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Abstract—A fault-tolerant scheme, called dual homing, is gen-
erally used in IP-based access networks to increase the availability
of the networks. In a dual-homing architecture, a host is connected
to two different access routers; therefore, it is unlikely that the
host will be denied access to the network as the result of an
access line break, a defective power supply in the access router, or
congestion of the access router. This dual-homing architecture in
the access network imposes the overhead to provide protection in
the core network. Scaling the next-generation IP-over-wavelength-
division-multiplexing (WDM) Internet, and being able to support
a growing number of such dual-homing connections, as well as
protection, demands a scalable mechanism to contain this over-
head for protection in the WDM networks. This paper studies
the coordinated protection design to reduce the protection cost
in the WDM core network, given a dual-homing infrastructure in
the access network. The protection problem is considered for both
static and dynamic traffic. Several solutions are proposed, and the
performances of the solutions are compared. We also prove that
one of the proposed algorithms gives a solution that, in the worst
case, is at most 4/3 times the cost of the optimal solution.

Index Terms—Dual homing, lightpath, protection, wavelength
division multiplexing (WDM).

I. INTRODUCTION

I P-OVER-WDM (wavelength-division-multiplexing) net-
works are considered to be a major component of the

next-generation Internet. One important issue in IP-over-WDM
networks is survivability. Survivability is the capability of the
network to function in the event of node or link failures.

In WDM networks, survivability is usually provided to han-
dle single link failures in the core network. A single failure in
an optical fiber can dramatically degrade network performance,
since a single fiber can carry a large amount of traffic. There-
fore, it is critical to support network survivability in WDM
networks. Survivability in WDM networks is implemented by
using protection and restoration techniques, which provide the
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survivability by setting up two disjoint lightpaths between the
source and the destination. One lightpath is called the primary
lightpath, and the other is called the backup lightpath. Protec-
tion is a static mechanism, which reserves resources for both
primary and backup lightpaths prior to data communication.
Restoration, on the other hand, is a dynamic mechanism, where
the backup lightpath is not set up until the failure occurs. Exist-
ing literature on protection and restoration in WDM networks
can be found in [1] and [2].

Dual homing is generally used to increase survivability in
the access network. The main objective of dual homing is to
provide enhanced survivability, to protect against access-node
failures caused by system malfunction, scheduled outage, or
an access-link failure. Dual-homing architecture design has
been widely studied in self-healing ring networks [3]–[7] and
wireless networks [8].

As the Internet advances, an enterprise may wish to acquire
its Internet connectivity from two Internet service providers
(ISPs) for enhanced reliability. Such dually connected enter-
prises are referred to as being “dual-homed.” When connec-
tivity through one of the ISPs fails, connectivity via the other
ISP enables the enterprise to preserve its connectivity to the
Internet. The enhanced availability, combined with the decreas-
ing cost of Internet connectivity, motivates more and more
enterprises to become dual homed. Each enterprise can select
two among the available ISPs; the selection criteria, however,
is out of the scope of this paper.

Given dual-homing architecture, the routing overhead im-
posed on the Internet routing system becomes more and more
significant if a route has to be maintained from each home to
the destination. Scaling the Internet and being able to support a
growing number of such enterprises demands scalable mecha-
nism(s) to contain this overhead. Routing and addressing strate-
gies that could reduce the routing overhead due to multihomed
enterprises connected to multiple ISPs in the Internet routing
system have been addressed in [9] and implemented in Cisco’s
network-address-translation (NAT) servers.

In an IP-over-WDM dual-homing architecture, a host in
the access network is attached to two IP routers, which are
connected to underlying edge optical cross connects (OXCs)
of the core network. Fig. 1 illustrates the IP-over-WDM dual-
homing network architecture.

There have been several efforts on providing survivability for
a dual-homed IP-based access network over WDM-based core
networks [10], [11]. In all this literature, the authors consider
providing survivability separately at the IP layer, as well as at
the WDM layer. In [10], the authors discuss how to support
dual homing in passive optical networks, while [11] studies
survivability in IP-over-WDM networks and provides different
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Fig. 1. Dual-homing architecture.

protection types (unprotected, protected, and dual homing) for
each IP link, in order to keep the networks connected in the
event of link failure. The focus of our paper is to present a
coordinated solution for providing protection in an IP-over-
WDM dual-homing network.

Similar to the observation in [9], given the dual-homing
architecture in the access network, it will impose the protection
overhead in the core network if protection is provided. There
are two possible approaches to provide protection in the core
network given the dual-homing architecture in the access net-
work, independent protection and coordinated protection. For
independent protection, a host sends an independent request to
each of its two dual-homed access routers, while each router
attempts to set up two disjoint lightpaths independently, to
provide protection against a single failure in the core network.
Since each IP router is not aware of the existence of the other
home, those two pairs of disjoint paths may not be able to make
an effort to share resources. Therefore, it may incur a higher
cost. For coordinated protection, a host sends a request to each
of its dual homes (access routers) by including the information
of the other home. With this additional information, each home
calculates two pairs of disjoint paths that maximize the sharing
between those two pairs of disjoint paths. Since both homes
have the same request information from the host, the indepen-
dently computed routes at each of the homes will be identical.
This paper focuses on developing algorithms to calculate two
pairs of disjoint paths with minimum cost. We briefly explain
the motivation of coordinated protection as follows. By con-
sidering the dual-homed IP-over-WDM architecture (Fig. 1),
we observe that, at any given time, each host transmits data
to the destination only through one of the dual homes. Based
on this observation, we see that only one of the primary paths
will be utilized at any given time. Also, this property leads to
fewer restrictions on the disjointness constraint between the two
primary and two backup paths from each of the dual homes to
the destination. By providing a coordinated solution, we can

obtain significant cost benefits, as compared to independent
protection.

