
Optical Switching and Networking 8 (2011) 116–128
Contents lists available at ScienceDirect

Optical Switching and Networking

journal homepage: www.elsevier.com/locate/osn

Performance modeling of HS-RR-TCP over load-balanced optical
burst-switched (OBS) networks✩

Neal Charbonneau, Vinod M. Vokkarane ∗

Department of Computer and Information Science, University of Massachusetts, Dartmouth, MA, United States

a r t i c l e i n f o

Article history:
Received 2 July 2009
Received in revised form 15 June 2010
Accepted 14 October 2010
Available online 26 October 2010

Keywords:
Load-balanced routing
TCP-SACK
HS-TCP
OBS

a b s t r a c t

TCP-over-OBS is a promising transport paradigm to support next-generation Internet.
It is well known that load-balanced routing generally improves loss performance over
OBS. We identify that implementing TCP over load-balanced OBS could lead to persistent
out-of-order delivery of TCP segments, resulting in unnecessary timeouts and fast
retransmissions. In this paper we evaluate the performance of Reordering-Robust TCP
(RR-TCP) over OBS networks. We develop an analytical end-to-end transfer delay model
for TCP SACK and RR-TCP over load-balanced OBS networks. We observe that standard
TCP experiences significant throughput degradation due to persistent packet reordering.
Through simulations andmodelingwe show that RR-TCP achieves significant improvement
compared to TCP SACK. In our simulations we add High-Speed TCP functionality to RR-TCP
(HS-RR-TCP). The simulations showup to a 300% performance improvement for HS-RR-TCP
compared to HS-TCP-SACK under ideal conditions and a 20% improvement on NSFnet with
background traffic.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Next-generation high-speed optical Internet will be
required to support a broad range of emerging applications
that may not only require significant bandwidth, but may
also have strict requirements with respect to end-to-end
delays and reliability of transmitted data.

In optical burst-switched (OBS) networks, data to be
transmitted is assembled into bursts that are switched
through the network all-optically [1]. Each burst has an
associated control packet called the burst header packet
(BHP) that is sent ahead of time in order to configure the
switches along the bursts’ route. In OBS networks, apart
from the data channels, each link has one or more control
channels to transmit BHPs. BHPs carry information about

✩ This work was supported in part by the National Science Foundation
(NSF) under grant CNS-0626798.
∗ Corresponding author. Tel.: +1 5089106692; fax: +1 508 999 9144.

E-mail addresses: ncharbonneau@ieee.org (N. Charbonneau),
vvokkarane@ieee.org, vvokkarane@umassd.edu (V.M. Vokkarane).

1573-4277/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.osn.2010.10.002
the burst, such as source, destination, burst duration, and
offset time. Offset time is the separation time between
the burst and its BHP at the source and the subsequent
intermediate nodes. The offset time allows for the BHP to
be processed at each intermediate node before the data
burst arrives. As the BHP travels from source to destination,
it is processed at each intermediate node in order to
configure the optical switches accordingly. The data burst
then cuts through the optical switches avoiding any further
delays. Bandwidth is reserved only for the duration of
the burst, this reservation technique is called just-enough-
time (JET) [2].

In the recent years, TCP-based applications, such as
WWW (HTTP), email (SMTP), peer-to-peer file sharing
[3,4], and grid computing [5], account for amajority of data
traffic in the Internet; thus understanding and improving
the performance of TCP implementations over OBS net-
works is critical. The fundamental assumption of all these
TCP flavors is that the underlying medium is electronic in
nature, and that the packets experience queueing (buffer-
ing) delays during congestion in the electronic IP routers
along the path of the TCP flow.

http://dx.doi.org/10.1016/j.osn.2010.10.002
http://www.elsevier.com/locate/osn
http://www.elsevier.com/locate/osn
mailto:ncharbonneau@ieee.org
mailto:vvokkarane@ieee.org
mailto:vvokkarane@umassd.edu
http://dx.doi.org/10.1016/j.osn.2010.10.002

N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128 117
Due to the bufferless nature of the OBS core network
and the one-way based signaling scheme, the OBS network
will suffer from random burst losses even at low traffic
loads. One problem that arises when TCP traffic traverses
over OBS networks is that the random burst loss may be
falsely interpreted as network congestion by the TCP layer.
For example, if a burst that contains all of the segments
of a TCP sender’s window is dropped due to contention
at a low traffic load, then the TCP sender times out and
enters slow-start, leading to false congestion detection.
If the sender’s window is instead spread across multiple
bursts, a burst drop may lead to fast retransmission. The
first type is known as a fast source while the second type
is known as a medium source [6].

The primary issue in the OBS core network is con-
tention resolution since the core does not have any buffers.
Contention occurs when two or more bursts contend for
the same output port at the same time. There are several
contention resolution techniques, such as optical buffering,
wavelength conversion, deflection routing [7], and burst
segmentation [8]. These contention resolution techniques
are reactive in nature, they try to resolve the contention
when it occurs. These contention resolution techniques at-
tempt to minimize the loss based on the local information
at the node. An alternative to contention resolution is to
avoid contention before it happens.

Load-balanced routing is an approach to implement
contention avoidance in OBS [9–11]. Load-balanced rout-
ing involves two stages: route calculation and route se-
lection. Both route calculation and route selection can be
implemented in a static or a dynamic manner. In this pa-
per, we adopt load-balanced routing with static route-
calculation anddynamic route-selection as proposed in [9].
At every τ seconds, all the ingress OBS nodes dynami-
cally select the least-congested path (among two static
link-disjoint minimum-hop paths) to all their destination
nodes using the cumulative congestion-information of all
the links along the two pre-calculated paths. A link is said
to be congested if the offered load on link (i, j), Li,j ≥ ρmax,
where ρmax is the maximum load threshold on a link. Let
τs and τd be the duration of successful burst arrivals and
dropped burst arrivals during the interval τ , respectively.
The offered load on each of the node’s outgoing links is ex-
pressed as the duration of all arriving bursts over the inter-
val τ , and is given by, Li,j =

τs+τd
τ

. Load-balancing leads to
persistent reordering of bursts that degrade TCP’s perfor-
mance (for details refer to Section 2).

It was shown in [12] that load-balancing degrades
TCP’s performance, so an OBS layer technique called
source ordering was introduced to handle the reordering
caused by load-balancing. Source ordering is an OBS-
layer technique for solving the burst reordering problem.
When a path switch is made to a path with shorter delay,
the bursts are buffered long enough to prevent them
from arriving before bursts sent previously on the longer
path. It was shown that TCP’s performance with source
ordering and load-balancing was better than TCP over an
OBS network without load-balancing. This shows that by
handling the reordering issue, we can take advantage of
load-balancing without hurting TCP performance.

