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TCP Over Optical Burst Switching:
To Split or Not to Split?
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Abstract—TCP-based applications account for a majority of
data traffic in the Internet; thus, understanding and improving the
performance of TCP over optical burst switching (OBS) network
is critical. In this paper, we identify the ill effects of implementing
TCP over a hybrid network (IP-access and OBS-core). We propose
a Split-TCP framework for the hybrid IP-OBS network to im-
prove TCP performance. We propose two Split-TCP approaches,
namely, 1:1:1 and � � � . We evaluate the performance
of the proposed approaches over an IP-OBS hybrid network.
Based on the simulation results, � � � Split-TCP approach
outperforms all other approaches. We also develop an analytical
model for end-to-end Split-TCP throughput and verify it with
simulations.

Index Terms—IP, OBS, TCP, WDM.

I. INTRODUCTION

T HE next-generation high-speed optical Internet will be re-
quired to support a broad range of emerging applications

that may not only require significant bandwidth but also have
strict requirements with respect to end-to-end delay and relia-
bility of transmitted data.

Optical burst switching (OBS) is one of the promising data
transport paradigms for supporting the next-generation optical
Internet. In OBS, data to be transmitted is assembled into bursts
and is switched through the network optically [1]. Each burst
has an associated control packet called the burst header packet
(BHP), and the BHP is sent ahead of time in order to con-
figure the switches along the burst’s route. In OBS networks,
apart from the data channels, each link has one or more con-
trol channels to transmit BHPs. BHPs carry information about
the corresponding burst, such as source, destination, burst dura-
tion, and offset time. Offset time is the time by which the burst
and BHP are separated at the source and at subsequent inter-
mediate nodes. The offset time allows BHP to be electronically
processed ahead of time at each intermediate node before the
corresponding burst arrives. Just-enough-time (JET) is one such
one-way based OBS signaling technique [2]. In this paper, we
adopt JET mechanism.
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The primary issue in the OBS core network is contention res-
olution, since core nodes do not have electronic buffers. Con-
tention occurs when two or more bursts contend for the same
output port at the same time. There are several contention res-
olution (or loss minimization) techniques, such as fiber delay
lines [3], wavelength conversion [4], deflection routing [5], and
segmentation [6]. These loss minimization techniques are reac-
tive in nature since they try to resolve the contention when it
occurs. An alternative to loss minimization is to implement loss
recovery techniques, such as cloning [7] and retransmission [8].
In this paper, we consider a bufferless OBS data plane.

There is a tremendous need to support reliable connection-
oriented end-to-end transport service for supporting new appli-
cations, such as Grid computing [9]. In the recent years, TCP-
based applications, such as Web (HTTP), e-mail (SMTP), and
peer-to-peer (P2P) file sharing [10], account for a majority of
data traffic in the Internet; thus, understanding and improving
the performance of TCP implementations over OBS networks
is critical. The popular TCP flavors are TCP Tahoe [11], TCP
Reno [12], [13], TCP New-Reno [14], and TCP SACK [15].
The fundamental assumption in all these TCP flavors is that
the underlying medium is electronic and that the packets ex-
perience queuing (buffering) delay due to congestion at the IP
routers. Over the years, TCP has undergone significant changes
in terms of congestion control mechanisms and handling issues
concerning the need for high bandwidth at the presence of high
end-to-end delay between the sender and the receiver [16]. Pri-
marily most of the TCP flavors differ in their implementation
of congestion-control protocol. TCP SACK uses packet loss as
a congestion-control technique to determine the send rate into
the network. TCP SACK implements congestion control using
time-out (TO) and fast-retransmission (FR) mechanisms [15].
HS-TCP is a new congestion control algorithm for high band-
width flows [17]. HS-TCP is more aggressive than traditional
TCP when the congestion window size is high. HS-TCP uses
a modified TCP response function, but it has the same slow
start/TO behavior as standard TCP. We have implemented both
the Baseline-TCP and Split-TCP framework using HS-TCP.