In this paper, we study the coordinated protection from dual
homes to the destination to minimize the protection cost given
the dual-homing architecture in the access network, called
dual-homing protection (DHP). In this paper, DHP is studied
subject to both static and dynamic traffic. The rest of the paper
is organized as follows. The network architecture of DHP is
described in Section II. The detailed problem description is
presented in Section III. An integer linear-programming (ILP)
model is given as a solution to the static DHP problem in
Section IV. In Section V, we propose a number of different
heuristics to solve the dynamic DHP problem. We also prove
that one of the proposed algorithms gives a solution that, in the
worst case, is at most 4/3 times the cost of the optimal solution.
In Section VI, we evaluate the performance of all the proposed
algorithms. Finally, the conclusion is presented in Section VII.

II. NETWORK ARCHITECTURE

In this paper, we consider an integrated IP-over-WDM net-
work, as shown in Fig. 1, where a host in the access network is
attached to two IP routers in the IP-based access network. Each
IP router is connected to an OXC, which in turn is linked to
other OXCs that constitute the all-optical WDM core network.
In a dual-homing architecture, two link-disjoint paths connect
the host to its dual homes, which provides survivability against
a single IP router (node) or access-link failure. The dual-homed
IP routers are connected to the underlying OXCs, which convert
the IP packets into optical signals and transmit packets over the
WDM layer to the corresponding destinations.

In the event of an access-node failure, by using dual homing,
the access traffic can be shifted to the other home (access node),
which in turn transmits the data traffic to the destination. We
also observe that in the event of an access-link failure, the ac-
cess network is survivable with the dual-homing infrastructure.



WANG et al.: DUAL-HOMING PROTECTION IN IP-OVER-WDM NETWORKS 3113

Fig. 2. Dual-homing and protection architectures. (a) Unprotected dual-homing architecture. (b) Unprotected dual-homing architecture with failures.
(c) Protected dual-homing architecture.

Hence, dual homing provides survivability against a single link
or node failure in the access network. In the event of a link fail-
ure in the core, we adopt link-disjoint dedicated path protection
to provide survivability. Therefore, the DHP we study in this
paper can provide survivability subject to one link/node failure
in the access network, as well as one link failure in the core
network simultaneously.

In our model, we assume that when the IP router fails, the
OXC connected to the router continues to carry optical traffic
from other OXCs in the core network. This assumption is
reasonable since WDM layer is a separate layer, and switching
functions are provided in the WDM layer.

In dual homing, we have two source OXCs, with only one
source OXC transmitting data to a specific destination OXC at
any given time. Therefore, we observe that, in most solutions,
the primary paths between the two source OXCs to the desti-
nation OXCs need not necessarily be disjoint. As a matter of
fact, we find that having the primary paths share the maximum
number of links reduces the amount of resources reserved,
which is one of the primary objectives in this paper. On the
other hand, the disjointness constraint between the primary
paths and the backup paths has to be satisfied. The detailed
description of the problem and the solutions are given in the
following sections.

III. PROBLEM DESCRIPTION

A WDM network can be modeled as an unidirected graph
G〈V,E〉, where V is the set of OXCs and E is the set of
WDM links. Let N = |V | be the number of nodes in the
graph. Let the wavelength cost of a WDM link e ∈ E be
c(e), and the maximum number of wavelengths in each link
be W . Let R denote the set of connection requests. Suppose
that each individual connection request, denoted by k, is given
by {{sk

1 , sk
2}, dk}, where sk

1 and sk
2 are two OXCs connected

to the dual-homed access routers of request k, and dk is the
destination OXC, which in turn is connected to an IP router that
connects to the destination host of request k. In this paper, we
assume that the two dual homes sk

1 and sk
2 are given, and the

problem we study is finding a pair of disjoint paths from sk
1

to dk, as well as a pair of disjoint paths from sk
2 to dk, which

can provide protection against a single link failure from the
access network and a single link failure from the core network
simultaneously. Another related problem is the determination
of two homes for each host, which will not be discussed in
this paper. For interested readers, we refer to [12] and [13] for
different models.

Let the primary lightpath from sk
1 to dk be denoted by p1

a(k)
and the link-disjoint backup lightpath from sk

1 to dk be denoted
by p1

b(k). Similarly, the primary lightpath from sk
2 to dk is

denoted by p2
a(k) and the link-disjoint backup lightpath from

sk
2 to dk is denoted by p2

b(k). Let Lk be the set of all links used
in the primary and backup lightpaths for the connection request
k. Lk is given by p1

a(k) ∪ p1
b(k) ∪ p2

a(k) ∪ p2
b(k).

If the core network is reliable, p1
a(k) and p2

a(k) are not
necessarily disjoint, as shown in Fig. 2(a). However, even if
p1

a(k) and p2
a(k) are disjoint, they cannot protect simultaneous

failures in the access network and the core network, as shown in
Fig. 2(b). If the access node of sk

1 is down and one link in p2
a(k)

is also down, data cannot be sent to dk. In order to provide
dual-homing protected service, we need p1

b(k) and p2
b(k) to

protect the lightpaths p1
a(k) and p2

a(k). We have the following
observations with respect to resource sharing:

— p1
a(k) and p2

a(k) are not necessarily disjoint.
— p1

b(k) and p2
b(k) are not necessarily disjoint.

— p1
a(k) and p2

b(k) are not necessarily disjoint.
— p2

a(k) and p1
b(k) are not necessarily disjoint.

— p1
a(k) and p1

b(k) must be disjoint.
— p2

a(k) and p2
b(k) must be disjoint.
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Fig. 2(c) illustrates these observations. These observations
provide guidance in reducing the protection cost in the core
network given the dual-homing architecture in the access net-
work. Our effort in this study focuses on fully investigating the
sharing properties among these two pairs of disjoint paths. It
is also observed that each request will use no more than one
wavelength on any link.