Source ordering requires OBS-layer modifications for
its implementation along with electronic buffers at the
OBS ingress nodes. In this paper we aim to resolve
the reordering independently at the higher TCP-layer.
Reordering-Robust TCP (RR-TCP) has been proposed [13]
to handle out-of-order reception of packets at the TCP-
layer. In this paper, we evaluate the performance of HS-
RR-TCP (RR-TCP with HS-TCP’s modifications [14]) over
a load-balanced OBS network under different network
conditions and also develop analytical models of RR-TCP
and TCP SACK over a load-balanced OBS network.

The remainder of the paper is organized as follows.
Section 2 discusses the issues of TCP over a load-balanced
OBS network. Section 3 describes the RR-TCP mechanism,
then Section 4 presents our analytical end-to-end transfer
delay model of TCP SACK and RR-TCP. Section 5 provides
our numerical results. Lastly, Section 7 concludes the
paper.

2. TCP over load-balanced OBS

In a load-balanced network, each ingress uses two
paths for routing, a primary path and an alternate path.
As described in the introduction, when the congestion on
one path is greater than the threshold ρmax, the ingress
switches to the other path. If the path it switches to has
a longer or equal delay, then reordering will not occur.
There is a problem, however, if the path it switches to has
a shorter delay. New bursts sent on the shorter path have
the possibility of reaching the destination before bursts
sent on the longer path prior to the path switch. This is
illustrated in Fig. 1. We can see burst B2 is transmitted on
the longer pathwhile burst B3 is transmitted on the shorter
path due to load-balancing. This will cause duplicate
acknowledgements and the TCP sender will try to recover
the packets using fast retransmission even though there is
no actual loss.

Fast retransmission (FR) is a process of retransmitting
the lost TCP segment at a faster pace than timeouts. During
this process, the TCP sender’s congestionwindow size is re-
duced to half. Fast retransmit requires a number of dupli-
cate ACKs to be received at the sender before it concludes
that the network has dropped a packet. This parameter is
called dupthresh and is set to three by default. TCP does not
know whether duplicate ACKs are generated by a lost seg-
ment or reordering of segments, so the TCP senderwaits for
a small number of duplicate ACKs to be received to confirm
packet loss. TCP essentially misinterprets packet reorder-
ing caused by load-balanced routing to be packet loss, and
triggers false fast retransmissions (FFR).

Since load-balanced routing reorders packets persis-
tently and packet reordering is interpreted as packet loss,
fast retransmission re-sends packets that have not been
lost, wasting network bandwidth and keeping window-
size unnecessarily small. The goal of HS-RR-TCP over OBS
is to allow TCP to adapt to these duplicate acknowledge-
ments and prevent false loss detection. In this paper we
use HS-TCP [14] with SACK and RR-TCP to better utilize the
high-speed OBS network. This means we apply HS-TCP’s
modified congestion control and integrate it with RR-TCP.

3. RR-TCP

In this section, we provide a brief overview of RR-TCP.
For further details refer to [13]. RR-TCP utilizes TCP with

118 N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128
Fig. 1. False fast retransmit example.

DSACK; DSACK is an extension to TCP SACK where the
receiver reports the receipt of duplicate segments to the
sender. A duplicate segment implies that both the original
and the retransmitted packet have arrived at the receiver.
Using this feedback, the sender can detect that FFR has
occurred.

3.1. RR-TCP algorithm

The RR-TCP algorithm helps desensitize the TCP sender
to packet reordering by dynamically adjusting the sender’s
dupthresh parameter. The TCP sender not only has to in-
crease the dupthresh when the sender detects reordering,
but the sender must also decrease dupthresh when neces-
sary in order to prevent timeouts. As dupthresh gets larger,
small amounts of real loss that would normally result in
a fast retransmit will instead result in a timeout. This is
due to the fact that TCP will ignore the duplicate acknowl-
edgments assuming the packets have been reordered. RR-
TCP has to balance the tradeoff between FFRs caused by
reordering and real timeouts from actual loss.

RR-TCP works by using the state information main-
tained by TCP SACK. The two main components of RR-
TCP are measuring the individual reordering lengths and
maintaining the reordering length samples in a histogram.
When an ACK is not received for a segment, there is a hole
in SACK’s scoreboard. This missing ACKwill cause a fast re-
transmit and TCPwill retransmit that packet. If that packet
was reordered instead of being lost, TCP will receive two
ACKs for it (assuming ACKs are not lost). This is detected
with the receipt of a DSACK and the reordering length
is measured by taking the distance from the hole in the
scoreboard to the cumulative ACK received. The reorder-
ing length is then stored in a histogram. Note, if a DSACK is
not received, the reordering length is not recorded.

Thehistogramconsists of bins that represent reordering
lengths. Every time a reordering length is measured after
the receipt of DSACKs, that bin’s value is incremented. The
samples are removed from the histogram after a specified
period of time, which we refer to as the histogram history
length.
The reordering samples in the histogram are used
to adjust the dupthresh value. The value of dupthresh is
set based on the percentage of reorderings causing FFRs
to avoid. For example, if 90% of reorderings are to be
avoided, it will return the dupthresh value that represents
that percentile value in the cumulative reordering length
distribution. This percentage is called the False Fast
Retransmit Avoidance ratio, or FA ratio.

As previously mentioned, dupthresh must be dynami-
cally increased to reduce FFRs and decreased in the case of
actual loss to avoid real timeouts. The authors in [13] have
developed cost functions that are used to increase or de-
crease the FA ratio whenever a FFR is detected or a time-
out occurs. The functionsmeasure the cost of true timeouts
(TTO) and the cost of FFRs. They are reproduced here:

C(TTO) = W

T
R

+ log2(W − k − 2) + 1


,

C(FFR) ≤
k(W − k + 1)

2
,

where W is the steady-state window size, R is the
smoothed RTT, T is the retransmissionwindow, and k is the
limited transmit parameter. Based on these cost functions,
the FA ratio is increased by S, a RR-TCP parameter, for every
false fast retransmit. Upon every timeout, the FA ratio is
decreased by S ∗ C(TTO)/C(FFR). This algorithm is called
DSACK with Timeout Avoidance (DSACK-TA).

In addition to dynamically adjusting the FA ratio,
another important feature of RR-TCP is that when an FFR
is detected, it restores the congestion window to the value
before the FR.

3.2. Illustration

Consider a TCP flow with its dupthresh value initially
set to 3, which means when a sender receives 3 duplicate
ACKs it enters the fast retransmission phase. We will
assume all TCP segments in each burst belong to a single
TCP sender. In the scenario in Fig. 1, we can see that B1
is successfully sent and received. B2 is now sent on the
longer alternate path due to load-balancing, while B3 is
sent on the shorter path. These bursts will arrive out-of-
order, leading to out-of-order delivery of packets to the TCP
receiver. The TCP receiver will send 5 duplicate ACKswhen
it receives the segments in B3, which causes the sender
to enter false fast retransmission resending segments 4, 5,
and 6 and creates three holes in the sender’s scoreboard,
one for each of the segments 4, 5, and 6. The sender then
receives the cumulative acknowledgement when the ACKs
B2 is received. It will then receive 3 DSACKs after the
retransmitted packets reach the destination. Upon receipt
of the DSACKs, there are three reordering length samples
stored in the histogram: 5, 6, and 7, one for each segment.

