
Noname manuscript No.
(will be inserted by the editor)

Improving TCP Performance over Optical Burst-Switched (OBS)
Networks Using Forward Segment Redundancy

Neal Charbonneau · Deepak Chandran · Vinod M. Vokkarane

Received: Wednesday, March 2, 2011; Revised:

Abstract Random contentions occur in optical burst-switched
(OBS) networks because of one-way signaling and lack of
optical buffers. These contentions can occur at low loads
and are not necessarily an indication of congestion. The loss
caused by them, however, causes TCP at the transport layer
to reduce its send rate drastically, which is unnecessary and
reduces overall performance. In this paper, we propose for-
ward segment redundancy (FSR), a proactive technique to
prevent data loss during random contentions in the optical
core. With FSR, redundant TCP segments are appended to
each burst at the edge and redundant burst segmentation
(RBS) is implemented in the core so that when a contention
occurs, primarily redundant data is dropped. We develop an
analytical throughput model for TCP over OBS with FSR
and perform extensive simulations. FSR is found to improve
TCP’s performance by an order of magnitude at high loads
and by over two times at lower loads.

Keywords: Loss Recovery; TCP; OBS

1 Introduction

Optical WDM networks are a promising technology to sup-
port the next-generation Internet and its applications. Op-
tical networks are capable of data transmission rates in the
order of terabits per second. There are three switching archi-
tectures that are usually considered for optical WDM net-
works. In optical circuit-switched (OCS) networks, a con-
nection request must reserve a path and a wavelength be-

This work was supported in part by the National Science Foundation
(NSF) under Grant CNS-0626798. Portions of this paper have appeared
in IEEE ANTS 2008.

Department of Computer and Information Science, University of Mas-
sachusetts, Dartmouth, MA
E-mail: vvokkarane@ieee.org

fore data transmission begins. This reservation process guar-
antees bandwidth but increases delay. OCS also provides
coarse-grained traffic granularity. A request must reserve an
entire wavelength even if it does not require all of the band-
width. These two factors mean that OCS does not support
bursty Internet traffic very well. Optical packet switching
(OPS) is another architecture proposed for optical WDM
networks. The switching unit is a packet, as in regular elec-
tronic networks. The technology required to support OPS
is not yet mature or commercially viable. Electronic net-
works require buffers in routers to temporarily store pack-
ets for an arbitrary amount of time when an output port is
unavailable. The lack of optical buffering makes contention
resolution difficult in OPS. The high data rates of optical
networks also imply that switching times in OPS networks
must be in the order of a few nanoseconds. Optical burst
switching [1] provides a middle-ground between OPS and
OCS. The switching unit in OBS networks is a burst, which
is composed of a number of individual packets. The larger
switching unit means that switches do not require such low
switching times. OBS uses one-way resource reservation in-
stead of two-way reservation as in OCS, which can signif-
icantly reduce transfer latency. In an OBS network, incom-
ing traffic is assembled into a data burst (containing a num-
ber of packets) at a network ingress node. Before sending
the burst, a burst header packet (BHP) is sent, which is pro-
cessed electronically at each core node to set up the optical
switching fabric. The BHP specifies the arrival time and du-
ration of the burst so the switch knows when to reconfigure
the switching fabric for the next burst, a technique known as
just enough time (JET) [1]. After an offset time, the burst is
then sent into the network and switched all-optically. Note,
the resource reservation is one-way. There is no acknowl-
edgment sent back once the BHP reaches the destination.
This is demonstrated in Fig. 1.

2

Reliable Optical Burst
Switching

Loss
Minimization

Loss Recovery

Contention
Resolution
(Reactive)

Contention
Avoidance
(Proactive)

Proactive Reactive

Load Balanced
Routing

Admission
Control

Wavelength
Conversion

Segmentation Cloning FEC ARQFDLs
Deflection
Routing

FSR

Fig. 2 Reliable OBS framework. Our proposed FSR technique is a combination of both contention resolution and proactive loss recovery.

..

Fig. 1 Use of offset time (T) in OBS networks. The δ represents the
BHP processing and switch configuration times.

This allows for bursty traffic and low delays since there
is no connection set up between any ingress-egress pair. The
disadvantage of OBS is random burst contentions at core
nodes. Since there is no guaranteed end-to-end resource reser-
vation and no optical buffering, there may be random con-
tentions in the core when multiple BHPs try to schedule their
bursts for the same output port at the same time. In this pa-
per, we propose a technique to help alleviate this problem.

The majority of Internet traffic is carried over TCP, there-
fore it is important to study the performance of TCP over
OBS networks. However, it has been shown that TCP per-
forms poorly over OBS networks [2,3]. TCP was designed
for electronic networks with buffers where a loss indicates
congestion, which should cause TCP to lower its send rate
by cutting its congestion window. The lowering of the send
rate in electronic networks is to allow the network to stabi-
lize since it is congested. A loss in an OBS network, how-
ever, may not indicate congestion, which implies that TCP
may unnecessarily lower its send rate leading to poor perfor-
mance. When the TCP sender detects a loss through triple
duplicate acknowledgements, the sender will reduce its con-
gestion window by half. In the event of a timeout, the TCP
sender reduces its congestion window to one MSS. In both

cases, the send rate is drastically reduced even though the
loss was due to a random contention, not congestion in the
network. It is important to provide some reliability in OBS
networks to improve TCP’s performance.

A number of mechanisms have been proposed to deal
with these random contentions, including fiber delay lines
(FDLs), wavelength conversion, deflection routing, burst seg-
mentation [4], retransmission [2], and forward error correc-
tion (FEC) [5,?]. There have also been techniques that focus
on burst assembly to reduce contentions in the core [6]. We
classify these techniques in Section 2. In this paper, we pro-
pose a novel hybrid proactive loss recovery and loss mini-
mization technique called forward segment redundancy (FSR).
FSR combines modified burst segmentation with forward re-
dundancy. The work in this paper is primarily an extension
of our previous work on burst segmentation [4] and a simple
redundancy scheme we presented in [7]. Burst segmentation
is a contention resolution mechanism that divides each burst
into transport units called segments made up of either a sin-
gle packet or multiple packets. When a contention occurs in
the core, one of the bursts is split into a head and a tail while
the other burst remains unchanged. Only the head or tail is
dropped instead of the entire burst, reducing packet loss. We
will discuss segmentation further in Section 4. In this pa-
per, we add redundant data to each burst and also consider a
modified burst segmentation algorithm.

The primary contributions of this paper are an improved
segmentation with redundancy scheme to reduce data loss
caused by random contentions and also a study of its impact
on TCP performance. The paper is organized as follows. We
provide a classification of schemes for reliable OBS in Sec-
tion 2. We then discuss details about OBS node architecture
in Section 3 followed by our proposed FSR approach in Sec-
tion 4. We present an analytical model of TCP throughput
in Section 5. We then discuss simulation results in Section 6
and conclude in Section 7.