In OBS, due to the bufferless nature of the core network
and the one-way JET signaling, the network will suffer from
random burst losses even at low traffic loads. One problem that
arises when TCP traffic traverses over OBS networks is that the
random burst loss may be falsely interpreted as network con-
gestion by the TCP layer. For example, if a burst that contains
all of the segments of a TCP sender’s window is dropped due to
contention at a low traffic load, then the TCP sender times out,
leading to false congestion detection that is referred to as a false
time-out (FTO) [18]. When the TCP sender detects this (false)
congestion, it will trigger slow start, resulting in significantly
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reduced TCP throughput. Another example is when a random
burst loss triggers, TCP FR for the case in which segments in a
TCP sender’s window are assembled into multiple bursts. The
random burst loss in OBS will be interpreted as light conges-
tion, leading to one or more TCP-layer false fast retransmission
(FFR). Recently, few works have evaluated TCP throughput
over an OBS network [19]–[21]. However, these works assume
a constant random burst loss probability in the OBS network and
do not take into account TCP false congestion detection.

A similar problem is observed while using TCP connection
over a wired-cum-wireless network. A Split-TCP framework
was proposed [22] and significant improvement in the overall
end-to-end throughput was observed. There have also been
several research works for improving TCP throughput over
wireless networks using forward error correction (FEC) and
retransmissions (ARQ) [23], [24]. TCP performance degrades
when end-to-end connections extend over wireless connec-
tions as the TCP sender assumes random wireless losses
to be congestion losses resulting in unnecessary congestion
control actions. The authors in [24] propose and evaluate the
performance of wireless-aware TCP under different settings.
There have been several works on split-connection-based TCP
versions, such as indirect TCP [25], selective repeat protocol
(SRP) [26], mobile-TCP [27], and mobile-end transport pro-
tocol [28]. The end-to-end TCP flow is split into multiple
TCP flow segments and each flow segment is managed in
coordination to the adjoining segment. There are other novel
mechanisms proposed to improve Wireless-TCP performance,
such as using parallel TCP flows [29], [30] and using explicit
congestion notification [31]. In Split-TCP framework for
wireless networks, the base station works as a proxy between
sender and the mobile host. Retransmission of lost packets is
done by the base station that contains the traces of every TCP
flow passing through it.

The primary contribution of this work is the introduction
of Split-TCP over a hybrid IP-OBS networks. We isolate the
impact of different physical media on the TCP congestion
control algorithms by splitting an end-to-end TCP connection
into three shorter TCP connections. The TCP/OBS connection
handles FFRs and FTOs locally without affecting the adjacent
TCP/IP connection at the sender. We also develop a new an-
alytical model to calculate end-to-end TCP throughput using
the proposed Split-TCP framework. We quantify the overall
gain in performance due to the Split-TCP framework through
extensive simulations and analytical modeling.

In this paper, we evaluate the concept of Split-TCP over a
hybrid IP-OBS network. Though the issues in IP-OBS network
are very different from wired-cum-wired networks, we believe
that with certain modifications Split-TCP framework over
IP-OBS network may yield significant performance benefits.
The remainder of the paper is organized as follows. Section II
describes the proposed Split-TCP framework in order to
improve TCP performance over the hybrid (electro-optical)
network. Section III discusses the issue of signaling of TCP
over a hybrid network (IP-OBS). In Section IV, we model
the average end-to-end throughput of Split-TCP. Section V
discusses the simulation results, and Section VI concludes the
paper and discusses potential areas of future work.

II. SPLIT-TCP FRAMEWORK

The next-generation optical Internet will be composed of hy-
brid networks, i.e., a combination of IP-access networks and
OBS-core networks. In a typical hybrid network, two important
phenomenon are observed:

1) IP-access network is the bottleneck link for the end-to-end
TCP flow resulting in restricting the end-to-end
throughput. Also, we know that as the round-trip delay be-
tween the sender–receiver pair increases, TCP throughput
decreases.