4. Analytical modeling

In this section we develop end-to-end transfer delay
models for both TCP SACK andRR-TCP over a load-balanced
OBS network.We assume that there is bifurcation of traffic
in the network at the burst level, so each bust sent is

N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128 119
Fig. 2. Window growth for TCP SACK over LB-OBS.

alternated on two link-disjoint paths. For the model, we
do not consider an access network. We assume a high
enough bandwidth on the access network to allow the
entire TCP sender’s window to be placed in a burst before
the burst assembly timer (BAT) times out. This also means
that our model is for TCP fast flows as described in [6].
The model represents a simplified scenario to show the
impact of reordering on TCP SACK and the improvement
that can be gained by using RR-TCP in an ideal scenario. The
modeling allows us to understand what is happening to a
traditional TCP flowas the paths change constantly.Weuse
simulation for more realistic and complicated scenarios in
Section 5.

To model the delay, we consider four phases of a file
transfer. The congestion window growth of a TCP SACK
flow can be seen in Fig. 2. The first phase is the initial slow-
start phase between t0 and t1. The second phase is the time
leading up until the first false loss detection, between t1
and t2. After t2 there are a number of periods where the
sender’s congestion window is halved because of false loss
detection caused by triple duplicate ACKs from re-ordered
bursts.Wewill refer to these periods as false triple duplicate
periods (FTDPs). An example of a FTDP is between t2 and t3.
The third phase consists of all the FTDPs (t2–t5) and lastly
the final phase is comprised of the remainder of the file
transfer after the last FTDP (t5–t6).

Assuming a long lived TCP flow, the window will grow
to size T , which is the slow-start threshold, by time t1. Let X
be the maximum burst size (X ≥ T). When the congestion
window reaches size X , the whole window still fits into
a single burst. As the window increases, two bursts will
be sent, which will eventually lead to reordering. Let the
window size that causes reordering be X + β , which is
shown at time t2. The value for β , which we will derive,
depends on the delay differential between the two paths.
Time t2 starts the first FTDP. Note, that after the fast
retransmit, the slow start threshold, T , is adjusted so the
flow will not enter SS and grow its window exponentially
anymore. The remainder of the transferwill be a number of
FTDPs. We refer to the congestion window size that causes
reordering to be M , where M = X + β .

The model will consist of four phases described
previously. The first being slow-start (t0–t1), the next being
the phase leading up to the first FTDP (t1–t2), then the
FTDPs (t2–t5), and lastly the remainder of the transfer
(t5–t6). We base our end-to-end transfer delay model on
the TCP delay model presented in [15].
We will use the following notation and assumptions:

ta: burst assembly time.
to: burst offset time.
ds:propagation delay on the shorter path in the OBS

network.
tt : burst transmission delay.
δ: delay differential between the shorter and longer path.
R: bandwidth of a wavelength (all links/wavelengths

assumed to have same bandwidth).
T : slow-start threshold (in packets).
X: maximum burst size (in packets).
M:burst size that causes a reordering (T ≤ X ≤ M).
S: TCP segment size (assuming segment size is fixed).

We assume that delayed ACKs are not implemented and
ACKs always take the shorter path, so the RTT (based only
on propagation delay of the path) for the shorter path is
2ds. The one-way delay for the longer path is ds + δ, so the
RTT is 2ds + δ. We assume that the slow-start threshold
of the TCP connection is smaller than the maximum burst
size so this phase will be completed before the window
is split across multiple bursts. The actual RTT of the paths
depends not only on the propagation delay but also OBS
specific properties like the assembly time and offset times.
We assume JET signaling in the core, so the total RTT for
the shorter path is 2ta + 2to + 2ds + tt while the total
RTT for the longer path is 2ta + 2to + (2ds + δ) + tt as
described in [16]. tt depends on the burst size and the fiber
bandwidth, R


tt =

burst size
R


, while to is calculated based

on the path length, BHP processing time, and switching
time.

4.1. TCP SACK modeling

As we previously discussed, we will calculate the entire
end-to-end transfer delay for TCP SACK by calculating the
delay on the individual phases of the file transfer. When
we say delay, we mean the time it takes TCP SACK to
complete the current phase. The delay for the slow-start
period is how long TCP SACK will spend in slow-start. We
will refer to the delay for the slow-start period as DelaySS.
The delay for the slow-start phase consists of 2RTTs for
the TCP connection setup in addition to the time it takes
the TCP sender’s window to reach the slow-start threshold.
Each sending round consists of an idle period, which is the
time it takes to transmit the burst and receive the ACKs
from the TCP receiver (allowing the sender to begin the
next round). We can define the idle period for the k-th
slow-start round as,

idle periodk = 2ta + 2to + 2k−1S/R + DelayOBS (1)

where DelayOBS is the propagation delay of the path taken.
The assembly time and offset time remain the same, but as
the burst gets larger (the TCP sender’s window increases),
the transmission time (tt = 2k−1S/R) increases. Since we
assume burst-level bifurcation of traffic, half of the bursts
will take the shorter path while the other half will take the
longer path, so DelayOBS can be obtained by the average,

DelayOBS = (4ds + δ)/2. (2)

120 N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128
There will be P idle periods where P = ⌈log2(T + 1)⌉,
since this is slow-start (see Appendix), therefore,

DelaySS = 2(2ta + 2to + 2ds) +

P−
k=1

(idle periodk). (3)

The first term of DelaySS is the RTTs required to setup
the TCP connection. Plugging (1) and (2) into (3) we get,

DelaySS = (2 + P)(2ta + 2to) + (4 + P)ds
+ P/2(2ds + δ) + (2P

− 1)S/R.

Next we define the delay for the phase between slow-
start and the FTDPs, which we will define as DelayPFTDP. At
this point, the TCP sender is in congestion avoidance and
the window will start at T and grow to M , the maximum
burst size before reordering occurs M = X + β . We will
define β shortly.

DelayPFTDP =

M−
k=T

(2ta + 2to + kS/R + DelayOBS),

= (M − T)((2ds + δ)/2 + ds + 2ta + 2to)
+ (M(M + 1)/2 − (T − 1)T/2)S/R.

In this equation the value of tt = kS/R because of con-
gestion avoidance. After this phase, the remainder of the
connection will be experiencing a number of FTDPs. We
must first derive the value of M, which is the window size
that will cause re-ordering. To derive this, assume that the
burst containing X packets, where X is the max burst size,
is sent on the shorter path initially. The remainder of the
window, β , will be sent on the longer path. We need to
find the largest value of β before a re-ordering. When a re-
ordering will occur depends on the delay differential, δ. It
will occur when two bursts taking the shorter path arrive
before a burst sent on the longer path does. The number of
rounds required for this to happen is given by,

β = max{x : (2x − 1)ds ≥ (2(x − 1) − 1)ds + (x − 1)δ},

=


2ds + δ

δ


.