In this paper, we study two traffic models for protection
in WDM mesh networks with dual-homing survivability. One
problem is to route p1

a(k), p1
b(k), p2

a(k), and p2
b(k) for all

requests in R simultaneously, which is called static DHP. The
other problem is to route p1

a(k), p1
b(k), p2

a(k), and p2
b(k) when

request k arrives, which is called dynamic DHP. The difference
is that, for the former case, we need to consider all the requests
at once, and for the latter case, we only need to consider the
newly arriving request.

We assume that full-wavelength conversion capability is
available at each OXC in the core network and that the
wavelength-conversion cost is not significant. We only consider
the wavelength cost. Therefore, our objective in static DHP is
to find Lk for each request k in R, such that the total cost C is
minimum, where

C =
∑

k∈R

∑

e∈Lk

c(e). (1)

The objective of dynamic DHP is to find Lk for request k, such
that

∑
e∈Lk c(e) is minimum.

IV. STATIC DHP

Following the spirits of [14], we develop an ILP formulation
for the static DHP problem. We have the following notation:

x1
a(k, e) 1 if path p1

a(k) uses link e, 0 otherwise.
x1

b(k, e) 1 if path p1
b(k) uses link e, 0 otherwise.

x2
a(k, e) 1 if path p2

a(k) uses link e, 0 otherwise.
x2

b(k, e) 1 if path p2
b(k) uses link e, 0 otherwise.

yk
e 1 if any path for request k uses link e, 0 otherwise.

ye total number of wavelengths used in link e.
In(v) set of links that end at node v.
Out(v) set of links that start from node v.

The objective is to minimize
∑

e∈E

yec(e) (2)

subject to
∑

e∈Out(sk
1)

x1
a(k, e) = 1 ∀k (3)

∑

e∈In(dk)

x1
a(k, e) = 1 ∀k (4)

∑

e∈Out(sk
1)

x1
b(k, e) = 1 ∀k (5)

∑

e∈In(dk)

x1
b(k, e) = 1 ∀k (6)

∑

e∈Out(sk
2)

x2
a(k, e) = 1 ∀k (7)

∑

e∈In(dk)

x2
a(k, e) = 1 ∀k (8)

∑

e∈Out(sk
2)

x2
b(k, e) = 1 ∀k (9)

∑

e∈In(dk)

x2
b(k, e) = 1 ∀k (10)

∑

e∈In(v)

x1
a(k, e) =

∑

e∈Out(v)

x1
a(k, e) ∀k, v, v �=sk

1 (11)

∑

e∈In(v)

x1
b(k, e) =

∑

e∈Out(v)

x1
b(k, e) ∀k, v, v �=sk

1 (12)

∑

e∈In(v)

x2
a(k, e) =

∑

e∈Out(v)

x2
a(k, e) ∀k, v, v �=sk

2 (13)

∑

e∈In(v)

x2
b(k, e) =

∑

e∈Out(v)

x2
b(k, e) ∀k, v, v �=sk

2 (14)

x1
a(k, e)+x1

b(k, e) ≤ 1 ∀k, e (15)

x2
a(k, e)+x2

b(k, e) ≤ 1 ∀k, e (16)

yk
e ≥ 1

4
(
x1

a(k, e) + x1
b(k, e)

+x2
a(k, e) + x2

b(k, e)
)

∀k, e (17)

ye =
∑

k

yk
e ∀e (18)

ye ≤ W ∀e (19)

yk
e ∈ {0, 1} ∀k, e (20)

x1
a(k, e) ∈ {0, 1} ∀k, e (21)

x1
b(k, e) ∈ {0, 1} ∀k, e (22)

x2
a(k, e) ∈ {0, 1} ∀k, e (23)

x2
b(k, e) ∈ {0, 1} ∀k, e. (24)

Constraints (3)–(14) are the network-flow conservation con-
straints. Constraint (15) forces p1

a(k) and p1
b(k) to be disjoint,

and constraint (16) forces p2
a(k) and p2

b(k) to be disjoint.
Constraint (17) indicates that no more than one wavelength
is reserved in any link e for a request rk. Constraints (18)
and (19) indicate the maximum requests a link can support.
Constraints (20)–(24) indicate the integer constraint on the
variables.

We analyze the size of the abovementioned ILP models as
follows. Let |E| be the number of links in the network, |V |
the number of nodes, and |R| the number of connections.
Then we can see that the total number of decision variables
in the model is 5|K||E| + |E|, and the number of constraints
is 4|K||V | + 3|K||E| + 2|E|. The ILP model can be used to
find the optimal solution to a problem, though it may take a
long time to find a solution when the problem size becomes
large. However, the static routing model is usually regarded as
a planning problem that will not be solved very frequently. For
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these planning problems, finding a high-quality solution, i.e.,
the global optimum, is more important than obtaining a solution
quickly. Thus, an ILP model is the correct choice for approach-
ing the static routing model. On the other hand, the dynamic
routing model studied below is usually regarded as a real-time
scheduling problem, where a solution is needed immediately
when a connection request is received. Thus, quick heuristic
algorithms need to be developed to handle the dynamic routing
problem.

To evaluate the cost of static DHP, we compare the DHP
model with four other models, namely, single-homing with-
out protection (SH), single-homing with protection (SHP),
dual-homing without protection (DH), and independent DHP
(IDHP). The main difference among SH, SHP, and DH models
is that they only need one or two paths. The difference between
the IDHP solution and the DHP solution is that the IDHP
solution is not aware of the existence of the other home;
therefore, sharing of edges in the optical layer is not considered.
The four other models can be formulated and solved by slightly
modifying the developed DHP ILP model. We can modify the
flow-conservation constraints to indicate the requirements for
the paths of p1

a, p2
a, p1

b , and p2
b in each specific model.