2) When data is transmitted all-optically (no buffering) over
the OBS core network, packet loss is primarily due to
random burst contentions and not due to router buffer
overflows (as is the case of IP-network). In the event of a
random loss, the TCP sender at the end host reduces its
send rate and starts its congestion control mechanism, even
though packet loss was due to a random burst contention.

In order to solve the previously mentioned issues of TCP run-
ning over a hybrid network, we propose employing a Split-TCP
framework. In the Split-TCP framework (refer Fig. 1), a single
end-to-end TCP flow is divided into three independent TCP
flows. One from the sending host to the optical ingress node
(over the ingress IP-access), another TCP connection over the
optical core, and the last connection from the optical egress node
to the original destination host (over the egress IP-access). By
doing so, we can isolate burst contention losses over the OBS
network from the IP-access networks. Also, we can implement
different TCP flavors specific to each network segment that can
help to boost end-to-end throughput. In this paper, we propose
two approaches for implementing the Split-TCP architecture,
namely, 1:1:1 and . In the 1:1:1 Split-TCP approach,
each end-to-end TCP flow that spans over the IP-OBS-IP net-
work is split into three Split-TCP connections, source host to
OBS ingress, OBS ingress to OBS-egress, and OBS egress to
destination host. There is a one-to-one mapping between the
ingress IP-access TCP flow, the OBS-core TCP flow, and the
egress IP-access TCP flow. In the Split-TCP ap-
proach, each end-to-end TCP flow that spans over IP-OBS-IP
network is also split into three Split-TCP connections, and there
is an N:1 mapping between the ingress IP-access TCP flows and
the OBS-core TCP flow and a 1:N mapping from the OBS-core
TCP flow and the egress IP-access TCP flows. In order to fa-
cilitate this, 1:1:1 Split-TCP approach uses nonpersistent TCP
flows and Split-TCP approach uses a persistent
TCP flow over the OBS-core. Fig. 1 depicts the Split-TCP flow
setup for both 1:1:1 and approaches over a simple
hybrid (IP-OBS-IP) network. In a conventional TCP scenario,
we would have had ten end-to-end TCP flows, one each from
Node 0–Node 12 (TCP 0 flow), Node 1–Node 13 (TCP 1 flow),
and so on (refer Table I, Columns 1–2). We refer to the conven-
tional TCP approach as Baseline-TCP and compare the perfor-
mance with different Split-TCP approaches. Fig. 1(a) represents
the 1:1:1 Split-TCP flow setup (refer Table I, Columns 3, 4–6).
Fig. 1(b) represents the Split-TCP flow setup (refer
Table I, Columns 3, 5, 6)

In order to implement the Split-TCP framework, the OBS
edge nodes should act as an interface between the split connec-
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Fig. 1. Split-TCP architecture with TCP flows (a) 1:1:1 and (b) � � � � � .

TABLE I
TCP FLOW SETUP: BASELINE, 1:1:1 SPLIT, AND � � � � � SPLIT

tions. Each of the OBS edge nodes also need to track all the TCP
connections and should have the ability to transfer data packets
from one flow to another. This involves implementing an agent
that handles packet transfer logic between the adjacent TCP flow
segments.

An important area of future work is to investigate different
cache management policies at the end points of each Split-TCP
connection and also investigate QoS-based packet scheduling
algorithms to ensure low queueing delay at each packet cache.

In the proposed Split-TCP framework, we split a single long
end-to-end TCP connection into multiple TCP connections with
shorter round-trip times (RTTs). Due to splitting, each short
connection becomes more responsive to both positive (ACKs)
and negative (loss) events. In the case of a successful ACK being
received by the sender of a Split-TCP connection, the sender
can quickly slide its send window and continue transmission of
new TCP segments. Also, the previously transmitted TCP seg-
ment can now hop on to the next Split-TCP connection (if any)
moving toward the destination host. In the case of loss, the data
has to be retransmitted only from the beginning of the current
Split-TCP connection and not the original TCP sending host.
Also, the Split-TCP architecture helps recover from losses on
different transmission media within the network that incurs the
loss. For example, if a burst is dropped in the OBS-core, the
Split-TCP connection over OBS will be able to recover from
that loss. This leads to improved TCP performance due to the
isolation the loss behavior of OBS (FTO and FFR) from tra-
ditional IP networks. These enhancements result in significant

improvement of end-to-end TCP throughput when compared to
the Baseline-TCP approach.