β looks at when the egress node will receive two bursts
from the shorter path before a burst comes in on the
longer path. x represents the round number. This gives
us a window size of X + β , or M , that will cause the re-
ordering. Itmay be the case that δ will allow thewindow to
take up two bursts without re-ordering.When thewindow
is split across three bursts, then re-ordering will occur
immediately, the value of β should take this into account:

β = min


2ds + δ

δ


, X


.

Note, in real implementations of TCP, the window may
be rounded up when receiving the larger burst before the
burst containing a single packet, resulting in an additional
burst to be sent. We found that the above calculation for β
to be a good estimate.

Now we will determine the delay for all of the FT-
DPs, DelayFTDP. We now know the maximum TCP sender’s
window size that will cause re-ordering. We next deter-
mine the number of FTDPs the TCP sender will experience
while sending the file. First the amount of data sent in one
FTDP (in packets) is given by:
M/2−
i=0

(M/2) +

M/2−
i=0

i + M/2 = 3M2/8 + 3M/4.

Therefore the number of FTDPs, n, that the TCP sender
will experience is:

n =


O′

S ∗ (3M2/8 + 3M/4)


where O′ is the remaining size of the file after the previous
two phases. In each FTDP phase, (X − β)/2 rounds are
sent that have windows fitting into a single burst (the
window starts at (X + β)/2 and goes to X). The remaining
β windows are larger than the maximum burst size, so the
windows are split across two bursts. While the window is
covered by oneburst, it is alternating betweenpaths.When
the window is split across two bursts for the first time, we
assume that the burst on the shorter path has X packets
and the other burst has the remaining packets. The delays
for the portions of FTDPs that transmit the entire window
in a single burst are covered by:

DelaySINGLE

= n
(X−β)/2−

i=0


2ta + 2to + DelayOBS + S ∗

M/2 + i
R


= n ((X − β)(ta + to + ds/2 + (2ds + δ)/4)

+ (S/R)

 (X − β) ∗ M
4

+


X−β

2

 
X−β

2 + 1


2

 .

(4)

This covers the delay of all FTDPs where the window
is less than the maximum burst size. After that point, the
window will cover two bursts. One burst will always have
X packets to send, which is sent β (the number of rounds
before reordering occurs) times for each FTDP, so the delay
is:

DelayMAXSIZE = β ∗ n ∗ (2ta + 2to + 2ds + S ∗ X/R). (5)

The delay for the other burst sending the remainder of
the window is:

DelayMINSIZE = n
β−

i=1

(2ta + 2to + 2ds + δ + S ∗ (i/R)),

= nβ

2ta + 2to + 2ds + δ +

(β2
+ β)/2
R


. (6)

We can now define DelayFTDP as (4) + min{(5), (6)},
meaning the total delay consists of the delay when
the window was less than the maximum burst size
(DelaySINGLE) and when the window was split across two
bursts

(DelayMAXSIZE and DelayMINSIZE).

We will now derive the delay for the phase after the
FTDPs, DelayFINAL. Let O′′ be the remainder of the file that
needs to be sent after the final FTDP. To determine how

N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128 121
many rounds are required to send the remainder of the file,
we must calculate:
min{j : MS/2 + MS/2 + 1 + MS/2 + 2 + · · ·

+MS/2 + j ≥ O′′
};

min


j :

j−
i=0

(M/2 + i) ≥ O′′/S


;

min

j : jM/2 +

j2 + j
2

≥ O′′/S


;

j =
−(M + 1) +


(M + 1)2 − 8O′′/S
2

. (7)

Given j, the delay for the final phase is given by,

DelayFINAL =

j−
i=0

(2Ta + 2To

+DelayOBS + (S ∗ M/2 + i)/R),
= j(2Ta + 2To + ds + (2ds + δ)/2)

+ (S/R)(jM/2 + (j2 + j)/2).
The total end-to-end data transfer delay is equal to

DelaySS + DelayPFTDP + DelayFTDP + DelayFINAL.

4.2. RR-TCP delay modeling

This model can be modified to model the delay of RR-
TCP with 100% FA ratio. With 100% FA ratio, only the first
reorderingwill cause an FFR and the rest will be prevented,
as shown in Fig. 3. From the figure, once the FFR has
been detected, the window is restored to X + β and the
reordering length is stored. Modeling RR-TCP is therefore
similar to modeling TCP over a regular OBS network. This
can be achieved bymodifying (7) to determine the number
of rounds required after slow-start to the end of the file
transfer while in congestion avoidance (we ignore the
decrease then restoration of the congestion window since
this only takes one round). The updated (7) would be
min{j : T + (T + 1) + (T + 2) + · · ·

+ (T + j) ≥ O − (2P
− 1)S};

j = −(0.5 + T) +


(1 + 2T)2/4 − (2O/S − 2(2P − 1))

(8)
because congestion avoidance starts at T andwill continue
until the remainder of the file is sent. O is the original file
size and we send 2P

− 1 packets in slow start. DelayFINAL is
also modified slightly so that instead of the M/2 term we
have T , which results in the following equation
DelayFINAL = j(2Ta + 2To + ds + (2ds + δ)/2)

+ (S/R)(jT + (j2 + j)/2). (9)
The total end-to-end data transfer delay is then equal to

DelaySS + (9) (where we use j from (8)).

5. Numerical results

5.1. Analytical model verification

In this sectionwe verify the analytical model developed
in the previous section. To verify the model, we use only a
Fig. 3. Window growth for RR-TCP over LB-OBS.

single TCP SACK sender (without High-Speed) and perform
bifurcation of the traffic, i.e., each time a burst is sent the
path is switched. For the model, the maximum burst size
is set to 1000 packets, with slow-start threshold set to 512
packets. The packet size is fixed at 1 kB. A 1 GB file is sent
by the single sender. The network used is shown in Fig. 5,
except that there is no access network, the TCP sender
sits on ingress node A and the receiver on egress node F.
The simulation verifying the model is shown in Fig. 4(a).
Delay refers to the total time it takes to transmit the file.
As the path delay differential increases, the completion
time increases because some bursts must take the longer
path whose increased propagation delay increases total
completion time. The increased delay differential can also
cause different amounts of reordering, which will also
impact performance.

We also show the results for the RR-TCP with 100% FA
ratio. The assumptions are the same except that instead
of TCP SACK we run RR-TCP. This can be seen in Fig. 4(b).
Comparing the two, we can see a significant improvement,
especially with larger path delay differentials. This im-
provement could be larger if the maximum burst size was
smaller and therefore lead to more reordering when the
window became too big for the burst. We used these set-
tings to make the analysis easier.