For the SH model, we set the right-hand side of (5)–(10)
to 0, indicating that only one path p1

a is needed. In this case,
no protection is provided against any failures.

For the SHP model, we set the right-hand side of (7)–(10)
to 0, indicating that two disjoint paths p1

a and p1
b are needed. In

this case, protection is provided against a single link failure of
the core network, but not against any single failure of the access
network.

For the DH model, we can set the right-hand side of (5), (6),
(9) and (10) to 0, indicating that two disjoint paths p1

a and p2
a

are needed. In this case, protection is provided against a single
failure of the access network, but not against any single failure
of the core network.

For the IDHP model, variable yk
e is redefined as a nonneg-

ative integer variable for the wavelength usage of link e by
request k, and (17) is changed to

yk
e = x1

a(k, e) + x1
b(k, e) + x2

a(k, e) + x2
b(k, e) ∀k, e.

In this case, protection is provided against a single failure
of the access network and a single failure of the core network
simultaneously, the same effect as our coordinated DHP solu-
tion, but with higher cost.

V. DYNAMIC DHP ALGORITHMS

We now propose several heuristics for dynamic DHP. These
heuristics can be classified into two categories: One category
is based on a minimum-cost network-flow (MCNF) model and
the other category is based on a minimum Steiner-tree model.
The MCNF model computes minimum-cost link-disjoint paths
that satisfy the disjointness between the primary path and the
backup path [15]. On the other hand, the minimum Steiner-tree
model considers the sharing among the primary paths and the
sharing among the backup paths.

Since we only consider the current arrival request, for sim-
plicity, we will omit the index variable k from the previous
notations. Instead, let s1, s2, and d be the first home router, the
second home router, and the destination router of the current
request, respectively. Correspondingly, let p1

a be the primary
lightpath from s1 to d, p2

a be the primary lightpath from s2 to d,
p1

b be the backup lightpath from s1 to d, and p2
b be the backup

lightpath from s2 to d.
The first heuristic is based on MCNFs. The heuristic finds the

optimal link-disjoint primary and backup lightpaths from one
of the dual homes to the destination, and then finds the optimal
link-disjoint primary and backup lightpaths from the other dual
home to the destination. The approach to obtain the solution by
this heuristic algorithm is illustrated in Fig. 3(a).

The second heuristic is also based on MCNFs and is a
generalization of the first heuristic, in which we first select a
new node known as the branching node. From each of the dual
homes, we compute two minimum-cost link-disjoint paths to
the branching point, and from the branching node, we com-
pute two minimum-cost link-disjoint paths to the destination.
This process is repeated, selecting each node as the branching
node, and then selecting the minimum-cost solution. The first
heuristic is a special case of the second heuristic, in which the
destination is chosen as the branching node. Fig. 3(b) illustrates
the steps to obtain the solution by this heuristic algorithm.

The third heuristic algorithm is also based on the MCNF
model and is motivated by the fact that the two dual homes
are usually located close to each other. Here, we find the
shortest link-disjoint paths from each of the dual homes to
the destination, and also two minimum-cost link-disjoint paths
between the dual homes. These four paths make up the primary
and backup lightpaths. The solution obtained by this heuristic
algorithm is illustrated in Fig. 3(c).

The last heuristic algorithm is based on the minimum Steiner
tree. The algorithm finds a low-cost Steiner tree that connects
the two homes to the destination; the primary paths are covered
by the minimum Steiner tree. The algorithm then provides path
protection from each home to the destination. This approach
explicitly exploits the sharing of links between the primary
lightpaths and is demonstrated in Fig. 3(d).

We now describe each of the algorithms in detail and com-
pare their relative performance.

A. Minimum-Cost Network-Flow Heuristic (MCNFH)

The MCNFH first finds the minimum-cost link-disjoint pri-
mary and backup lightpaths from one of the dual homes to the
destination, then changes the cost of the these links to zero
(in order to encourage sharing), and finds the minimum-cost
link-disjoint primary and backup lightpaths from the other dual
home to the destination.

We can use the MCNF algorithm to find the minimum-cost
link-disjoint primary and backup lightpaths from one home to
the destination. Initially, we set the capacity of the link to be
unity, in order to force the primary and backup lightpaths from
s1 to d, as well as from s2 to d, to be disjoint. Note that the order
in which the paths are computed has a bearing on the total cost.
Hence, we first find the primary and backup lightpaths from



3116 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 10, OCTOBER 2005

Fig. 3. Dynamic DHP using different heuristics. (a) Protected dual-homing architecture using MCNFH. (b) Protected dual-homing architecture using MDSPH.
(c) Protected dual-homing architecture using MCSPH. (d) Protected dual-homing architecture using MSTH.

one dual home to the destination, and then find the primary and
backup lightpaths from the other dual home to the same destina-
tion. Then, we exchange the order and repeat the same process.
Finally, we select the solution having the minimum cost.

The detailed algorithm is given in Fig. 4. In Fig. 4, C gives
the total cost for the primary and backup lightpaths from s1 to
d, as well as from s2 to d, and S gives the links used for those
lightpaths.

We now show that any solution returned by MCNFH is, at
most, 4/3 times the cost of an optimal solution.
Lemma 1: In any optimal solution OPT, there either exists

two nodes u and v (u and v could be the same node, and u
and/or v could be s1, s2, or d), such that the paths s1 to u, s1

to v, s2 to u, and s2 to v are all edge disjoint or the cost of
OPT is at least 3/4 times the cost of the solution obtained from
MCNFH.