The advantage of implementing a 1:1:1 Split-TCP approach
is that the split agent’s packet transfer function will be easier to
implement, while in a Split-TCP approach, the BHP
may have to store additional information about the flow map-
ping so as to facilitate the reverse mapping at the OBS egress
node. On the other hand, Split-TCP approach has the
advantage of maintaining a single TCP flow for every pair of
OBS-edge nodes, while 1:1:1 Split-TCP approach has to main-
tain several TCP flows (possibly thousands) leading to increased
overhead at the OBS edge nodes. Split-TCP ap-
proach is expected to outperform all other approaches as it uses
a persistent TCP connection over the OBS core. A persistent
TCP connection can reduce network congestion by minimizing
the number of control packets and reduce the TCP connection
setup latency for subsequent requests (three-way handshake).
In the situation where in we have several long-lived TCP flows,

should perform similar to 1:1:1 Split-TCP. In a real
scenario, for Split-TCP approach, we can have

Split-TCP configuration, where . per-
sistent flows will help to prevent Split-TCP buffer overflows and
will pipeline more packets to the network without waiting one
persistent connection. Moreover, in 1:1:1 Split-TCP approach
there will be multiple TCP flows competing for wavelengths si-
multaneously. This could cause unnecessary contentions at the
OBS-ingress node. By multiplexing several TCP/IP flows on
to a single TCP/OBS flow, we can minimize unnecessary burst
contentions and streamline data transfer.

III. SPLIT-TCP SIGNALING

Coordination between TCP and OBS layers, if implemented
properly, may optimize the network performance. Careful inves-
tigation of the tradeoffs of cross-layer optimization is a critical
factor for the practical adoption of Split-TCP framework. One
key design parameter to be considered is the additional signaling
overhead necessary, and it has to be weighed with respect to the
gain obtained due to coordination of the two layers.

The OBS ingress node acts as the proxy for the destination
while communicating with the source and at the same time
acts as a proxy for the sender while communicating to the
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Fig. 2. Signaling framework for 1:1:1 Split-TCP approach.

destination. The proxy (edge nodes) sends the acknowledgment
to the sender on behalf of destination host; this can be achieved
through acknowledgment spoofing. Once acknowledged, the
custody of the packet is transferred from the source host to the
OBS ingress node. The OBS ingress node is now responsible
for sending the packets to the destination (refer Fig. 2). Each
OBS edge node has to save all the traces of the TCP flows
passing through it, as the node has to handle retransmissions
and out-of-order packets. Isolation of network losses and re-
covery of packets for the Split-TCP approach or the
1:1:1 Split-TCP approach increases the network throughput.
OBS ingress and egress nodes maintain one receiver and one
sender packet queue in the case of 1:1:1 Split-TCP approach.
In the Split-TCP approach, the OBS ingress node
maintains receiver queues and one sender (ingress) queue
and the OBS egress node maintains sender queues and
one receiver (egress) queue. These queues are responsible for
isolating the problems in the IP access from the OBS-core
network and vice versa.

The Split-TCP framework violates the end-to-end semantics
of conventional TCP. Most applications are not sensitive to
end-to-end semantics but some applications based on interactive
communication do rely on the end-to-end flows. In this paper,
we are evaluating the performance benefit of the Split-TCP
framework over OBS networks. Implementation of end-to-end
TCP semantics over the Split-TCP architecture is outside the
scope of this paper. An interesting area of future work is to
implement Snoop [22] or Semi Split-TCP [32] approaches to
address the issue of providing end-to-end semantics over a
Split-TCP architecture. Termination of the Split-TCP flows are
basically same as the conventional TCP termination described
in RFC 793.