5.2. Simulation results

In this section we will discuss simulation results
obtained from ns2 with the OWns module [17] for
simulating OBS networks. We evaluate HS-RR-TCP over
an OBS network under a number of different scenarios
with load-balanced routing and then compare HS-RR-TCP
to source ordering. The load-balanced routing has two
fixed paths and the path chosen is the path with the least
congestion. First, we vary the delay differential between
the primary and alternate path. Next we evaluate HS-RR-
TCP with different burst sizes. After that we examine the
impact of loss on HS-RR-TCP. Then we analyze the impact
of the load-balancing parameters (ρ and τ). We also find
the optimal histogram history length used to determine
how long samples are kept in the histogram, and the
optimal FA ratio. We then compare HS-RR-TCP with the
previously proposed source ordering approach. We use a
simple topology to make understanding the performance
of HS-RR-TCP easier and to save time running simulations.
We also run HS-RR-TCP over NSFnet, which we will briefly
discuss at the end of the simulation section.

122 N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128
 9 10 20 30 40

Simulation
Model

 110

 120

 130

 140

 150

 160

 170

8 50
Delay Differential (ms)

D
el

ay
 (

s)

 100

 180

 9 10 20 30 40

Simulation
Model

D
el

ay
 (

s)

 110

 120

 130

 140

 150

 160

 170

 100

 180

Delay Differential (ms)

8 50

(a) Verification of TCP SACK delay model. (b) Verification of RR-TCP with 100% FA ratio delay model.

Fig. 4. Verification of analytical model.
Fig. 5. Simulation topology.

The topology used in the simulations is shown in
Fig. 5. We have an access network consisting of 10 nodes
connected to the OBS ingress node, node A. Each access
node has a TCP flow sending to the corresponding node on
the right side. The electronic nodes are numberedwhile the
OBS nodes use letters. The primary path in the network is
A–B–D–E–F while the alternate path is A–B–C–E–F.

All TCP flows use the High Speed TCP window increase
and decrease functionality [14] with SACK which we refer
to as HS-RR-TCP and HS-TCP-SACK for TCP with and
without the RR-TCP algorithms, respectively. Each flow
sends a 1 GB file using FTP, which ensures that the network
reaches steady state. The network uses load balancing
between the twopaths in the core. The τ parameter is set to
500ms and ρmax is set to 5%. This means that every 500ms
the path will change if the congestion on the current path
exceeds 5%.

For HS-RR-TCP, we use the DSACK-TA algorithm, which
both dynamically increases dupthresh and decreases it for
timeout avoidance. The default parameters are as follows:
HS-RR-TCP uses an 80 s histogram history for keeping
samples in the histogram, the max burst size is 100 kB,
the BAT is 10 ms, the delay differential, δ, is 50 ms, the FA
ratio is 90%, and there is no loss. Each of these parameters
(except BAT) will be varied in the following subsections
while analyzing the performance of HS-RR-TCP.

5.2.1. Performance with varying delay differential (δ)
In the first set of simulations we vary the delay

differential between the primary and alternate path. There
is no loss for these simulations. The results are shown in
Fig. 6.

From Fig. 6(a) we observe that even a difference of
1 ms in the alternate paths results in reordering. HS-RR-
TCP is able to adjust dupthresh to account for the reordering
but HS-TCP-SACK experiences false fast retransmissions
whenever reordering occurs, resulting in much higher
completion times. Fig. 6(b) shows that each of the 10 flows
of HS-RR-TCP experiences a single false fast retransmit
and then adjusts their dupthresh value so as to avoid the
rest, while HS-TCP-SACK experience false fast retransmits
repeatedly. In the case of no loss, we observe up to an 300%
improvement in average completion time.

In Fig. 6(c) shows the average value of TCP’s dupthresh.
We observe that as the delay differential increases, larger
and larger reorderings, leading to larger dupthresh values,
occur. Note, this is with no actual loss, so dupthresh is never
decreased. We will look at the scenario with loss in the
following subsections.

5.2.2. Performance with varying burst size
In this section, we briefly analyze the affects of burst

size on reordering. In Fig. 7(a) we plot the completion
timewhile varying themaximum burst size. The burst size
has little affect on HS-RR-TCP but does have an affect on
normal HS-TCP-SACK. From Fig. 7(b), there is a decrease
in the number of false fast retransmits experienced by HS-
TCP-SACKas the burst size increases. This is simply because
as the bursts get bigger, more data is able to be sent on the
same path instead of getting split onto different paths.

5.2.3. Performance with varying loss levels
In this section we analyze the affects of random loss in

the OBS core on HS-RR-TCP’s performance. Fig. 8(a) shows
the average completion time for HS-TCP-SACK and HS-
RR-TCP. We can see that for low loss probability there is
a significant increase in performance, up to 300%, but as
loss probability increases, there is little gain. This is due
to two fundamental reasons. First, because of real loss, the
dupthresh value is being decreased, and second, because of
real loss path-switching does not happen as frequently at
higher loss probabilities because we only have TCP traffic
in the network which reduces its send rate with loss.

N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128 123
 1 2 3 4 5 6 7 8 9 10
 20

 30
 400 50

Path Delay Differential (ms)

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

 60

 280
HS-TCP with SACK

HS-RR-TCP

 1 2 3 4 5 6 7 8 9 10
 20

 30
 400 50

Path Delay Differential (ms)

 10

 100

T
ot

al
 N

um
be

r
of

 F
as

t R
et

ra
ns

m
its

1

 1000
HS-TCP with SACK

HS-RR-TCP

(a) Average file transfer completion time. (b) Total number of fast retransmits across all flows.

 1 2 3 4 5 6 7 8 9 10
 20

 30
 400 50

Path Delay Differential (ms)

 10

 100

 1000

A
ve

ra
ge

 d
up

th
re

sh
 (

pa
ck

et
s)

1

 10000
HS-TCP with SACK

HS-RR-TCP

(c) Dupthresh for varying delay differentials.

Fig. 6. Comparison of performance of FTP file transfers, each of the 10 TCP flows sending a 1 GB file, with varying delay differential.
The interesting point on this graph is the performance
at 0.001 loss probability. This is the last point where there
is still reordering in the network, at higher loss probabili-
ties there is not enough TCP traffic to cause reordering (we
note here that even at high loss without reordering HS-RR-
TCP does not hurt performance). There is a 60 s difference
in completion time, or about a 6% improvement. Fig. 8(c)
shows that only HS-RR-TCP has timeouts at this level of
loss. This is because the increase in dupthresh is causing
timeouts. The loss is not high enough to cause timeouts
with HS-TCP until 0.01 loss. At the same time, in Fig. 8(b)
for loss of 0.001 we can see that it is still reducing the total
number of fast retransmissions. There are 330 fewer fast
retransmissions and 77 more timeouts using HS-RR-TCP
compared to HS-TCP-SACK at 0.001 loss. According to HS-
RR-TCP’s cost functions, it decides to keep TCP’s dupthresh
value high even though it is causing some timeouts. Look-
ing at Fig. 8(d)we can see that once the loss gets higher, the
dupthresh is reduced. HS-RR-TCP’s cost function is working
properly here because even though HS-RR-TCP is causing
timeouts, it still has slightly better performance than HS-
TCP-SACK.