3

2 Reliability in OBS

Reliability in OBS can be categorized into two broad tech-
niques: loss minimization and loss recovery. Fig. 2 provides
a generic classification of reliability techniques. Loss mini-
mization techniques attempt to reduce the probability of loss
in the network or minimize the amount of data loss if a
contention does occur, known as contention avoidance and
contention resolution, respectively. Contention avoidance, a
type of loss minimization, is the technique that aims to de-
crease the probability of contention in the network. One ex-
ample of a contention avoidance technique is load-balanced
routing [8]. Load-balanced routing attempts to send bursts
on the least congested path to reduce the probability of a
contention. Instead of trying to avoid contentions, a mecha-
nism can be implemented to reduce the loss resulting from
a contention after it occurs. This is known as contention
resolution (also a type of loss minimization). An example
of contention resolution is burst segmentation, which only
drops overlapping portions of the burst during a contention
to minimize loss.

Loss recovery techniques focus on handling loss instead
of trying to minimize the probability of contentions, as in
loss minimization. Loss recovery involves either responding
to loss after it happens or sending extra data into the net-
work to recover from a potential loss in the forward direc-
tion, known as reactive and proactive recovery, respectively.
One example of a reactive loss recovery technique is burst
retransmission, also known as automatic retransmission re-
quest (ARQ). Data is sent into the network under the as-
sumption that a contention will not occur, but if it does hap-
pen the loss will be handled by retransmitting the dropped
burst using an ARQ packet. A proactive approach would be
sending redundant data into the network, in the form of re-
dundant packets or forward error correction codes, so that
when a contention occurs, the original data can still be re-
covered in the forward direction.

Our proposed technique, FSR, is a combination of loss
minimization and loss recovery as shown in Fig. 2. FSR adds
redundant data to each burst sent into the network, hence
it utilizes proactive loss recovery. Forward redundancy by
itself would not work in an OBS network where an entire
burst is dropped during a contention, since that would drop
all of the redundant data as well. To deal with this, we pro-
pose redundant burst segmentation (RBS), a loss minimiza-
tion technique at the core. FSR is comparable to burst clos-
ing [9]. In burst cloning, a separate, duplicate burst is sent
into the network. Burst cloning is similar to FSR with 100%
redundancy but instead of appending the redundant data to
the same burst, it is sent out as a separate burst. Not only
does this involve extra control overhead in terms of BHPs,
but it is not as flexible as FSR. Cloning provides only 100%
redundancy. Cloning also does not handle out-of-ordering

well. Consider the scenario where an original burst suffers
a head drop and arrives at the egress before its clone. The
clone will then cause false fast retransmits since the seg-
ments arrived out-of-order. With FSR, the redundant data
is in the same burst, so after a head drop the redundant and
original data can be reordered at the egress without any addi-
tional delay. FSR is a simple technique that does not require
a significant amount of processing at the edge and does not
have unreasonable hardware requirements (which we dis-
cuss later) like ARQ that requires large electronic buffers or
FEC that requires complicated error correcting codes to be
generated at high data rates.

3 Node Architecture and Burst Scheduling

In this section we provide a brief overview of the core node
architecture for OBS networks. We assume that full wave-
length conversion is available. We also use the terms “wave-
length” and “channel” interchangeably. At the ingress nodes
to the OBS network, packets that share the same destination
are grouped into a single buffer, which will be used to create
a data burst. The burst assembly strategy determines when
these packets will be put into a burst and sent over the net-
work. This may happen once the burst reaches a certain size
and/or a timer expires. Once the burst is ready to be sent, a
BHP is created. The BHP contains routing information and
information about the corresponding data burst. The BHP is
sent before the burst by an offset time as discussed earlier
and shown in Fig. 1. In OBS networks, the wavelengths on a
particular fiber are typically broken down into two subsets.
If there are K wavelengths on a particular fiber, k may be
used as control channels to carry only BHPs, while the re-
maining K−k can be used to carry data bursts. A data burst
can only be sent on a data channel after its BHP has been
sent on a control channel.

The BHP is converted from an optical signal to electron-
ics at each hop and processed by each core node to configure
the switching fabric for the burst that will be arriving after
the offset time. The offset time between the BHP and the
burst must be large enough so that the BHP has time to con-
figure all switches along the path. In Fig. 1 we can see that
at the destination there is no longer a gap between BHP and
data burst. When the burst is sent, it goes through the core
network all-optically since the BHP has already configured
the switches along its path.

Fig. 3 shows a simplified N × N OBS core node. The
fibers are demultiplexed into their wavelengths, which are
then mapped into data channels and control channels. The
control channels are terminated at the switch control unit
(SCU) while the data channels are connected to the switch-
ing matrix. The SCU contains a routing table and a for-
warding table, similar to an electronic router, and it uses
them to decide which outgoing data and control channels

4

Fiber 1

Fiber N

Fiber 1

Fiber N

Optical
Switching
Matrix

Switch Control
Unit

Wavelength

Channel Mapping

Data Channels

Control Channels

Fig. 3 Architecture of core node in OBS [10]. Each fiber is demulti-
plexed into its wavelengths and the data/control channels are sent to
the appropriate elements. The control channels under go O/E/O con-
version, while the data channels remain entirely in the optical domain.

to forward each arriving burst and BHP. Once this is deter-
mined, it configures the switch matrix (using information in
the BHP), which will allow the burst to cut-through when it
arrives. There may be additional components, such as fiber
delay lines (FDLs) before the switching matrix and within
the switching matrix.

The SCU’s main component is the scheduler which per-
forms the scheduling of the burst and BHP. There is a sched-
uler for each fiber. The scheduler maintains information about
the data channels of that fiber. From the BHP, the scheduler
determines when the burst will arrive and how long it lasts.
Using this, the scheduler searches for a free wavelength on
the required output port (determined by routing information)
to schedule the burst on. Once this is found, the scheduler
sends the information to the switching matrix (information
like incoming data wavelength, outgoing data wavelength,
time to switch, duration), updates the BHP and transmits the
BHP the appropriate control channel (converting it back to
optics), so the BHP can configure the remaining downstream
switches.

A number of different scheduling algorithms have been
proposed that determine which wavelength a burst is to be
placed on. In this work we will use latest available unsched-
uled channel (LAUC) [10]. The scheduler maintains the lat-
est unscheduled time for each data channel. We will denote
this time as LAUCi for channel i. The algorithm attempts
to minimize gaps, or voids, in the schedule by scheduling
the data on channel j that minimizes t − LAUCj , where t

is the burst arrival time. LAUC requires a scan of all data
channels. If no channel is available, one of the contention
resolution schemes mention can be used, otherwise the data
burst for the BHP must be dropped.

Seg 1 Seg 2 Seg 3 Seg 4 Seg 5

Guard
Bits

Payload
Type

Seg.
ID

Seg.
Length

Checksum

Segment Header

Segment

Fig. 4 Each bursts consists of a number of segments having a header
and a payload.