In the Split-TCP approach, the split agent com-
bines data from all ingress connections on to a single flow over
OBS network. The egress split agent routes the data packets to
its intended destination. In the following sections, we evaluate
the performance of 1:1:1 and Split-TCP approaches
using analytical modeling and simulations.

IV. SPLIT-TCP: THROUGHPUT MODELING

In this section, we modeled the Split-TCP connection using
the well-known analytical model of TCP [33] to obtain an ap-
proximation for the throughput of three TCP connections in the
series as a function of packet loss probability and the average
RTT. In this modeling, the receiver’s advertised windows size
is assumed to be constant. Our model contains the slow-start
analysis in addition to the Padhye et al. [33] paper. A stochastic
model of TCP congestion control is developed in several steps:
first when loss is indicated by triple duplicate ACKs, then when
loss is indicated by TOs, assuming the receiver’s window re-
mains constant. Most of the notation used in this paper is that
same as in [33]. We model the end-to-end TCP throughput of the
three Split-TCP connections to be the total number of packet re-
ceived at the third connection.

Let denote the duration of the Split-TCP connection in
the slow-start phase of TCP. Let denote the duration
of the triple duplicate period (TDP; last ends with TO) and

denotes the duration of the TO period. A TDP as de-
fined in [33] is a period between two TD loss indications.

The total time required for a packet to be received at the des-
tination is given by

and let to be the total number of packets sent during . If
is an independent identically distributed sequence

of random variables, we have

where is long-term steady-state send rate of TCP connection.
Let be the number of rounds in . Then for the

round in the TD period of interval , we define to be the
number of packets sent in the round of the period,
to be the number of rounds in the period, and to be the
window size at the end of the period. Also, denotes the
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number of packets sent during the TO sequence and
denotes the number of packets sent during slow start

and is defined as

is the number of packet sent during . Now, if we
assume is an independent identically distributed sequence
of random variables, independent of and , where

to be the number of packet sent in the period and
to be the duration of the period, then we have

and

To derive , there are TDPs during and first
TDPs end in a TD while last TDP ends in TO [33]. Then,

we can say that in , there is one TO loss indication out
of loss indications. Let Q represent the probability that the
loss indication ending a TDP is a TO loss indication, so

. Consequently

(1)

Loss Indication Due to Congestion Avoidance and FR: Con-
gestion avoidance behavior is modeled in terms of rounds. A
round starts with the back-to-back transmission of packets,
where is the current size of TCP congestion window. Once
all the packets in the congestion control window have been sent,
no other packet is sent until the first ACK is received for one of
these packets. The receipt of the first ACK marks the end of
the current round and the starting of next round. The duration
of round is equal to the RTT and is assumed to be independent
of the window size. It is also assumed that the time needed to
send all the packets in a window is smaller than the RTT. The
assumption is also made that a packet is lost in a round inde-
pendently of any other packets lost in other rounds. Lets define

as probability that a packet is lost. To derive for (1),
we must first discuss the TDP. Let be the number of packets
that have been transmitted in the period and denotes
the round where this loss occurs. After packet , more
packets are sent in an additional round before the TD period
ends. So, the maximum number of packets sent during the
is , which are sent in the round. It fol-
lows that:

(2)

Let be a sequence of i.i.d random variables. We have
three Split-TCP connections in series; so the probability that
the packet is dropped in the first Split-TCP connection is .

The probability that a packet does not get dropped in the first
connection is . The probability that the packet is suc-
cessful in the third Split-TCP connection between egress node
and the electronic destination host is , and the proba-
bility that the packet is dropped in the third TCP connection is

. The first Split-TCP connection is between the elec-
tronic source node and the ingress node of OBS net-
work. The second Split-TCP connection is between the egress
node of OBS and the electronic destination host B. The
traditional single TCP connection between and is split be-
tween to , to , and to .