We also note thatwhenwe introduced loss in the access
network, we obtained similar results (not shown due to
space limitations).
5.2.4. Performance with varying ρmax values
In this section we analyze the performance impact of

the frequency of reordering. We do this by modifying the
ρmax parameter to the load balancing algorithm, which de-
termines when a link is congested and therefore switches
paths. Fig. 9(a) shows the performance of HS-TCP-SACK
varying both the burst size and the ρmax parameter. From
the figure we can see that as ρmax increases, performance
is also increased. This is because with higher ρmax values,
there are fewer path switches and therefore less reorder-
ings. The maximum traffic into the OBS network is 1 Gbps
(10 Mbps × 100 Mbps) and with a maximum capacity of
8 Gbps, the ρmax value of 0.13 represents the best case per-
formance with no reordering (no load-balancing).

Fig. 9(b) shows HS-RR-TCP’s performance with varying
ρmax values. There is only a small increase in completion
time given the different ρmax values. The largest difference
occurs at a maximum burst size of 100 kB with about a 4 s
difference between the ρmax values at opposite ends, while
at the same time for HS-TCP-SACK there is an almost 190 s
difference. Clearly, HS-RR-TCP obtains close to optimal
performance.

HS-RR-TCP and HS-TCP-SACK have the same comple-
tion times at ρmax = 0.13 (about 79.5 s), so HS-RR-TCP

124 N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128
 100

 150

 200

 250

 300

 200000

 300000

 400000

 500000

 600000

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

 100000

 700000

Maximum Burst Size (in bytes)

HS-TCP with SACK
HS-RR-TCP

 200000

 300000

 400000

 500000

 600000

T
ot

al
 N

um
be

r
of

 F
as

t R
et

ra
ns

m
its

1

 10

 100

 1000

 100000

 700000

Maximum Burst Size (in bytes)

HS-TCP with SACK
HS-RR-TCP

(a) Average file transfer completion time. (b) Total number of fast retransmits across all flows.

Fig. 7. Comparison of performance of FTP file transfers, each of the 10 flows sending a 1 GB file, with varying max burst sizes.
does not hurt performance when there is no load balanc-
ing. We can also see that with HS-RR-TCP, burst size has
little affect on performance.

5.2.5. Performance with varying τ values
The τ value is a parameter used for load-balancing that

determines how often the path congestion is calculated.
In our simulations we set this value to 500 ms. We ran
simulations to vary this parameter. Fig. 12(a) shows the
average completion time. With a smaller τ value, the path
is changed more often leading to more path switches and
more reorderings,which increases completion time forHS-
TCP-SACK and also causes more fast retransmissions as
seen in 12(b). HS-RR-TCP is unaffected by the changing τ
values. At smaller τ values, HS-RR-TCP is over 400% faster
than HS-TCP-SACK.

5.2.6. Performance with varying histogram history lengths
and FA ratios

In the previous subsections we have used the 90th
percentile for the FA ratio and we also let samples stay in
the histogram for 80 s. In this section we show the results
of trying different values at varying loss levels since loss
has a significant impact on HS-RR-TCP’s performance.

We compare the parameter at the loss probability
0.001. At lower and no loss all of the different parameter
settings performed very similarly and at higher loss there
is little or no reordering.

Fig. 10 compares the HS-RR-TCP parameters for history
and FA ratio at 0.001 loss. From Fig. 10(a) it is clear that the
90th percentile and a longer history outperform the other
combinations. This is the combinationwhere the dupthresh
value raises from the default, as shown in Fig. 10(c).
Because of the large amount of time it stores history and
the high percentile, it is able to increase dupthresh even
though there are fewer reorderings due to higher loss.

This higher dupthresh, while reducing fast retransmis-
sions as seen in Fig. 10(b) also increases timeouts as seen
in Fig. 10(d). We note that the single point for 10% FA ra-
tio in Fig. 10(d) at 80 s history was caused by a small spike
in dupthresh for some flows. This small spike was lost in
the averaging of results, however, so it appears dupthresh
remained constant in Fig. 10(c). We saw this behavior
of decreased fast retransmission and increased timeouts
previously in Section 5.2.3. Even though there are more
timeouts, the difference between number of fast retrans-
missions is greater than the number of timeouts, so perfor-
mance is still better. The cost function is working properly.

From these results, we conclude that a larger history,
80 s, and a higher FA ratio, 90%, are optimal values.

5.2.7. Comparison of HS-RR-TCP and source ordering
In this section we include source ordering in our results

for varying delta and loss to compare the performance
of HS-RR-TCP and source ordering. Fig. 11(a) shows that
there is very little improvement using OBS-layer source
ordering instead of HS-RR-TCP. The difference increases
slightly as the delay differential increases, but at δ = 50ms
there is only a difference of a few seconds, and path
delay differentials greater than this are not realistic. From
Fig. 11(b) we observe no false fast retransmits experienced
using source ordering and only one for each flow for HS-
RR-TCP.

We also ran source ordering simulations for varying
loss levels, the results are shown in Fig. 13. Fig. 13(a)
shows that source ordering performs similar to HS-RR-
TCP at low loss but then performs the same as HS-TCP-
SACK at higher loss values. At higher loss there is very little
reordering so the two mechanisms described to prevent it
have little affect. At 0.001 and 0.01 loss source ordering
actually performs worse than HS-TCP-SACK. This may be
because that with the lack of reordering the simulations
without source ordering are sending on the primary path
with shorter delaywhile source ordering is always sending
data over a path with longer delay (either the longer path
or the shorter path plus buffering). Fig. 13(b) shows a
very similar number of fast retransmission between source
ordering and HS-TCP-SACK at higher loss indicating the
performance difference is because of the extra δ used for
buffering with source ordering.

From these results, we can see that source ordering
provides limited benefit compared to HS-RR-TCP. Source
ordering requires adding electronic buffers at the ingress
nodes while HS-RR-TCP is a transport layer mechanism

N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128 125
 1e-05

 0.0001

 0.001

 0.01

Loss Probability

 10

 100

 1000

 10000
A

ve
ra

ge
 F

ile
 T

ra
ns

fe
r

C
om

pl
et

io
n

T
im

e
(s

ec
on

ds
)

HS-TCP with SACK
HS-RR-TCP

 10

 100

 1000

 10000

 100000

 1e-05

 0.0001

 0.001

 0.01

Loss Probability

To
ta

l N
um

be
r

of
 F

as
t R

et
ra

ns
m

its

HS-TCP with SACK
HS-RR-TCP

(a) Average file transfer completion time. (b) Total number of fast retransmits across all flows.