4 Forward Segment Redundancy (FSR)

FSR is a proactive loss recovery technique combined with
a loss minimization technique. It does not require feedback
from the receiver or the network about loss. Implementing
FSR requires a redundant segmentation technique in the core
and also requires appending redundant data to the burst at
the edge before being sent into the core. Both of these as-
pects will be discussed in detail in the following subsections.
First, we discuss the basics of burst segmentation.

Burst segmentation works by dividing the data burst into
a number of segments, each of which has a payload and a
header as shown in Fig. 4. The segments may be made up
of one or more data packets. As we discussed in the previ-
ous section, when no outgoing data channel can be found
by the scheduler, the burst must be dropped. Burst segmen-
tation drops only overlapping segments of one of the two
bursts, instead of dropping one of them entirely, which will
help minimize loss. If the contention involves more than two
bursts, say n, then overlapping segments from n − 1 bursts
are dropped. The optical core nodes are unaware of the seg-
ments. When a contention occurs, the core nodes do not use
any knowledge of the actual segments when choosing how
to segment the bursts. While this leads to sub-optimal de-
cisions on how to segment bursts, it is important to keep
the complexity in the core low to enable fast switching. We
show an example of a contention in Fig. 5 (without redun-
dant data). While discussing segmentation, we will refer to
a burst already scheduled on a port as the original burst and
the later arriving burst to the same port as the contending
burst. In the figure, both of the bursts are scheduled for the
same output port on the same wavelength. Here, we choose
to drop segments in the original burst that overlap with the
contending burst.

The contending region in the figure is the time duration
that the bursts overlap. The BHP of each burst contains the
burst length and offset time (when the burst will arrive). The
LAUC scheduler at each core node maintains time availabil-
ity on each wavelength. The contention region is simply the
difference between the burst arrival time and LAUCi for
a given channel i (as seen in Fig. 5). Normally, we would
drop the entire contending burst. Instead, the original burst

5

Time

Original

Contending

Dropped Segments

Contention

Region

Switching

Time

L
r

LAUC i

Fig. 5 Example of burst contention (without redundant data) where
we drop segments from the original burst. The core is not aware of the
segments in each burst, the egress node processes the incoming burst
electronically to determine which segments are intact.

will be truncated. To accomplish this, the switching fabric is
instructed to switch the original burst as normal, but it then
switches to the configuration for the contending burst be-
fore the entire original burst has completely passed through,
causing some of the original burst to be lost. The switch-
ing time required for this is also shown in the figure. This
does not require any extra hardware at the core switches.
After processing the BHP of the contending burst, the core
node can also create a new trailer BHP to update down-
stream nodes with the new size of the original burst. This
is unlikely to be an issue in practice, however, due to rel-
atively few contentions under normal loads and paths with
few hops.

Since the core nodes are not aware of segments, this
means the network egress nodes, where burst disassembly
occurs, must deal with the segments. The egress can use in-
formation in the header of each segment to determine which
segments are intact. Once the valid segments are determined,
using segment headers, the packets are removed from the
segments and sent to the access network. The segment size
is an important parameter for any segmentation technique.
Larger segments mean less header overhead in the burst, but
this also leads to more data loss during contention. One sim-
ple solution is to use Ethernet frames as segments. We can
use information already in the Ethernet header to act as seg-
ment headers. We use this approach in the paper.

We use burst segmentation as a basis for our segmenta-
tion policies in FSR. FSR is a combination of modified burst
assembly and modified burst segmentation. We discuss burst
assembly first then segmentation.

4.1 Burst Assembly: Amount and Placement of Redundant
Segments

In this section we discuss how redundant data is appended to
each burst at the ingress nodes. This step does not add sig-
nificantly complexity to edge nodes. Before each data burst
is created, the packets are stored in an electronic buffer as
a number of burst segments. We simply duplicate these seg-
ments in the electronic domain before or as we convert them

to the optical domain. Note, this duplication is at the burst
segment level, not the flow level. The complexity of adding
redundant segments is not a function of the number of flows
arriving at an ingress node. The ingress is responsible for
including the length of the redundant data in the BHP along
with the length of the burst itself (original and redundant
data).

We use percentages of the original burst size to deter-
mine how much redundant data to append. For example,
with 100% FSR, the burst size is effectively doubled with
half of it being original data and the other half being redun-
dant data. We add the redundant data serially to the end of
the original data burst. There are many different techniques
to add redundant data to the original burst, but adding it seri-
ally to the tail provides the best performance and is easiest to
implement. In conjunction with RBS technique (discussed
in the next section) at the core, it is possible that segments at
the head and segments at the tail will be dropped. The seg-
ments nearer to the head or nearer to the tail have a higher
probability of being dropped in transit than those toward the
middle of the burst. If a segment is dropped at the head, we
would not want the corresponding redundant segment to be
located at the tail or directly after the original segment be-
cause both of these locations have a much higher probability
of being dropped if there is another contention downstream.
Serially appending the redundant segments provides the op-
timal distance between the original and redundant segments
in the case one of them is dropped. The best case for an as-
sembly mechanism would be that it is allowed to drop 50%
of the new burst (assuming 100% FSR) since that 50% is re-
dundant data and the remaining is the original data. Fig. 6(a)
shows four types of possible assembly approaches. Case 1
is the type of assembly we have chosen. Case 2 is similar
to case 1 except that the redundant data is appended in re-
verse order. Case 3 interleaves the redundant and original
data while case 4 sandwiches the redundant data in between
the original data. In Fig. 6(b) we show seven different loss
scenarios for a burst with eight segments (four redundant,
four original) with up to 50% loss. Table I shows the amount
of original segment loss for each loss scenario and each as-
sembly technique. It shows that in all scenarios, appending
the data serially (case 1) is able to recover all of the original
data, while the other assembly mechanisms are not. This is
true for other loss scenarios not depicted in Fig. 6(b).

Because of the placement of redundant data and the pos-
sibility of both head and/or tail drops in the core, it is some-
times necessary to reorder segments at the egress node in or-
der to prevent triple duplicates being sent to the TCP source.
For example, considering our approach to append redundant
data serially in Fig. 6, case 1. Assume each of the segments
1-4 corresponds to a TCP segment. If segment 1 is dropped,
then the receiver will receive segments in the order: 2,3,4,1’,
causing triple duplicate ACKs (the cumulative ACK would

6

4' 3' 2' 1' 4 3 2 1

Case 1: Serial Assembly

1' 2' 3' 4' 4 3 2 1

Case 2: Reverse Assembly Case 3: Interleaved Assembly

2' 2 1' 14' 4 3' 3

Case 4: Sandwich Assembly

4' 2' 3 14 1' 3'2

(a) Assembly Techniques.

(b) Loss Scenarios.

Scenario 1: Two segments

dropped at head
Scenario 3: Four segments

dropped at head
Scenario 2: Two segments

dropped at tail

Scenario 4: Four segments

dropped at tail

Scenario 7: Two segments

dropped at head and two at tail

Scenario 5: Three segments

dropped at head and one at tail

Scenario 6: Three segments

dropped at tail and one at head

Fig. 6 Burst assembly strategies with 100% forward redundancy and loss scenarios with up to 50% packet loss.