The probability that is equal to the probability that
exactly packets are successfully acknowledged before a
loss occurs, hence

(3)
The mean value of is thus

(4)

From (2) and (4), it follows that

(5)

To derive the equation for , we consider the evolution
of as function of rounds. At the beginning of last round, the
window size would be

where is slope for each and every new ACKs for the window
size. As we know, is total number of packet transmitted
during . We can express by

(6)

where is the number of packet sent in the last round. As
and are mutually independent sequence of i.i.d random
variables, we have

(7)

and

(8)
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as . Substituting it in the previous equation gives

(9)

Substituting (9) in (5) gives

(10)
Substituting (10) in (5), we have

(11)

To derive for , let be the duration of the
round of . Hence, the duration of is given by

(12)

Therefore

(13)

is denoted by RTT, which is the average RTT of three
Split-TCP individual RTT. RTT is the total RTT value of third
TCP connection in the series.

(14)
TO and Retransmission: We now obtain an expression for
, which is the probability that the packet is dropped and even-

tually times out in the penultimate round, , and .
denotes probability that the first packets are ACKed

in a round of packets, given there is a sequence of one or more
losses in the round

Also, we have to find the to be the probability that
m packets are ACKed in sequence in the last round (when
packets were sent).

.

TO occurs in the penultimate round if the number of packets
in the window, , is less than or equal to 3. So, is the prob-
ability that a loss in a window of size is a TO given by

(15)
After binomial expansion, we get (16), shown in the equation

at the bottom of the page.
, the probability that a loss indication is a TO, is given by

Therefore, we can approximate

(17)

To derive , we need to find the probability distribution
of the number of TOs in a TO sequence, given that there is a TO.
A sequence of TOs occurs when there are consecutive
losses (first loss is given) followed by a successfully transmitted
packet. Consequently, the number of TOs in a TO sequence has
a geometric distribution, and thus

After reducing the aforementioned equation, we can get

(18)

Next, we derive , which is the average duration of a
TO sequence excluding retransmission. We know that the first
six TOs in one sequence have length , with
all immediately following TOs having length . Then,
the duration of sequence with k TOs is given by

(16)
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Fig. 3. Split-TCP flows over 14-node NSF network.

and the mean of is

(19)

where

and

(20)

Slow-Start Behavior of TCP: The derivation of slow-start
TCP is similar to the derivation of congestion avoidance deriva-
tion as in the Section I.

is the total number of packet sent during the slow start,
so is given by

(21)

Derivation of is the same as the derivation of
and given by

(22)

where

and , which is the average RTT of the three split
connections. In order for the round to start, all the packets
in the round should be transmitted successfully, so in
other words must be transmitted successfully.

For our model, we are considering limitation of the receiver
having a constant receive window size. Let be the window
size of first Split-TCP connection, be the window size of
second Split-TCP connection, and window size of third
Split-TCP connection. Let is the maximum window size.
Therefore, the average end-to-end throughput for Split-TCP
when , , and is
given by (1) by substituting the values from (11), (14), (17),
(18), (19), (20), and (21) to it.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
Split-TCP approaches using both proposed analytical model and
extensive simulations results. All the simulations are performed
using Network Simulator-2.33 (NS-2.33) with the OBS module
(OBS-0.9a) . The simulations were performed over the NSF net-
work consisting of 14 nodes (refer Fig. 3). The small box con-
nected with dotted lines at Node 0 represents the ingress IP-ac-
cess Split-TCP flows (referred as IN) and at Node 13 represents
egress IP-access Split-TCP flows (referred as OUT). The IP-ac-
cess networks have a delay of 100 ms between each source node
and the OBS ingress and a delay of 100 ms between OBS egress
and the destination node. We use a Linux (Fedora) machine with
2 quad core 3 GHz CPUs and 8 GB RAM configuration to run
NS-2 simulations.

