our heuristics for the case of complete-anycast,
wherein we do not impose a limit on the number of nodes
that can be added to the set Gl, i.e., we can potentially add,
depending on resource availability, up to k = N − 1 nodes.
With this in mind, the grid-anycast, communication paradigm
may be defined as one wherein we impose the restriction
of k = 1. In doing so, we provide flexibility only at the
grid level3. No flexibility is offered at the network level, as
an RWA, only to the selected node has to be successfully
performed to provision the request. In Fig. 2, we compare the
benefits of co-anycasting to the case of grid-anycast, for the
FF and SH heuristics respectively. It can be observed that all
flavors of co-anycast (i.e., k = 2, 3, 5 and complete-anycast)
outperform the grid-anycast, by an order of magnitude for the
the FF and by almost two-orders of magnitude for the the SH
heuristic across different loads4. As expected, with an increase

3Like the unicast (one-to-one) communication paradigm, the grid-anycast
also consists of a single node with which the client node communicates.
However, we use the policies (FF, SH, and LU) to chose which node the
client communicates with, unlike deciding it a-priori as in unicast.

4The network load in Erlangs is calculated as the ratio of the average arrival
rate to the average service rate (λ/µ).

2013 International Conference on Computing, Networking and Communications (ICNC) Workshop on Computing, Networking and
Communications

260



in k (number of nodes in the set Gl, an improvement in the
blocking performance is observed as more flexibility is granted
to the co-scheduling algorithm to provision the requests.
These results justify the performance benefits achieved by
incorporating the anycasting functionality at both the grid and
network level i.e., co-anycasting as opposed to grid-anycast.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

Node Resources

FF
LU
SH

Fig. 3. Blocking performance for different number of node resources.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  2  3  4  5  6  7  8  9  10

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

Wavelengths

FF
LU
SH

Fig. 4. Blocking performance for different number of wavelengths per link.

In Fig. 3 we show the blocking performance of the three
heuristics (FF, LU and SH) for varying number of resources
allocated per grid node. Similarly in Fig. 4, we depict the
blocking performance for varying number of wavelengths per
link. It can be observed from Fig. 3, that for number of
resources less than 16 the FF, LU, and SH heuristics perform
identically. Hence, we use 20 grid resources per node and 8
wavelengths per link for our performance evaluation.

In Fig. 5(a) we compare job blocking probabilities for the
FF , SH , and LU heuristics. It can be observed that the SH
heuristic clearly out-performs the FF heuristic (by over two
orders of magnitude at higher loads) and the LU heuristic
(by almost an order of magnitude). This can be explained as
follows: the least used heuristic selects the grid node (with
sufficient number of available resources) depending upon the
current resource usage of the nodes in the network. Thus

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 10 20 30 40 50 60 70 80 90 100

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

Load

FF
LU
SH

(a)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  10  20  30  40  50  60  70  80  90  100

A
v
g
 h

o
p
 C

o
u
n
t

Load

FF
LU
SH

(b)

 0.405

 0.41

 0.415

 0.42

 0.425

 0.43

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

Deadline

FF
LU
SH

(c)

Fig. 5. Comparison of FF, SH and LU for (a) Average Blocking Probability,
(b) Average Hop Count, (c) Deadline Performance.

2013 International Conference on Computing, Networking and Communications (ICNC) Workshop on Computing, Networking and
Communications

261



it has a tendency to select grid nodes that are further away
from the client node. This results in wavelength reservations
on all the physical links connecting the client node to the
particular (chosen) resource node. These reservations cause the
future tasks to be blocked at network level. The FF heuristic
performs the worst as it does not utilize any intelligent node
selection criterion (grid/network usage). Rather it selects the
smallest indexed node (with sufficient resources) to provision
the request. Note also that since the SH heuristic chooses the
shortest hop node to schedule a task, it results in lower average
number of hops as compared to LU and FF heuristics as shown
in Fig. 5(b). In Fig. 5(c) we compare the performance of the
three heuristics for varying time-deadlines. As expected, we
can observe an improvement in the blocking probability as
the deadlines are increased for jobs. The tasks now have more
time, wherein they can be pushed into future to get resources
allocated to them.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  2  4  6  8  10  12  14

U
ti
li
z
a

ti
o

n

Node Index

FF

LU

SH

Fig. 6. Average Utilization across all the nodes

Finally in Fig. 6, we represent the utilization (defined as
the the ratio of resource busy time to the total time duration
of all the completed jobs) for the three heuristics. It can be
observed that the LU heuristic has a constant utilization as
it selects the least used node and attempts to utilize all the
nodes in the network. There is very high utilization for the
lower indexed nodes in FF , as it sorts the anycast destination
set by the index numbers of the nodes and selects the node
with the lowest index (and available resource) to provision a
particular grid request. Note that the SH heuristic has higher
utilization for higher indexed nodes, as in case of a tie (in terms
of hop distance) between two nodes in the anycast destination
set, we select the node with the higher index to provision the
grid request.