 1e-05

 0.0001

 0.001

 0.01

Loss Probability

 10

 100

 1000

 10000

To
ta

l N
um

be
r

of
 T

im
eo

ut
s

HS-TCP with SACK
HS-RR-TCP

 1

 10

 100

 1000

 10000

 1e-05

 0.0001

 0.001

 0.01

Loss Probability

A
ve

ra
ge

 d
up

th
re

sh
 (

pa
ck

et
s)

HS-TCP with SACK
HS-RR-TCP

(c) Total number of timeouts across all flows. (d) Average dupthresh value across all flows.

Fig. 8. Comparison of performance of FTP file transfers, each of the 10 flows sending a 1 GB file, with random contentions.
A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

)

M
ax

 B
ur

st
 S

iz
e

(b
yt

es
)

ρmax

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

e
(s

)

M
ax

 B
ur

st
 S

ize
 (b

yt
es

)

ρmax

(a) HS-TCP-SACK with varying ρmax values. (b) HS-RR-TCP with varying ρmax values.

Fig. 9. Comparison of HS-RR-TCP and HS-TCP-SACK for varying burst sizes and ρmax values.
that modifies the SACK extension and does not increase
asymptotic computation or storage complexity of SACK.
Resolving reordering using HS-RR-TCP seems to be a better
choice.

5.2.8. HS-RR-TCP over NSFnet
The previous simulations are run over a simple net-

work in order to be able to precisely analyze the results
and make conclusions about HS-RR-TCP’s performance. In
this subsection we briefly provide results obtained from
running HS-RR-TCP over a more complicated topology
with background traffic. We used the 14-node NSFnet
(Fig. 14, distances in km)with background Pareto UDP traf-
fic between all source-destination pairs. Each UDP source
has an average send rate of 15 Mbps and a Hurst pa-
rameter of 0.75. Each link in the network has two data

126 N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128
 10
 20

10%
50%
90%

 560

 580

 600

 620

 640

 660

 680

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

 540

 700

1 80
Histogram History (s)

 10
 20

10%
50%
90%

1 80
Histogram History (s)

 600

 700

 800

 900

 1000

T
ot

al
 N

um
be

r
of

 F
as

t R
et

ra
ns

m
its

 500

 1100

(a) Average file transfer completion time. (b) Total number of fast retransmits across all flows.

 10
 20

10%
50%
90%

1 80
Histogram History (s)

 10

 100

A
ve

ra
ge

 d
up

th
re

sh
 (

pa
ck

et
s)

1

 1000

 10
 20

10%
50%
90%

 10

T
ot

al
 N

um
be

r
of

 T
im

eo
ut

s

1

 100

1 80

Histogram History (s)

(c) Average dupthresh value. (d) Total number of timeouts across all flows.

Fig. 10. Comparing HS-RR-TCP performance with varying FA ratio and history at 0.001 loss.
 1 2 3 4 5 6 7 8 9 10
 20

 30
 400 50

Path Delay Differential (ms)

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

 60

 280
HS-TCP with SACK

Source Ordering
HS-RR-TCP

 1 2 3 4 5 6 7 8 9 10
 20

 30
 400 50

Path Delay Differential (ms)

 10

 100

T
ot

al
 N

um
be

r
of

 F
as

t R
et

ra
ns

m
its

1

 1000
HS-TCP with SACK

Source Ordering
HS-RR-TCP

(a) Average file transfer completion time. (b) Total number of fast retransmits across all flows.

Fig. 11. Comparison of HS-RR-TCP and source ordering with varying δ.
channels operating at 1 Gbps each. The maximum burst
size is 100 kB and the timer-threshold is 2 ms. We set
τ = 300 ms and ρ = 5%. We ran simulations for three
scenarios: no load-balancing with HS-TCP, load-balancing
withHS-TCP, and load-balancingwithHS-RR-TCP. For each
scenario, there are eight source–destination pairs {(0, 4),
(1, 5), (3, 9), (5, 7), (6, 13), (1, 12), (8, 0), (12, 8)} with
five TCP flows each sending 100 MB files for a total of 40
TCP flows. With load-balancing enabled, each of the eight
pairs has a primary and alternate path. The delay differ-
ential between the two paths varies from 0.5 to 19 ms for
different source–destination pairs.

We observe the following average completion times
across all flows for the different scenarios: 177 s for no

N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128 127
 0.1
 0.3

 0.2
 0.05

 0.4

τ (seconds)

 100

 150

 200

 250

 300

 350

 400

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

 50

 450
HS-TCP with SACK

HS-RR-TCP

 0.1
 0.2

 0.3
 0.05

 0.4

τ (seconds)

 10

 100

T
ot

al
 N

um
be

r
of

 F
as

t R
et

ra
ns

m
its

1

 1000
HS-TCP with SACK

HS-RR-TCP

(a) Average file transfer completion time. (b) Total number of fast retransmits across all flows.

Fig. 12. Comparison of performance of FTP file transfers, each of the 10 TCP flows sending a 1 GB file, with varying τ .
load-balancingwithHS-TCP, 174 swith load-balancing and
HS-TCP, and 142 s for load-balancing and HS-RR-TCP. We
can see that introducing RR-TCP increases performance by
an average of 20%.

6. Discussion

In this sectionwewill briefly discuss our overall results.
We have shown that HS-RR-TCP works well regardless
of the delay differential (Fig. 6) and the amount of path
switching that occurs (Fig. 9). We have shown that HS-RR-
TCP always has performance at least as good as traditional
HS-TCP regardless of the level of loss in thenetwork (Fig. 8).
We found good values for HS-RR-TCP specific parameters
of FA and the histogram length (Fig. 10). We show HS-
RR-TCP performs very similarly to the OBS-layer source
ordering technique (Figs. 11 and 13). Lastly, we show
that HS-RR-TCP performs well on more generic networks.
We note there is a large performance difference between
the simpler network and NSFnet. In the simpler scenarios
(topology of Fig. 5) the large performance improvements
resulted from there being very little or no TCP loss
with burst reordering. We showed that with loss, the
performance improvement is not as large. This is the case
for NSFnet. We have actual TCP loss which limits the
performance improvement gained by HS-RR-TCP. HS-RR-
TCP performs the best with low TCP burst loss and burst
reordering.

While we show that HS-RR-TCP performs well for
load-balanced OBS networks, it is also applicable in other
scenarios as well. We have shown HS-RR-TCP works well
for a wide range of delay differentials and path switching
frequency. This implies that any network that employs
load balancing which may cause packet reordering can
benefit from the use of HS-RR-TCP. This may include
IP networks using MPLS traffic engineering functionality,
or optical circuit switched networks using OSPF-TE, for
example.