For the Split-TCP approach, we have ten
Split-TCP flows over the source IP-access network to the
OBS-ingress, one persistent Split-TCP flow from OBS-ingress
Node 0 to OBS-egress Node 13 and ten Split-TCP flows
over the destination IP-access network. For 1:1:1, we have
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Fig. 4. Average end-to-end Split-TCP throughput using the analytical model.

ten Split-TCP flows from each domain (source IP-access,
OBS-core, and destination IP-access), from Node 0 to Node 13.
We run a variable bit-rate UDP background traffic at 30 Mb/s
between each NSF source–destination pair for all the simu-
lation plots. An FTP traffic generator is used to send a 1 GB
file over the different types of TCP connections. We adopt a
mixed-timer-and-threshold burst assembly mechanism with a
maximum burst size of 1 MB with a timer of 2 ms. The OBS
core implements the LAUC-VF scheduling algorithm [34],
which selects the latest available unscheduled data channel for
each arriving data burst.

We have used the NS-2.33 error model to produce 2% packet
loss probability at both the IN and OUT IP-access networks. The
loss in the OBS-core network is only due to random data burst
contentions. Each core link has 16 data channels at 1 Gb/s. Note
that the Split-TCP framework can be applied to any TCP flavor.
In this paper, we have used TCP HS-TCP for all simulation-
based comparisons. We have compared the TCP performance
for all the proposed approaches with different metrics, such as
average flow completion time, average congestion window size,
average TCP throughput, total number of TOs, and total number
of FRs.

A. Analytical Results

In this section, we verify the analytical model developed in
Section IV. In Fig. 4, we compare the throughput determined
by our expression for a 1:1:1 Split-TCP against the throughput
generated by NS-2.33 for a single TCP connection between the
same end hosts. To make the analysis simple, we assumed fol-
lowing assumptions:

1) The processing time is negligible and there is no packets
loss at the intermediate nodes.

2) The Split-TCP proxy buffers are large enough so as to
avoid packet loss due to buffer overflows.

3) The TCP connection is split in such a way that the RTT
for each of the three Split-TCP connections is one-third
of RTT of longer end-to-end Baseline TCP connection.

4) and for the modeling.
RTT refers to the RTT of the third split connection.

We compute the end-to-end throughput using 1:1:1 Split-TCP
framework for different loss probabilities. When we say loss
probability, we mean the loss probability in each Split-TCP con-
nection. We set the same loss probability value for the IP and

Fig. 5. Completion time of 1 GB file transfer for different contention probabil-
ities using the analytical model.

OBS networks. Hence, the total end-to-end loss probability is
three times the per-split loss probability (as there is loss in each
of the three Split-TCP connections). From the Fig. 4, we can
observe that the simulation results closely match with the ana-
lytical modeling results. Effective TCP throughput decreases as
we increase the loss probability in each Split-TCP connection,
due to increased TOs.

In Fig. 5, we compare the total transmission time required for
a 1 GB file transfer with different contention probabilities using
the model. As the effective loss probability decreases, the file is
able to be transferred in less time. From the figure, we can ob-
serve that when the contention probabilities of each Split-TCP
connection is set to , it takes 84 s to transmit the entire
file. While at loss probability, the completion time using
Split-TCP is about 5000 s.

B. Average Throughput

In Fig. 6, we compare the average TCP throughput between
Baseline-TCP and Split-TCP approaches for a hybrid network.
From the graph, we observe that the Split-TCP approaches
outperform the Baseline-TCP approach. We also observe that
for Split-TCP with burst assembly timer (BAT)
values above 2 ms results in high end-to-end TCP throughput
as compared to Baseline-TCP [Fig. 10(b)]. The improvement
of throughput in each split-connection compared to baseline is
due to the fact that each TCP connection handles the congestion
problem locally without forwarding to the adjacent IP or OBS
network. We observe that the average TCP throughput over
OBS with Split-TCP approaches increase significantly because
of FTO and FFR isolation from the original sender resulting in
the sender injecting more packets in to the network.

C. Average TCP Congestion Window (AWND)

In Fig. 7(a), we compare the average congestion window size
for Baseline-TCP and the 1:1:1 Split-TCP (IN, OBS, and OUT)
flows, and Fig. 7(b) represents the average congestion window
size for the Split-TCP and Baseline-TCP. We ob-
served that for OBS split TCP connection uses
the congestion window aggressively than 1:1:1 with increasing
bat values. It is almost ten times improvement over 1:1:1. The
improvement of OBS congestion window is because

uses persistent TCP connection. Both Split-TCP approaches
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Fig. 6. Average TCP throughput for (a) 10:10:10 Split-TCP (IN, OUT, and OBS) and (b) 10:1:10 Split-TCP (IN, OUT, and OBS).