VI. CONCLUSION

In this paper we addressed the problem of deadline-aware
co-scheduling in lambda-grids (DACL) for advanced reser-
vation requests. We proposed the anycast communication
paradigm to solve the DACL problem and showed the ben-
efits rendered by co-anycasting as opposed grid-anycast. We

proposed three different anycast heuristics: first free (FF), least
used (LU), and shortest-hop (SH) to solve the DACL problem
and evaluated their performance in terms of blocking, time-
deadline, average hop count and utilization. It was observed
that the SH heuristic out-performed the FF and LU heuristic.
It was observed that the deadline plays an important role in im-
proving the blocking performance. The primary limitation of
this study is that of considering a homogeneous network. With
most networks being heterogeneous (with different amounts of
bandwidth on different links, considering resources, such as
storage and scientific instruments.), the proposed algorithms
can be extended for such networks. The proposed DACL prob-
lem can also be mathematically formulated and solved using
integer linear programming (ILP). Dynamic routing techniques
could also be employed to reduce network blocking. These are
some of the potential areas we plan to investigate in our future
work.

ACKNOWLEDGMENT

This work has been supported by the Department of Energy
(DOE) COMMON project under grant DE-SC0004909 and the
NSF CARGONET project under grant CNS-1218973.

REFERENCES

[1] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: an
approach to high bandwidth optical WANs,” IEEE Trans. Commun.,
vol. 40, no. 7, pp. 1171–1182, July. 1992.

[2] Y. Wang, Y. Jin, W. Guo, W. Sun, W. Hu, and M. Wu, “Joint scheduling
for optical grid applications,” J. of Optical Networking, vol. 6, pp. 304–
318, March 2007.

[3] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and
wavelength assignment approaches for wavelength-routed optical WDM
networks.” SPIE Optical Networks Magazine, vol. 1, no. 1, pp. 47–60,
Oct 2000.

[4] Q. She, X. Huang, N. Kannasoot, Q. Zhang, and J. P. Jue, “Multi-
resource manycast over optical burst-switched networks,” in Proc. IC-
CCN, Aug. 2007, pp. 222–227.

[5] V. Lakshmiraman and B. Ramamurthy, “Joint computing and network
resource scheduling in a lambda grid network,” in Proc. ICC, May 2009.

[6] A. Ravula and B. Ramamurthy, “A tabu search approach for joint
scheduling of resources in a lambda grid network,” in Proc. Globecom,
May 2010.

[7] N. Kannasoot, A. Patel, and J. Jue, “Sequential task anycast scheduling
in optical burst switched networks,” in Proc. ICC, May 2010.

[8] L. Kejie, T. Zhang, and A. Jafari, “An anycast routing scheme for
supporting emerging grid computing applications in OBS networks,”
in Proc. ICC, June 2007.

[9] C. Castillo, G. Rouskas, and K. Harfoush, “On the design of online
scheduling algorithms for advance reservations and QoS in grids,”
in Proc. 21st IEEE International Parallel and Distributed Processing
Symposium, 2007.

[10] H. Nguyen, M. Gurusamy, and L. Zhou, “Provisioning lightpaths
and computing resources for scheduled grid demands with location
transparancy,” in Proc. OFC, Feb 2008.

[11] G. Zervas, “Phosphorus grid-enabled GMPLS control plane (GMPLS):
architectures, services, and interfaces,” IEEE Commun. Mag, vol. 46,
no. 6, pp. 128–137, June 2008.

[12] L. Battestilli, “Enlightened computing: An architecture for co-allocating
network, compute, and other grid resources for high-end applications,”
in Proc. International Symposium on High Capacity Optical Networks
and Enabling Technologies, Nov. 2007, pp. 18–20.

[13] A. Takefusai, “G-lambda: Coordination of a grid scheduler and lambda
path service over GMPLS,” in Proc. Future Generation Computer
Systems, 2006.

2013 International Conference on Computing, Networking and Communications (ICNC) Workshop on Computing, Networking and
Communications

262