Table 1 Burst Assembly: Number of original segments lost.

Scenario \Assembly Case 1 Case 2 Case 3 Case 4
Scenario 1 0 0 1 0
Scenario 2 0 0 1 0
Scenario 3 0 0 2 0
Scenario 4 0 0 2 0
Scenario 5 0 1 1 1
Scenario 6 0 1 1 1
Scenario 7 0 2 2 0

follow directly after the triple duplicate, but when sender
will still receive the triple duplicates). This loss detection is
known as false fast retransmission. This problem is not dif-
ficult to resolve. When the burst arrives at the egress, all of
the segments must be scanned to determine which are in-
tact before the individual packets are removed. During this
process, the egress can also reorder the segments. Again the
reordering of segments is at the burst level, not at the TCP
flow level, so the complexity is independent of the number
of flows multiplexed into a single burst. The proper order
of burst level segments will also ensure that all flows in the
burst have properly ordered packets.

So far we stated that we generate redundant segments
and append them to the end of the burst. We have assumed
that 100% FSR is used so there is no choice in the selec-
tion of segments to duplicate, they are all duplicated. With
different redundancy percentages, however, we must deter-
mine which segments get duplicated and appended to the
burst. We leave this as a topic for future work and assume
that an optimal algorithm is used. That is, we can recovery
any of the X% of segments lost where X is the redundancy
percentage. We will show later, 100% redundancy has the
best performance and in that case there is no need for an
algorithm to determine which segments to duplicate.

4.2 Redundant Burst Segmentation (RBS)

In the proposed redundant burst segmentation (RBS) tech-
nique, we modify the rules that define which burst to seg-
ment during a contention. We define two different burst pri-
orities that affect how the segmentation works. A burst that
contains redundant data is considered low priority, P1, while
a burst with no redundant data is considered high priority,
P0.

RBS requires only one additional field to stored in the
BHP and one additional variable to be stored by the LAUC
scheduler for each data channel. The hardware requirements
are the same as segmentation in the core. A traditional BHP
may contain routing information, payload, offset time, data
burst length, and data channel carrying the burst. RBS adds
a field that stores the length of the redundant data. This field
is initialized by our burst assembly algorithm at the ingress
node.

The core nodes use the following RBS policies:

– Combined head and tail drop (HTD): In this case, a por-
tion of each burst is dropped. We drop a part of the tail
of the original burst and a part of the head of the con-
tending burst. How much of each is determined when
the contention occurs (discussed in this section).

– Head drop (HD): The head of the contending burst is
dropped so that there is no longer contention.

– Tail drop (TD): The tail of the original burst is dropped
so that there is no longer contention.

– Drop contending burst (DC): In this case, the entire con-
tending burst is dropped and the original burst is sched-
uled.

The choice of the policy depends on the priority of each
burst, the length of each burst, and the length of the redun-
dant data. When we discuss the length of a burst, we assume

7

Table 2 RBS policies.

Contention Scenario Priority Relationship Length vs. Overlap Policy
1 Ro > 0 and Rc > 0 Lc > Lr HTD at midpoint
2 Ro > 0 and Rc > 0 Lc ≤ Lr HTD at Tm

3 Ro = 0 and Rc = 0 any HTD at midpoint
4 Ro > 0 and Rc = 0 any TD
5 Rc > 0 and Ro = 0 any HD

the units are in the time domain. We can convert from bytes
to time by using the bandwidth of the channels. The HTD
policy must also determine how much of each burst must be
dropped. There are five cases shown in Table II. Before ex-
plaining Table II we will use the following notation. Every
parameter in this list can be found in the BHP of the con-
tending burst.

– Lc: length of the contending burst.
– Rc: the length of the redundant data in the contending

burst.
– Tc: The time at which the contending burst will arrive.

As we discussed earlier, we assume each node uses LAUC
to schedule bursts. For each wavelength, LAUC maintains
the latest available time, we will denote this as LAUCi, the
latest available time of wavelength i. In addition to LAUCi,
we add one more variable to the LAUC scheduler called Ri,
which represents the length of the redundant data of the last
burst scheduled on wavelength i. The scheduler will store
this value (from that burst’s BHP) when the burst is success-
fully scheduled.

Now we define the variables that must be calculated for
RBS. These values are calculated by the scheduler in the
switch control unit every time a BHP arrives. The LAUC
scheduler will select the wavelength with the minimum con-
tention region to schedule a burst if no free wavelengths are
found. Let this selected wavelength be i. Let Lr = LAUCi−
Tc be the length of the contending region shown in Figure. 5.
We define the midpoint to be the middle of the contention
region. This can be calculated as midpoint = LAUCi −
(Tc − LAUCi)/2 = LAUCi − Lr/2. We define the vari-
able Lm to be equal to half the size of the contending burst,
Lm = (Tc +Lc)/2 and Tm to be the middle of the contend-
ing burst, Tm = Lm + Tc.

Given the definition of these variables, we will now ex-
plain our segmentation rules in Table II with the help of
Fig. 7. In the figure, we show the redundant data as shaded
segments and the original data as white segments. Next to
each contention scenario, we display the number of seg-
ments lost if no contention resolution were used (Burst Drop),
if traditional segmentation were used (Head/Tail Drop), and
if our proposed FSR were used. NC means no contention
would occur. We assume that FSR uses 100% redundancy.
The point of the tables in the figure is to show that FSR never
causes more loss than the other techniques. There are cases
where FSR results in contention while the others do not, but
in these scenarios no original data is lost. These are simpli-

fied examples with only one or two segments dropped. In an
actual network a combination of these scenarios may occur
for any given burst with a greater number of segments lost.
We later show that FSR provides significant performance
improvements so the extra processing required by FSR is a
good tradeoff.

In Fig. 7 we show two cases of Contention Scenario 1
from Table II. In 1(a), the contention is caused by the re-
dundancy itself. In other words, if we did not use FSR, there
would be no contention. This has no negative impact, how-
ever, we still lose no data. Contention Scenario 1(b) shows
a scenario were FSR results in no data loss while the oth-
ers do. The midpoint of Lr is determined and combined
head/tail drop is performed for FSR. We also show two cases
for Contention Scenario 2, where one case is a result of the
redundancy and the other case results in less data loss. In
these two cases, HTD is performed at the middle of the
contending burst instead of the middle of Lr. Again, even
when FSR itself causes contention, there is no negative im-
pact on performance. Contention Scenario 3 in the figure
shows the case where neither burst has any redundant data.
We can see with the HTD scheme each burst loses one seg-
ment whereas in traditional segmentation one of the bursts
would lose two while the other would lose one. This may
result in more fairness than traditional segmentation. Lastly,
we show Contention Scenario 4 where one burst has redun-
dant data and the other does not. Here, FSR performs the
same as traditional head or tail drop. We omit Contention
Scenario 5 since it is the same as 4 but with head drop in-
stead of tail drop.