Proof: In any optimal solution, let p1
a and p1

b be the two
edge-disjoint paths from s1 to d, and let p2

a and p2
b be the two

edge-disjoint paths from s2 to d. If d were chosen to be u
and v, the paths p1

a, p1
b , p2

a, and p2
b might not necessarily be

edge disjoint. If they are edge disjoint, the proof is complete.
But if they are not edge disjoint, then one of the following
must be true.

1) Paths p1
a and p2

a are not edge disjoint.
2) Paths p1

b and p2
b are not edge disjoint.

3) Paths p1
a and p2

b are not edge disjoint.
4) Paths p1

b and p2
a are not edge disjoint.

5) 1) and 2).
6) 3) and 4).
7) 1), 2), and 3).
8) 1), 2), and 4).
9) 3), 4), and 1).

10) 3), 4), and 2).
11) 1), 2), 3), and 4).

For the first six cases, we now show (not necessarily in
the same order) how to find u and v such that the lemma
is true.
Case 5: Initially, set u and v to d. Obviously, p1

a and p2
a meet

at u, p1
b and p2

b meet at v. Since p1
a and p2

a are not edge disjoint,
there exists a common node u′ (u′ could be s1 or s2), where
p1

a and p2
a meet for the first time. Set u to u′. Similarly, since

p1
b and p2

b are not edge disjoint, there exists a common node v′

(v′ could be s1 or s2), where p1
b and p2

b meet for the first time.
Set v to v′. Since, in any feasible solution, p1

a and p1
b (and p2

a

and p2
b) must be edge disjoint, the paths s1 to u, s2 to u, s1 to

v, and s2 to v are all edge disjoint.
Case 6: This case is symmetric to case 5.
Cases 1–4: Cases 1 and 2 are subcases of case 5, and cases 3

and 4 are subcases of case 6. Thus, the analysis for case 5 holds
for cases 1 and 2. Similarly, the analysis for case 6 holds for
cases 3 and 4.

Now, for cases 7–11, we show that either the cost of OPT
is at least 3/4 times the cost of the solution obtained from
MCNFH, or there exists two points u and v in OPT, such that
the paths s1 to u, s2 to u, s1 to v, and s2 to v are all edge
disjoint.
Case 7: The two possible scenarios that one can imagine for

this case are discussed below.

a) p1
a shares edges with p2

b , even before p1
b meets p2

b (or p1
a

meets p2
a) (see Fig. 5): Let F1 represent a feasible solution

for problem P1, which asks for two edge-disjoint paths
from each of s1 and s2 to d. Let F2 represent a feasible
solution for the problem P2, which asks for two edge-
disjoint paths from s1 to d, two edge-disjoint paths from
s2 to s1, and let F3 represent a feasible solution for the
problem P3, which asks for two edge-disjoint paths from
s2 to d and two edge-disjoint paths from s1 to s2. Using
the edges in OPT, we can easily construct F1, F2, and
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Fig. 4. MCNFH algorithm description.

Fig. 5. p1
a shares edges with p2

b even before p1
b meets p2

b or p1
a meets p2

a.

F3 by finding two edge-disjoint paths from each of the
two source nodes to the destination nodes, as shown in
Fig. 6(a)–(c).

Fig. 6. (a) F1 constructed by two edge-disjoint paths from each of s1 and s2

to t. (b) F2 constructed by two edge-disjoint paths from each of t and s1 to s2.
(c) F3 constructed by two edge-disjoint paths from each of t and s2 to s1.

From Figs. 5 and 6(a)–(c), it can be easily verified that
the sum of the costs of F1, F2, and F3 is clearly four times
the cost of OPT, as each edge in OPT appears four times
F1, F2, and F3 overall. Solutions f1, f2, and f3 returned
by lines 1,2, and 3 of MCNFH are feasible for problems
P1, P2, and P3, respectively. Since the MCNF algorithm
finds minimum-cost edge-disjoint paths for a given pair
of nodes, the cost of f1 ≤ F1, f2 ≤ F2, and f3 ≤ F3.
Also, since MCNFH outputs a lowest cost solution, say
fm, among f1, f2, and f3

3fm ≤ f1 + f2 + f3 ≤ F1 + F2 + F3 = 4 ∗ OPT.

The above inequality shows that OPT is at least 3/4 times
the cost of the solution obtained from MCNFH.

b) p1
a shares edges with p2

b after p1
b meets p2

b (see Fig. 7):
Since p1

a shares edges with p2
b after p1

b meets p2
b , once p1

b

meets p2
b for the first time at a certain node u, both p1

b and
p2

b is made to share the part of the path p1
b from u to d.

Since p1
a and p1

b are edge disjoint, the part of path p1
b from

u to d is edge disjoint from p1
a. Let v be the first node at

which p1
a meets p2

a for the first time. Since p1
a meets p2

b

for the first time after u, and p2
b now uses the part of the

path p1
b from u to d, p1

a is edge disjoint from p2
b . Thus, the

paths s1 to u, s2 to u, s1 to v, and s2 to v are all edge
disjoint.
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Fig. 7. p1
a shares edges with p2

b after p1
b meets p2

b .

Fig. 8. p1
a shares edges with p2

a and p2
b , and p1

b shares edges with p2
a and p2

b .