The main focus of this paper was to show that HS-RR-
TCP works well for a range of load-balancing parameters.
We did not discuss the selection of good ρmax or τ values
for overall network performance. For a detailed discussion
of the selection of these parameters, we refer reads to
our previous work [9]. The work in [9] does not consider
TCP performance, but as we have shown HS-RR-TCP works
well regardless of the load-balancing parameter settings,
so the values recommended in our previous work can be
recommended here as well.

7. Conclusion

Load-balanced routing is a well-known loss minimiza-
tion technique for OBS networks. Path switching causes
persistent packet reordering that negatively affects the
higher-layer TCP performance. We have presented an an-
alytical end-to-end transfer delay model for TCP SACK and
RR-TCP over a load-balanced OBS network. Themodel con-
firms TCP SACK’s poor performance with persistent packet
reordering. Based on extensive simulation results, we ver-
ified the analytical model and observed the benefits of
RR-TCP mechanism under packet reordering in the load-
balanced OBS network.

HS-RR-TCP showed significant improvement compared
to HS-TCP with SACK, up to 300% under ideal scenarios
and 20% in realistic scenarios with a complex network
and background traffic. HS-RR-TCP successfully reduced
the number of FFRs caused by packet reordering. The
fundamental advantage of RR-TCP is that this solution
does not require any changes to the OBS core, since it
is a TCP layer modification, unlike an approach like source
ordering that requires OBS layer modifications and also
buffering. We also found that even very small delay
differentials caused reordering which drastically impacted
TCP’s performance when HS-RR-TCP was not used.

Appendix. Calculating P

The following determines the number of rounds, P , in
slow start. Let T be the slow-start threshold, in packets.

P = min{p : 20
+ 21

+ · · · + 2p−1
≥ T },

= min{p : 2p
− 1 ≥ T },

= min{p : p ≥ log2(T + 1)},
= ⌈log2(T + 1)⌉.

128 N. Charbonneau, V.M. Vokkarane / Optical Switching and Networking 8 (2011) 116–128
 0.0001

 0.001

 0.01

HS-TCP with SACK
Source Ordering

HS-RR-TCP

 1e-05

 0.05

 100

 1000

 10000

Loss Probability

A
ve

ra
ge

 F
ile

 T
ra

ns
fe

r
C

om
pl

et
io

n
T

im
e

(s
ec

on
ds

)

 10

 100000

 0.0001

 0.001

 0.01

HS-TCP with SACK
Source Ordering

HS-RR-TCP

 100

 1000

 10000

T
ot

al
 N

um
be

r
of

 F
as

t R
et

ra
ns

m
its

 10

 100000

 1e-05

 0.05

Loss Probability

(a) Average file transfer completion time. (b) Total number of fast retransmits across all flows.

 0.0001

 0.001

 0.01

HS-TCP with SACK
Source Ordering

HS-RR-TCP

 100

 1000

 10000

 100000

T
ot

al
 N

um
be

r
of

 T
im

eo
ut

s

 10

 1e+06

 1e-05

 0.05

Loss Probability

(c) Total number of timeouts across all flows.

Fig. 13. Comparison of HS-RR-TCP and source ordering with varying loss.
Fig. 14. NSFnet simulation topology.

References

[1] J. Jue, V. Vokkarane, Optical Burst Switched Networks, Springer,
2005.

[2] C. Qiao, M. Yoo, Optical burst switching (OBS)—a new paradigm for
an optical Internet, Journal of High Speed Networks 8 (1) (1999)
69–84.

[3] I. Stoica, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: a
scalable peer-to-peer lookup protocol for Internet applications, in:
Proceedings of ACM SIGCOMM, 2001.

[4] K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy, J.
Zahorjan, Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload, in: ACM SIGMETRICS, 2003.

[5] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid:
enabling scalable virtual organizations, International Journal of High
Performance Computing Applications 15 (2004) 200–222.
[6] A. Detti, M. Listanti, Impact of segments aggregation on TCP Reno
flows in optical burst switching networks, in: Proceedings, IEEE
INFOCOM, 2002.

[7] S. Yao, B. Mukherjee, S.J.B. Yoo, S. Dixit, A unified study of con-
tention–resolution schemes in optical packet-switched networks,
in: IEEE/OSA JLT, 2003.

[8] V.M. Vokkarane, J.P. Jue, Burst segmentation: an approach for
reducing packet loss in optical burst switched networks, SPIE Optical
Networks Magazine 4 (6) (2003) 81–89.

[9] G. Thodime, V.M. Vokkarane, J.P. Jue, Dynamic congestion-based
load balanced routing in optical burst-switched networks, in:
Proceedings, IEEE GLOBECOM, vol. 5, 2003, pp. 2694–2698.

[10] J. Li, M. Gurusamy, K. Chua, Load balancing using adaptive alternate
routing in IP-over-WDM optical burst switching networks, in: SPIE
OptiComm, vol. 5285, 2003, pp. 336–345.

[11] L. Yang, G. Rouskas, Adaptive path selection in OBS networks,
IEEE/OSA Journal of Lightwave Technology 24 (8) (2006) 3002–3011.

[12] B. Komatireddy, N. Charbonneau, V.M. Vokkarane, Source-ordering
for improved TCP performance over load-balanced optical burst-
switched (OBS) networks, PhotonicNetwork Communications 19 (1)
(2010).

[13] M. Zhang, B. Karp, S. Floyd, L. Peterson, RR-TCP: a reordering-robust
TCP with DSACK, in: Proceedings, IEEE International Conference on
Networking Protocols, ICNP 2003, 2003, pp. 95–106.

[14] S. Floyd, Highspeed TCP for large congestion windows, RFC 3649.
URL: http://www.ietf.org/rfc/rfc3649.txt (December 2003).

[15] J. Kurose, K. Ross, Computer Networking: A Top Down Approach
Featuring the Internet, Addison-Wesley Longman, 2005.

[16] V.M. Vokkarane, Intermediate-node-initiation (INI): a generalized
signaling framework for optical burst-switched networks, Elsevier
Optical Switching and Networking (OSN) 4 (2007) 20–32.

[17] OBS-NS simulator: http://wine.icu.ac.kr/~obsns/index.php.

http://www.ietf.org/rfc/rfc3649.txt
http://wine.icu.ac.kr/~obsns/index.php

	Performance modeling of HS-RR-TCP over load-balanced optical burst-switched (OBS) networks
	Introduction
	TCP over load-balanced OBS
	RR-TCP
	RR-TCP algorithm
	Illustration

	Analytical modeling
	TCP SACK modeling
	RR-TCP delay modeling

	Numerical results
	Analytical model verification
	Simulation results
	Performance with varying delay differential (δ)
	Performance with varying burst size
	Performance with varying loss levels
	Performance with varying ρmax values
	Performance with varying τ values
	Performance with varying histogram history lengths and FA ratios
	Comparison of HS-RR-TCP and source ordering
	HS-RR-TCP over NSFnet

	Discussion
	Conclusion
	Calculating P
	References