There is one final scenario not depicted in Table II. For
contention scenario 2, we found that if the original burst is
large and the contending burst is small, splitting the bursts
according to the center of the smaller contending burst may
result in loss of many original packets from the original
burst. We check for this by determining if Lm > Ro and
if so we simply drop the contending burst.

In all cases, FSR performed as good as or better than tra-
ditional burst segmentation. Even though the act of adding
redundant data into the core may cause additional contentions,
these scenarios do not lead to any additional data loss that
would not occur otherwise. Given this and the fact that FSR
is a simple modification to traditional segmentation, it makes
sense to use FSR instead of traditional segmentation. We
will discuss the impact of redundant data in more detail in
the simulation section. We will show that there is a point
where too much redundant data begins to degrade perfor-

8

2 14 3

2 14 3

Contention Scenario 1(a): L C > L R

Contention Scenario 1(b): L C > L R

Contention Scenario 2(a): L C ≤ L R

Contention Scenario 3

Contention Scenario 2(b): L C ≤ L R

Contention Scenario 4

Original Segment Redundant Segment

Dropped Segment

Time

4' 3' 2' 1' 4 3 2 1

Contending Burst. Rc > 0

4' 3' 2' 1' 4 3 2 1

Original Burst. Ro > 0

2' 1' 2 1

4' 3' 2' 1' 4 3 2 1

2' 1' 2 1

4' 3' 2' 1' 4 3 2 1

2 14 3

4' 3' 2' 1' 4 3 2 1

Original Burst. Ro > 0

Original Burst. Ro > 0

Contending Burst. Rc > 0

Contending Burst. Rc > 0

Original Burst. Ro > 0

Original Burst. Ro = 0

Contending Burst. Rc = 0

L R

L R

L R

L R

L R

Time

4' 3' 2' 1' 4 3 2 1

4' 3' 2' 1' 4 3 2 1

Original Burst. Ro > 0

L R

Contending Burst. Rc > 0

Time

Time

Time

Time

Burst Drop

Head Drop

Tail Drop

100% FSR

4

2

2

0

Burst Drop

Head Drop

Tail Drop

100% FSR

NC

NC

NC

0

Burst Drop

Head Drop

Tail Drop

100% FSR

2

2

2

0

Burst Drop

Head Drop

Tail Drop

100% FSR

4

2

2

2

Burst Drop

Head Drop

Tail Drop

100% FSR

4

2

2

2 (1+1)

Burst Drop

Head Drop

Tail Drop

100% FSR

NC

NC

NC

0

Drop Policy Loss

Contending Burst. Rc = 0

Fig. 7 Illustrations of contention scenarios for FSR with modified
burst segmentation. Each contention scenario matches the scenarios in
Table II. The tables show the amount of actual data loss (in number of
segments) for different contention resolution techniques.

mance, but we can choose redundancy levels before this
point that still significantly improve performance.

Again, the hardware requirements for RBS are similar to
traditional burst segmentation, which is accepted as a feasi-
ble contention resolution technique. Our new approach adds

the calculation of four variables, which can be done effi-
ciently in hardware, and the storage of one additional field
in the LAUC scheduler. The actual segments are still trans-
parent to the optical core.

5 Analytical TCP Throughput Model

In this section we introduce an extension to the TCP SACK
over OBS throughput model in [11]. We assume a burst
contains only TCP segments and each burst segment corre-
sponds to one TCP segment. We model the placement of re-
dundant data for bursts containing TCP segments. The model
in [11] assumes that when a contention occurs, the contend-
ing burst is dropped entirely. In the case of FSR, there are
different scenarios for burst contention. There may be no
original data loss, only redundant data. Second, some orig-
inal and redundant data may be lost. Lastly, the entire burst
may be dropped. We will incorporate these possibilities into
the model in [11] to accurately model TCP SACK with FSR
over OBS.

We use the same terminology and variables defined in [11].
A TCP sending round starts when TCP sends its window
and ends when it receives the first acknowledgement. We
assume the time it takes to send a window is less than the
RTT, so the duration of the round is RTT. We also assume
that each received TCP segment generates an acknowledge-
ment (b = 1 in [11]). The model is based on defining the
operation of TCP during what are called triple duplicate pe-
riods (TDP) and timeout periods (TOP). A TDP period is
the interval between two consecutive triple duplicate loss
scenarios or periods starting after or ending in a timeout
loss scenario. The TOP is the duration of a series of time-
out events. These periods are shown in Fig. 8, where W is
the congestion window size. By determining the amount of
data sent in these periods and how long these periods last,
the throughput can be obtained. The analysis in [11] looks at
two separate cases, one where the number of TCP segments
in a burst is less than TCP’s maximum receiver window and
one where TCP’s maximum window limits the number of
TCP segments that go into a burst. We consider the first case
here. The second case is a simple extension of the first and
is straightforward to derive once the first case is derived.

We use the following notations:

pc: burst contention probability.
pl: probability a contention leads to data loss (but not
burst dropping).
ptd: probability of a burst contention leading to a TD
loss indication.
pd: probability a burst is dropped entirely.
S: number of TCP segments assembled into a burst.
B: TCP throughput.
Wm: maximum TCP window size (in segments).

9

time

W

TDP
1

TDP
2

TDP
3

TOP
1

TDP
4

Fig. 8 Illustration of triple duplicate periods and time out periods for
TCP.

|TDP |: duration of a triple duplicate period.
Y : number of TCP segments sent during a TDP.
|TOP |: duration of a TOP period.
H: number of TCP segments sent in |TOP |.
Wx: sending window size of last round in a TDP.
Q: probability that a loss indication ending a TDP is a
TO.

The TCP throughput is obtained by:

B =
E[Y] + Q× E[H]

E[TDP] + Q× E[TOP]
. (1)

The input to the model is the burst contention probabil-
ity (pc), number of TCP segments in a burst (S), the RTT
(including burst assembly times), and TCP’s retransmission
time out (RTO). Based on these parameters and the behavior
of TCP SACK, the expected values in the above equation are
obtained.