Cases 8–10: Cases 8–10 are symmetric to case 7, and thus,
the analysis for case 7 holds for these cases as well.
Case 11: p1

a shares edges with p2
a and p2

b , and p1
b shares

edges with p2
a and p2

b (Fig. 8). Without loss of generality, let
p2

b meet p1
a for the first time, even before p2

a meets p1
a. Set the

node where p2
b and p1

a meet for the first time to be u. From u,
let p1

a and p2
b use the part of the path p2

b from u to d. Since p1
a

uses the part of the path p2
b from u to d, and p2

a and p2
b are edge

disjoint, p1
a does not share edges with p2

a anymore. Let v be the
point where p2

a meets p1
b for the first time. From v, let p1

b and p2
a

use the part of the path p2
a from v to d. Since p1

b uses the part
of the path p2

a from v to d, and p1
a and p1

b are edge disjoint, p1
b

does not share edges with p2
b anymore. Thus, the paths s1 to u,

s2 to u, s1 to v, and s2 to v are all edge disjoint. �
Theorem 1: The final solution returned by MCNFH is at

most 4/3 times the cost of an optimal solution.
Proof: If the optimal solution OPT falls under Cases

7(a)–10(a) of Lemma 1, then, by Lemma 1, the cost of the
solution returned by MCNFH is at most 4/3 times the cost
of OPT.

If OPT falls under Cases 1–6, 7(b)–10(b), or 11 of Lemma 1,
we show that the OPT can be converted into the canonical form,
shown in Fig. 9. For these cases, by Lemma 1, there always
exists two points u and v in OPT, such that the paths s1 to u,
s1 to v, s2 to u, and s2 to v are all edge disjoint. Let p1

a and
p2

a be the paths from s1 and s2 to d, respectively, which pass
through u. And let p1

b and p2
b be the paths from s1 and s2 to

d, respectively, which pass through v. By definition, paths p1
a

and p1
b , and p2

a and p2
b must be edge disjoint, and thus, there

exists two edge-disjoint paths from u and v to d. There is a
possibility that u and v are d itself, and thus, paths from u and
v to d are nonexistent. In such a scenario, we interpret paths

Fig. 9. Canonical form.

from u and v to d to be of cost zero (paths with no edges).
Paths p1

a and p2
a must share a path from u to d, otherwise OPT

is not optimal, which is a contradiction. This is similar to paths
p1

b and p2
b sharing a path from v to d. Thus, there exists two

edge-disjoint paths from u and v to d, and any optimal solution
that falls under Cases 1–6, 7(a)–10(a), and 11 can be converted
into the canonical form shown in Fig. 9. We now show that
the solution returned by MCNFH is 4/3 times the cost of OPT
(represented in canonical form).

Consider Fig. 9. Let the cost of the path from s2 to v be a,
s2 to u be c, s1 to u be f , s1 to v be e, u to d be d, and v to
d be b. Since the cost of the path is the same regardless of the
direction of traversal, without loss of generality, the direction of
edges are not considered in the following analysis.

MCNFH considers three solutions and outputs the lowest
cost solution, say fm, among the three possible solutions f1,
f2, and f3. Clearly, f1 is a feasible solution for the problem
that asks for two edge-disjoint paths from each of s1 and s2 to
d, f2 is a feasible solution for the problem that asks for two
edge-disjoint paths from each of s1 to d and s2 to s1, and f3

is a feasible solution for the problem that asks for two edge-
disjoint paths from each of s2 to d and s1 to s2. Since the
MCNF algorithm finds the minimum-cost edge-disjoint paths
from a source to a destination, the cost of any other pair of edge-
disjoint paths between that source and destination is at least the
cost of the solution obtained by the MCNF algorithm. Thus,

Cost of f1 ≤ a + b + c + d + e + f + b + d

Cost of f2 ≤ a + b + c + d + e + f + a + c

Cost of f3 ≤ a + b + c + d + e + f + e + f.

Since MCNFH outputs the lowest cost solution fm among the
three possible solutions f1, f2, and f3

3fm ≤ f1 + f2 + f3

≤ 4(a + b + c + d + e + f + b + d)

= 4 × Cost of OPT.

�

B. Minimal Disjoint Segment-Pair Heuristic (MDSPH)

The MDSPH is based on the observation that the two primary
paths are either disjoint or there is a branching node that
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Fig. 10. Description of the MDSPH algorithm.

connects the two homes and the destination. As a matter of fact,
if two primary paths are disjoint, it can still be considered as if
there is a branching node that is the destination. Obviously, the
position of the branching node will effect the total cost of the
primary and backup lightpaths.

The MDSPH tries to find the right branching node, such that
the total wavelength cost used in both the primary and backup
paths is minimum. Let Si be the set of links used in the primary
paths and backup paths, when node vi ∈ V is chosen as the
branching node. MDSPH makes efforts on finding vb, such that
Sb = minvi∈V {Si}. MDSPH works as shown in Fig. 10.

In the algorithm described in Fig. 10, C gives the total cost
of the solution found by MDSPH, and vb gives the branch node.
If vb = vi, then Si includes all links used for the primary and
backup paths.

MDSPH always finds a solution if a feasible solution exists.
The solution obtained can be no worse than MCNFH, since
MCNFH is a special case of MDSPH, where the destination
serves as the branching node.

Here, we give an example to show that MDSPH can find a
better solution than MCNFH. In Fig. 11, for MCNFH, when
MCNF is called to find two disjoint paths from s1 to d, there are
three feasible solutions that give a cost of 8. If we choose paths
s1 − 1 − 2 − 3 − d and s2 − 4 − 5 − 6 − d, when MCNF is

called to find two disjoint paths from s2 to d, there are three
feasible solutions that give a cost of 8. Therefore, the total
cost is 16. However, MDSPH will choose paths s1 − 7 − 9 −
10 − d, s1 − 8 − 9 − 10 − d, s2 − 12 − 9 − 10 − d, and s2 −
13 − 9 − 10 − d, for which the total cost is 12. The difference
between MDSPH and MCNFH in this example is that it is hard
for MCNFH to make the right decision when there are several
feasible solutions, since it finds the two link-disjoint paths from
one home to the destination, then from the other home to the
destination.