As previously discussed, the contention probability is
not the same as the burst drop probability nor is it equal
to the probability of data loss. We first define pl, which is
the probability that some original data is lost during a con-
tention. In this model we assume that 1) each burst when it is
sent uses 100% FSR and 2) that during a random burst con-
tention, the point of segmentation is uniformly distributed
over the length of the burst. We model the first contention
scenario described in Table II because it happens most fre-
quently. Each burst can be thought of as having two re-
gions, one containing redundant data and one containing
original data. Data loss is only possible if the contention
point is larger than either of the regions. Assuming each re-
gion has equal size (100% FSR), this occurs one half of the
time (0.5pc). Because the other bust also gets segmented,
we only drop segments that cover half of the contending re-
gion, which means that the actual probability of a contention
causing loss is expected to be pl = 0.25pc. This probability
can be modified for any level of redundancy. To derive ptd,
we use similar reasoning as [2]. Consider the round where
a TD loss even occurs. The window size is E[Wx] and the
TCP segments making up the window are distributed across
several bursts (E[Wx]

S bursts). Only the first burst to lose
any original data will trigger a TD event. TCP SACK will

not leave fast retransmission until all TCP segments are ac-
knowledged, so any other bursts that lose original data in this
round will not trigger additional TD events. Since burst con-
tentions in OBS are independent events, the average number
of bursts experiencing data loss but not triggering TDs is
(E[Wx]

S − 1)pl. The ratio of the number of contentions lead-
ing to TD events to the number of contentions that do not
lead to TD events is equal to the ratio of the probability of
a TD event to the probability of a non-TD event, which is
derived from [2]:

1

(E[Wx]
S − 1)pl

=
ptd

pl − ptd
. (2)

This allows us to derive ptd as:

ptd =
pl

(E[Wx]
S − 1)pl + 1

. (3)

In [11], pc is the probability of burst contention and the
probability of a TD event. We can now use ptd in place of
pc in [11].

We will now discuss the required changes to the equa-
tions in [11] for the throughput in (1). (2) in [11] derives
an equation for E[Y]. Since they assume the entire burst is
lost during contention, the equation contains the ‘−S’ term.
With segmentation, only a portion of the burst is lost. We
can expect, on average, that S

2 segments are lost. (4) in [11]
has p replaced with ptd. This leads to a new derivation of (5)
in [11] as:

E[Y] =
3
2
E[Wx] +

S

ptd
− S

2
. (4)

(8) in [11] is also updated with the term ‘−S
2 ’ instead

of ‘−S’. These changes lead to an updated value of E[Wx]
(10) in [11], which becomes

E[Wx] =
8
3

+
8
6

√
4− 3

2
(S − 4S

pc
). (5)

We can now derive the final equation of E[Y] from (4)
and (5). We use the same derivation of E[|TDP |] as [11]
except we use our derived E[Wx].

We must now define the expected values dealing with
TO losses. To do this, we must define the probability of
a burst being dropped given segmentation is used. Again,
we assume that the contention point is uniformly distributed
across the entire burst. The entire bust is dropped if a tail
drop occurs and the contention point is at the head of the
burst, or if a head drop occurs and the contention point is
the tail of the burst. We can then define pd as the probability

10

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t (

M
b/

s)

Load

Burst Drop Sim.
Burst Drop model

FSR Sim.
FSR model

Fig. 9 Verification of the analytical model. The FSR model is the
model presented in Section 5. The Burst Drop model is the model pre-
sented in [11].

of the contention point being either the first or last segment,
as

pd =
1
S

pc. (6)

We use the same values of E[H], E[|TOP |], and Q as
in [11] except that we replace p with pd.

The final expression for B can now be defined as:

B =
5
2E[Wx] + 2S

pc
− 3S

2 + (1
S p

E[Wx]/S−1
c)

1
S pc

1− 1
S pc

RTT (0.5E[Wx] + 1) + (1
S p

E[Wx]/S−1
c)RTO

f(1
S pc)

1− 1
S pc

,

(7)

where E[Wx] is defined in (5). If the contention proba-
bility, pc, is very small, the throughput can be estimated as:

B ≈ Wm

RTT
. (8)

6 Numerical Results

In this section we discuss the accuracy of the analytical model
as well as provide extensive simulation results for FSR. We
begin with verification of the analytical model.

6.1 Analytical Model Verification

In this section we verify the analytical model for TCP SACK
throughput presented in the previous section. To verify the
model we create a simple dumbbell topology with a single
TCP SACK source sharing an OBS core node with a UDP
source (similar to Fig. 10). The UDP source generates bursts

3x

TCP

3x

TCP

3x

TCP

3x

TCP

3x

UDP

Core

1

Core

2

TCP

TCP

TCP

TCP

UDP

5ms 5ms

10ms

All Links: 2 data channels @ 1 Gb/s

Fig. 10 Simulation Topology.

according to a Poisson process with an arrival rate λ and an
exponentially distributed length with mean µ = S (i.e., the
mean burst size of the generated UDP burst is equal to the
number of TCP segments per burst). We increase the aver-
age arrival rate to cause higher levels of contention. This
contention probability is then used as input to our model.
We can verify the results with only a single TCP source be-
cause with random burst contention, all TCP sources would
be affected equally, hence one TCP source can be used as a
representative of all TCP sources with the same implemen-
tation [11].

We use an access network with a bandwidth of 30Mb/s.
This, along with a 4ms burst assembly timer, ensure that
each burst contains (at most) 15 TCP segments (S = 15).
The round trip time, including access networks, burst assem-
bly time, and the core network is 52ms. The TCP sender’s
maximum window size, Wm, is set to 100 TCP segments.

The results for varying loads (λ
µ) of incoming UDP bursts

are shown in Fig. 9. We compare our model presented in
the previous section for FSR to the burst drop model pre-
sented in [11]. The figure shows that FSR has better per-
formance than traditional burst dropping for all loads and
that our model is accurate, though it slightly underestimates
loss. The addition of redundancy into the network results in
more contentions for FSR than burst dropping. For exam-
ple, at the highest load shown in the figure, OBS with FSR
had a contention probability of 16% while OBS with burst
dropping had a contention probability of 8.5%. The higher
contention probability does not hurt performance. As shown
in the figure FSR consistently outperforms burst dropping.
We explore the impact of redundant data further in the next
section.

11

6.2 Simulation Results

This section describes the simulation results. The simula-
tion section is organized as follows. We first discuss the per-
formance of FSR compared to traditional segmentation and
no contention resolution (i.e. the entire contending burst is
dropped if there is contention). We then look at the impact
of burst size on FSR. Lastly, we generalize the topology and
look at FSR’s performance over multiple hops instead of a
single bottleneck link.

Simulations were performed using ns2 and the OWns
module. The simulation topology used is shown in Fig. 10.
We use a simple topology with a single bottleneck link be-
tween two core nodes shared by a number of edge nodes. We
will generalize this in Section 6.2.3. Each of the nodes on
the left (the ingress nodes) sends to the corresponding node
on the right (the egress nodes). There are four ingress nodes
with three attached TCP SACK sources each and one edge
node with three UDP sources (as shown in the figure). We
use the UDP flows to generate congestion in the network.
Varying the UDP send rate allows us to simulate networks
with different loads (since UDP does not have congestion
control). As noted in the topology, each link has two data
channels with a rate of 1Gb/s each. The total capacity of the
bottleneck link is 2Gb/s. We vary the combined UDP send
rate from 150Mb/s up to 1.8Gb/s to simulate various levels
of load over the network to observe the impact on the TCP
senders.

The TCP flows have a packet size of 1KB and the re-
ceiver window is set high enough so that it does not limit
send rates. Each TCP flow sends a 100MB file using FTP
and each of the UDP flows generate Pareto traffic. The Pareto
traffic has a burst time of 500ms and an idle time of 500ms
with a shape parameter of 1.5 (resulting in a Hurst parameter
of 0.75).