C. Minimum-Cost Shortest Path Heuristic (MCSPH)

In the MCSPH, we obtain link-disjoint shortest paths from
the dual homes to the destination, and then compute two link-
disjoint paths with minimum cost between the dual homes
themselves. The details of the algorithms are as found in
Fig. 12.

The solution obtained is composed of two minimum-cost
link-disjoint primary paths from the dual homes OXCs to the
destination, p1

a and p2
a. The backup path for the first home is

composed of the path from the first home to the second home
and the path from the second home to the destination. The
backup path for the second home is composed of the path from
the second home to the first home and the path from the first
home to the destination. Since the backup paths from a dual
home to the destination go through the other dual home, in the
case of an access-node failure, we assume that the underlying
OXC can continue to forward all-optical traffic seamlessly.

D. Minimum Steiner-Tree Heuristic (MSTH)

The MSTH uses the fact that the minimum Steiner tree is
the best approach to connect three nodes with minimum cost.
The idea behind MSTH is to find a minimum-cost tree that is
designated as the primary tree and then provides path protection
to the dual homes.

Although the minimum Steiner-tree problem is NP-hard in
the general case, it is polynomial-time solvable when there are
only three terminal nodes. We observe that a tree with only three
terminal nodes will have at most one branching (or splitting)
node. Once the branching node is determined, the minimum-
cost Steiner tree is obtained by finding shortest paths from the
branching point to each of the end nodes (dual homes and the
destination). In order to find the optimal branching node in
a network with N nodes, we can consider each node vi ∈ V
to be the branching point and then Ti, which consists of the
shortest paths from s1 to vi, from s2 to vi, and from vi to d,
resulting in N different trees. The optimal Steiner tree Topt is
given by the minimum-cost tree of the N different enumerated
trees. Two primary lightpaths are provided in Topt. Then, a link-
disjoint backup lightpath is constructed from each source to the
destination. The algorithm description is given in Fig. 13.

E. Heuristic Algorithms Comparison

Let us consider the network topology given in Fig. 14(a).
We assume unit-link cost for all links. The primary and backup
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Fig. 11. One example to show MDSPH can find a better solution than MCNFH.

Fig. 12. MCSPH algorithm description.

lightpaths found by MCNFH are given in Fig. 14(b) and have
a cost of 12. The primary and backup lightpaths found by
MDSPH are also given in Fig. 14(b) and have a cost of 12.
The primary and backup lightpaths found by MCSPH are given
in Fig. 14(c) and have a cost of 10. The primary and backup
lightpaths found by MSTH are given in Fig. 14(d) and have

a cost of 11. We see that for the given network topology, the
MSTH performs the best.

We observe that MCNFH and MDSPH can always find a
solution, if one exists, since finding a disjoint pair of paths from
one home router to the destination does not interfere with the
choice of the disjoint pair of paths from the other home router
to the destination. However, MSTH may not be able to find
such a feasible solution, even if there is such a solution, since
there may not be link-disjoint backup lightpaths (or a disjoint
tree) after the primary lightpaths (or tree) are computed. For
MCSPH, it is also possible that the algorithm cannot find the
feasible solution, even if such a solution exists, since there may
not be link-disjoint paths between the dual homes.

In Table I, we compare the time complexities of the proposed
DHP heuristics. We see that MCNFH and MCSPH have a worst
case time complexity O(N2), the generalized MDSPH has a
worst case time complexity O(N3), and the MSTH has a worst
case time complexity O(N3).

VI. SIMULATION RESULTS

In this section, we analyze the performance of proposed
algorithms for DHP. For static DHP, the DHP service provides
the customers with a very high level of survivability at the
additional cost of consuming more wavelengths than other
less-reliable services. Therefore, we are interested in the cost
increase caused by the DHP service. For the dynamic DHP
model, we are interested in comparing the performance of
MCNFH, MDSPH, MCSPH, and MSTH algorithms. In this
section, we first analyze the simulation results for static DHP,
then discuss the simulation results for dynamic DHP heuristic
algorithms. For both the simulation for the static and dynamic
DHPs, the network topologies are randomly generated as uni-
directional graphics given network size N and the maximum
outgoing degree D.
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Fig. 13. Description of the MSTH algorithm.

A. Static DHP

We compare the DHP model with four other models, SH,
SHP, DH, and IDHP. For a given instance of the problem
with randomly generated network topology and a set of con-
nection requests, we compare the cost for each of the five
different types of service categories. All problems are solved
by CPLEX.

The important simulation parameters in generating problem
instances include the network size N and the maximum out-
going degree at each node D. Given a group of parameters
N and D, we randomly generate a network with N nodes.
The outgoing degree of each node i is uniformly distributed in
[1, 2, . . . ,D]. The cost of each link is set to unity.

In the first experiment, we test the cost involving the number
of connections. We set the number of nodes in the network,

N = 50, the maximum outgoing degree of a node, D = 20, the
number of wavelengths on every link, W = 32. Let the number
of connection requests be K = 8, 16, 24, and 32. For each K,
we randomly generate 50 instances, calculate the cost for each
type of service, and report the average cost.

Fig. 15(a) plots the average cost versus the number of con-
nection requests. Not surprisingly, we observe that the cost
increases with the number of connection requests for each type
of service. The IDHP solution has the highest cost, followed by
DHP, SHP, DH, and SH. An interesting observation is that the
ratio of the costs between any two types of services is almost
constant across the entire network-load range. In particular,
we see that the cost of the IDHP solution is 30% higher than
DHP cost, the cost of DHP is about 60% higher than that of
SHP, which implies that providing DHP is about 60% more
expensive than providing single-homing protection. Similarly,
DHP is about 150% more expensive than dual homing without
protection; and about 300% more expensive than SH. Such re-
sults are very useful for service providers in helping determine
the pricing for each level of service.