The burst assembler uses mixed-timer-threshold policy
with a max burst size of 200KB and a 4ms timer. A good
value (200KB) for the burst size is determined through sim-
ulation is the following subsections. We chose a trade-off
between loss performance and end-to-end delay as will be
discussed later.

The bursts containing UDP datagrams are treated dif-
ferently than the bursts containing TCP. The UDP bursts
are considered low priority, as though they contain redun-
dant data, but they do not have redundant data. This means
that when UDP bursts contend with TCP bursts, it is likely
contention scenario 1 or 2 from Table II will occur. We do
not give UDP bursts higher priority even though they con-
tains no redundant data because we assume UDP traffic is
loss tolerant. In all the simulations the redundant data is ap-
pended serially to the tail of the burst if FSR is enabled. We
assume the segment size is one Ethernet frame. We also per-

 10

 100

 1000

 25
 50

 75
 100

 125
 150

 175
 200

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

FSR Percentage

300Mbps, 1 hop
600Mbps, 1 hop
1.2Gbps, 1 hop

600Mbps, 4 hops

Fig. 12 Comparison of completion time vs. FSR percentages.

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 150
 300

 600
 1200

 1500
 1800

%
 o

f
Su

cc
es

sf
ul

ly
 R

ec
ei

ve
d

U
D

P
Pa

ck
et

s

Total UDP Send Rate (Mb/s)

Burst Drop
Segmentation

50% FSR
100% FSR

Fig. 13 Impact of redundancy on background UDP traffic.

form reordering of the redundant and original segments at
the egress, as discussed in Section 4.

6.2.1 FSR

In this section we compare the performance of FSR with
varying degrees of redundancy, 50% and 100%, to regular
segmentation and to no segmentation (burst drop policy).
We use background UDP traffic to cause data loss as dis-
cussed previously.

Fig. 11(a) shows the average flow completion time to
send a 100MB file among each the 12 TCP flows. There is a
clear distinction between different levels of redundancy with
100% redundancy performing the best. At high send rates
there is an order of magnitude (10-20 times) performance
difference between 100% redundancy and both segmenta-
tion and burst drop. From Fig. 11(c) we can observe that
FSR greatly reduces the number of timeouts experienced by
the TCP flows. At 1800Mb/s total UDP send rate there is
over an order of magnitude more timeouts with traditional

12

 10

 100

 1000

 10000

 150
 300

 600
 1200

 1500
 1800

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

Total UDP Send Rate (Mb/s)

Burst Drop
Segmentation

50% FSR
100% FSR

(a) Average flow completion time.

 0

 5

 10

 15

 20

 25

 30

 150
 300

 600
 1200

 1500
 1800

A
ve

ra
ge

 p
er

 F
lo

w
 T

hr
ou

gh
pu

t (
M

b/
s)

Total UDP Send Rate (Mb/s)

Burst Drop
Segmentation

50% FSR
100% FSR

(b) Average TCP flow throughput.

 10

 100

 1000

 10000

 100000

 150
 300

 600
 1200

 1500
 1800

T
ot

al
 N

um
be

r
of

 T
im

eo
ut

s

Total UDP Send Rate (Mb/s)

Burst Drop
Segmentation

50% FSR
100% FSR

(c) Total number of timeouts experienced across all TCP flows.

 10

 100

 1000

 10000

 150
 300

 600
 1200

 1500
 1800

T
ot

al
 N

um
be

r
of

 F
as

t R
et

ra
ns

m
its

Total UDP Send Rate (Mb/s)

Burst Drop
Segmentation

50% FSR
100% FSR

(d) Total number of fast retransmissions experienced across all TCP flows.

Fig. 11 Performance comparison of FTP file transfers, each of the 12 flows sending 100MB.

segmentation and burst drop compared to 100% FSR. This
is because these techniques are not able to prevent enough
loss at high UDP rates which results in small window sizes.
With the smaller window sizes, the TCP sender’s entire con-
gestion window will fit into a single burst and a burst loss
will usually result in an timeout.

While FSR reduces the total number of timeouts, it also
increases the number of fast retransmissions compared to
burst drop as seen in Fig. 11(d). However, the difference be-
tween number of fast retransmits for 100% FSR and no seg-
mentation is not as high as the difference in timeouts. The
increase in fast retransmissions is caused by segmentation
when only some packets in a burst are dropped instead of
the entire burst. Traditional segmentation has the same is-
sue with fast retransmissions as FSR as shown in the figure.
100% FSR is able to prevent more data loss and therefore
results in fewer fast retransmissions compared to 50% FSR
and traditional segmentation.

One major concern about sending redundant data in the
network is how this redundant data impacts performance. In

other words, is it possible to send so much redundant data
into the network that it begins to degrade performance in-
stead of improve it. For up to 100% FSR, based on the re-
sults so far, it is clear that the redundant data does not de-
grade performance. The redundant data does indeed cause
more burst contentions, but as we showed in Fig. 7, many
result in no data loss.

In order to determine when redundancy does begin to
degrade performance, we ran simulations for greater than
100% redundancy. Fig. 12 shows comparison of flow com-
pletion time versus different FSR percentages for different
UDP send rates. The graph shows that as FSR percentage
reaches 100% it seems to hit an optimal value. After 100%
the completion time begins to increase again. Note, we ran
simulations for FSR percentages higher than 200% and the
upward trend continues. This seems to suggest that there is
an optimal value for the FSR percentage around 100%. The
graph also shows this is the case for a multi-hop network
(discussed in subsection 6.2.3). This clearly shows that there
is a point where too much redundancy begins degrading per-

13

 10

 100

 1000

 50000

 75000

 100000

 200000

 300000

 400000

 500000

 750000

 1e+06

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

Burst Size (bytes)

150Mbps
900Mbps
1.8Gbps

(a) Average flow completion time using vs. burst size.

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 50000

 75000

 100000

 200000

 300000

 400000

 500000

 750000

 1e+06

O
ne

-w
ay

 T
C

P
D

el
ay

 (
se

co
nd

s)

Burst Size (bytes)

150Mbps
900Mbps
1.8Gbps

(b) One-way TCP delay vs. burst size.

Fig. 14 FSR with varying maximum burst size.

formance, but our choice of 100% redundancy is before this
point.

We also investigate the impact of redundancy on the back-
ground UDP traffic. The background UDP traffic does not
contain redundant data, but the bursts are segmented if they
encounter a contention. These types of bursts may carry lower
priority or loss-tolerant traffic. Fig. 13 shows the percent-
age of successfully delivered UDP packets for different lev-
els of redundancy and different loads. As we expect, burst
segmentation should provide the best performance for back-
ground traffic because no redundant data is introduced into
the network and when contention occurs only some seg-
ments of a burst are dropped. We can also see that FSR with
100% redundancy does cause some additional UDP packet
loss compared to traditional segmentation because of the ex-
tra redundant data. This small amount of background traffic
loss, however, corresponds to a large performance increase
for the TCP traffic as we have seen in the previous figures
(Fig. 11 (b)). The figure also shows that with burst dropping,
the loss rate of background UDP traffic increases as load in-
creases. At high loads FSR is actually better even with extra
contentions caused by redundant data. This is because with
FSR all bursts are segmented, so even though there are more
contentions, only some segments are dropped instead of the
entire burst. While the background traffic’s packet loss rate
increases slightly, we believe this is a fair tradeoff to gain
significant improvement of TCP’s performance.

6.2.2 Burst Size

In this section we examine the impact of burst size on FSR.
We run simulations varying the burst size at a UDP send
rate of 150Mb/s, 600Mb/s, and 1800Mb/s. We use the same
settings as the previous simulations except that we increase

the burst assembly time to 10ms to ensure that the maximum
burst size is being used.

Fig. 14(a) shows the average completion time. The fig-
ure shows that as burst size increases, the completion time
decreases. Larger bursts are able to send more data result-
ing in fewer contentions and lower completion times. As a
result of the larger bursts, the one-way delay TCP experi-
ences through the network increases as shown in Fig. 14(b).
The increase in delay is a combination of longer time being
spent in the burst assembler and also the longer transmission
delays for larger bursts.

6.2.3 Multiple-hop Paths

So far we have evaluated FSR’s performance over a single-
hop network. This means that each burst will only undergo
a single contention at most. To make the results more gen-
eral, we simulate bursts traversing multiple hops. We can
think of this as taking a path out of a larger network and an-
alyzing the performance of bursts on this path. To do this,
we extended the topology in Fig. 10 to include multiple
hops where each hop is shared by different UDP source and
destination pairs. The settings and number of flows are the
same (there are three UDP flows for each hop) and the total
UDP send rate is fixed at 600Mb/s. Fig. 15 plots the average
flow completion time. As the path length increases, there is
a greater chance of contention because contention can oc-
cur at each node in the path. As expected, the completion
time increases as the path length increases due to more con-
tentions. FSR still has the best performance compared to the
other techniques.

The simulation results presented are also valid for larger
networks as well. We ran simulations over NSFnet with vari-
able bit rate UDP traffic between all source-destination pairs
and eight source-destination TCP pairs with three TCP flows

14

 10

 100

 1000

 1 2 3 4

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

Path Hop-Length

Burst Drop
Segmentation

50% FSR
100% FSR

Fig. 15 Comparison of performance of FTP file transfers, each of the
12 flows sending 100MB, over multiple hops.

each. With this topology we observed similar results. We use
a simple topology to reduce simulation run-time.

6.3 Discussion

We have shown that our proposed FSR technique with 100%
redundancy provides better performance compared to burst
dropping and traditional segmentation even with relatively
high levels of traffic in the network. There is a point where
too much redundancy begins to degrade performance, but
we have shown through simulation that this is not the case
for 100% FSR. The implementation complexity is essen-
tially equivalent to that of traditional burst segmentation, so
FSR is feasible both in the core and at the edge. In addition
to the simulations presented here, we also ran simulations
with other types of TCP, including high speed versions like
HS-TCP and CUBIC. The results are similar in those cases.
Lastly, we also compared FSR with the performance of burst
retransmission we presented in [2]. We found that FSR pro-
vides better performance without the requirement of large
edge buffers to store bursts for retransmission.

7 Conclusion

In this paper we have evaluated the performance of the pro-
posed proactive loss recovery mechanism, forward segment
redundancy. We proposed an analytical throughput model of
TCP over OBS with FSR and validated it using simulations.
We have compared the performance of FSR with traditional
burst segmentation and burst drop. FSR improves file trans-
fer completion time over burst drop by an order of magni-
tude at sustained high network loads and by over two times
at lower loads. It also provides significant improvement over
traditional segmentation.

FSR adds redundant data into the network, but this does
not impact the network performance because the redundant
data is given lower priority. There is no buffering or compli-
cated FEC generation required at the ingress node, though
it does increase the scheduling complexity of core nodes
due to segmentation. The complexity is no greater than tra-
ditional burst segmentation. We have also found that 100%
FSR appears to be an optimal value for both single-hop flows
and multi-hop flows.

References

1. C. Qiao and M. Yoo, “Optical burst switching (OBS) - a new
paradigm for an optical Internet,” Journal of High Speed Net-
works, vol. 8, no. 1, pp. 69–84, Jan. 1999.

2. Q. Zhang, V. M. Vokkarane, Y. Wang, and J. P. Jue, “Analysis of
TCP over optical burst-switched networks with burst retransmis-
sion,” Proceedings, IEEE Globecom 2005, Photonic Technologies
for Communications Symposium, Nov. 2005.

3. X. Yu, C. Qiao, and Y. Liu, “TCP implementations and false time
out detection in OBS networks,” Proceedings, IEEE INFOCOM,
Mar. 2004.

4. V. M. Vokkarane and J. P. Jue, “Burst segmentation: An approach
for reducing packet loss in optical burst switched networks,” SPIE
Optical Networks Magazine, vol. 4, no. 6, pp. 81–89, Nov.-Dec.
2003.

5. S. Arima, T. Tachibana, and S. Kasahara, “Fec-based burst loss
recovery for multiple-bursts transmission in optical burst switch-
ing networks,” in Global Telecommunications Conference, 2005.
GLOBECOM ’05. IEEE, Dec. 2005, vol. 4, pp. 5 pp.–2061.

6. B. Kantarci and S. Oktug, “Loss rate-based burst assembly to
resolve contention in optical burst switching networks,” Commu-
nications, IET, vol. 2, no. 1, pp. 137–143, January 2008.

7. V.M. Vokkarane and Qiong Zhang, “Forward redundancy: a loss
recovery mechanism for optical burst-switched networks,” in
Wireless and Optical Communications Networks, 2006 IFIP In-
ternational Conference on, 0-0 2006, pp. 5 pp.–5.

8. B. Komatireddy, D. Chandran, and V.M. Vokkarane, “TCP-
aware load-balanced routing in optical burst-switched (OBS) net-
works,” Proceedings, Optical Fiber Communication and the Na-
tional Fiber Optic Engineers Conference, pp. 1–3, March 2007.

9. X. Huang, V.M. Vokkarane, and J.P. Jue, “Burst cloning: a proac-
tive scheme to reduce data loss in optical burst-switched net-
works,” Proceedings, IEEE International Conference on Com-
munications, vol. 3, pp. 1673–1677 Vol. 3, May 2005.

10. Y. Xiong, M. Vanderhoute, and H.C. Cankaya, “Control archi-
tecture in optical burst-switched WDM networks,” IEEE Journal
on Selected Areas in Communications, vol. 18, no. 10, pp. 1838–
1854, Oct. 2000.

11. X. Yu, C. Qiao, Y. Liu, and D. Towsley, “Performance evaluation
of TCP implementations in OBS networks,” in Technical Report
2003-13, The State University of New York at Buffalo, 2003.