We also observe that SHP has a higher cost than DH. Both
SHP and DH require two paths. However, the two paths in
SHP are disjoint for the purpose of link protection, while the
two paths in DH are shared to reduce cost. This implies that
protecting link failures (protection) is more expensive than
protecting access-node failures (dual homing).

In the second experiment, we study how the number of
wavelengths can affect service costs. In a WDM network, each
link has a limited number of wavelengths, each of which can
be assigned to an individual connection request. Hence, there is
a limit on the number of connections that can share a common
link. Accordingly, when there are fewer wavelengths available
on every link, some connection requests have to choose longer
paths, and thus, will have a higher cost.

Fig. 15(b) shows the results of our experiments, wherein
we set the number of nodes, V = 50, the maximum outgoing
degree of a node, D = 20, the number of randomly generated
connection requests, K = 32, and vary the number of available
wavelengths on each link.

From Fig. 15(b), we see that the number of wavelengths has
little impact on the cost of SH and DH, since there are relatively
fewer links required for these two schemes. On the other hand,
the cost of DHP increases when there are fewer wavelengths
per link. This verifies our previous argument that fewer wave-
lengths will force some connections to choose longer paths with
higher costs. Such a result is helpful for comparing the tradeoff
between providing more wavelengths to reduce the communi-
cation costs and providing fewer wavelengths to increase the
communication costs.

B. Dynamic DHP

Now, we use simulation to analyze the performance of the
proposed heuristics for the dynamic DHP problem. We are
interested in comparing the average total cost of the solutions
obtained using MCNFH, MDSPH, MCSPH, and MSTH algo-
rithms. We randomly generate problem instances in the same
way as the static case, which is controlled by two parameters,
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Fig. 14. Example: Comparison of different solutions for a given network topology. (a) Network topology. (b) Primary and backup lightpaths found by MCNFH
and MDSPH, total cost = 13. (c) Primary and backup lightpaths found by MCSPH, total cost = 10. (d) Primary and backup lightpaths found by MSTH,
total cost = 11.

TABLE I
TIME COMPLEXITY: DHP ALGORITHMS

the network size N and the maximum outgoing degree D.
For the selection of dual homes, we consider both randomly
selected dual homes, as well as the closest dual homes, the letter
of which is to randomly select a pair of dual homes with a direct
link. Once the dual homes are selected, we randomly select a
destination and assume the current connection request is from
the selected dual homes to the selected destination.

For each group of parameters, problem instances are gen-
erated until 1000 instances have feasible solutions by using
MCNFH. All these instances are simultaneously solved by
MDSPH, MCSPH, and MSTH algorithms, as well as an IDHP
solution that is obtained by solving the static IDHP model
with only a single connection request. By using the 4/3 ap-
proximation result of the MCNFH algorithm, we can also get
a lower bound for the minimum cost, i.e., lower bound of the
minimum cost = 3/4 MCNFH cost.

Fig. 16(a)–(b) plots the average cost for the proposed algo-
rithms versus different values of N , when D is set to 10 with
closest/random dual homes. In order to show the advantage
of the integrated solution, we compare the algorithms with
an IDHP case wherein sharing between any of the primary
and backup paths is not allowed. By considering that a dual-

homed IP layer exists above the WDM core network, we can
see that the cost of providing protection in the core network
using MCNFH, MDSPH, MCSPH, and MSTH is significantly
lower than the IDHP solution. We also observe that MCNFH
and MDSPH incur the same cost for the network scenarios
considered. The performance of MSTH is slightly better than
that of the network flow-based algorithms.

For both cases in Fig. 16(a)–(b), the performance of
MCSPH is worse than the network flow-based algorithms. As
shown in Fig. 16(a), when the dual homes are selected as
the closest homes, the performance of MCSPH is closer to
the network flow-based algorithms. However, when the dual
homes are randomly selected, the performance difference be-
tween MCSPH and the other algorithms is bigger as shown
in Fig. 16(b).

We also observe that if the paths from the closest dual homes
to the destination for the current request is long, MCSPH works
better than the other heuristic algorithms, since only two long
paths need to be found. In other words, the average cost of
MCSPH is lower than the other heuristic algorithms in a large
sparse network where the dual homes are close to each other
and the paths from the dual homes to the destination are long.
Our expectation is validated by the simulation results shown
in Fig. 17, where D is set to 4 and the network size ranges
from 50, 100, 150, and 200 to 250. We specifically simulate
the instances in which the total cost for MCNFH is larger
than 25. By setting such a constraint, the advantage of MCSPH
can surface. In Fig. 17, the performance of MCNFH, MDSPH,
and MSTH are the same, and the performance of MCSPH
is better than the other heuristic algorithms. Considering the
simplicity of MCSPH, it is a good candidate for solving the
dynamic DHP problem in large sparse networks.
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Fig. 15. Computational results for the static case: (a) cost for different services versus various number of connection requests and (b) cost for different services
versus various number of wavelengths.

Fig. 16. Computational results for the dynamic case: (a) cost versus number of nodes (N) with closest dual homes and (b) cost versus number of nodes (N)
with random dual homes.

Fig. 17. Average cost versus the number of nodes in large sparse networks.

VII. CONCLUSION

We investigate the survivability issue in IP-over-wavelength-
division-multiplexing (WDM) networks when a dual-homing
architecture is provided in the access network. Our goal is
to reduce the protection cost in the core network imposed by
the dual-homing architecture in the access network. We study
both the static case with a set of known connection requests
and the dynamic case with a single connection-request arrival.
The basic idea that motivates this research is that multihom-
ing in the access network can reduce the protection cost in
the core network if the protection is conducted in a coordi-
nated way, which is supported by our computational results.

Our research will help network design in terms of reliability
and costs.
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