Fig. 7. Average congestion window size for (a) 10:10:10 Split-TCP (IN, OUT, and OBS) and (b) 10:1:10 Split-TCP (IN, OUT, and OBS).

outperforms Baseline-TCP as it handles FFRs and FTOs locally
(short Split-TCP connection between OBS edge nodes).

D. Average Number of FRs

In Fig. 8(a), we compare the average fast retransmits for
Baseline-TCP and the 1:1:1 Split-TCP (IN, OBS, and OUT)
flows, and Fig. 8(b) represents the same for the
Split-TCP (IN, OBS, and OUT) flows and Baseline-TCP.
Fig. 8(a) shows very few FRs for all the 1:1:1 Split-TCP
flows (IN, OBS, and OUT) compared to Baseline-TCP. From
Fig. 8(b), we observe ten fast retransmits in the case of

Split-TCP for OBS, which indicate random burst
contention loss of ten bursts that were immediately recovered
locally before encountering any TOs at the original sender. The
fewer numbers of FRs for Split-TCP approaches compared to
Baseline-TCP is due to the fact that short Split-TCP connection
handles congestion problem locally without forwarding it to
adjacent split connections.

E. Average Number of TCP TOs

In Fig. 9(a), we compare cumulative number of TCP TOs for
Baseline-TCP and 1:1:1 Split-TCP (IN, OBS, and OUT) flows.

The 1:1:1 Split-TCP flows in IN network encounter few TOs due
to the preset 2% loss probability in the IP-access network. TCP
over OBS network encounters numerous TOs primarily due to
the fact that OBS-core TCP flows are fast flows [19], when we
implement a 1:1:1 Split-TCP approach. The OUT network en-
counters few TOs due to the preset 2% loss probability in the
IP-access network. Fig. 9(b) plots the total number of TCP TOs
for Baseline-TCP and Split-TCP approach. We ob-
serve few TOs at OBS, as there is only one TCP connection
between the OBS edge nodes.

F. Average TCP Throughput Over OBS Versus Different BAT
Values

In Fig. 10(b), we compare the average TCP throughput for
Baseline-TCP and Split-TCP approaches for a hybrid network.
From the graph, we observe that the Split-TCP approaches out-
perform the Baseline-TCP approach for every BAT value. If the
BAT value is chosen appropriately, we can increase the link uti-
lization efficiently. We observe from the average flow comple-
tion time versus different BAT values plot for Baseline,

, and 1:1:1 approaches that after BAT value of 2 ms, the
and 1:1:1 Split-TCP performance are flat as the BAT

increases.
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Fig. 8. Cumulative number of fast retransmits for (a) 10:10:10 Split-TCP (IN, OUT, and OBS) and (b) 10:1:10 Split-TCP (IN, OUT, and OBS).

Fig. 9. Cumulative number of TCP TOs for (a) 10:10:10 Split-TCP (IN, OUT, and OBS) and (b) 10:1:10 Split-TCP (IN, OUT, and OBS).

Fig. 10. Average TCP throughput of Baseline-TCP, � � � � � , and 1:1:1
Split-TCP over OBS network with different BAT values.

G. Flow Completion Time (for 1 GB Data Transfer)

In Fig. 11, we compare the total time to transmit a file from
the sender to the destination for the different TCP approaches.

Fig. 11. Flow completion time for 1 GB file transfer using 1:1:1 Split-TCP and
� � � � � Split-TCP.

The Split-TCP approach transfers the total file to des-
tination in less time than 1:1:1 Split-TCP approach for different
BAT values. With a BAT value of 2 ms, the completion time is
about 43 s for Split-TCP approach compared to that
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Fig. 12. Average flow completion time using JIT and JET signaling for dif-
ferent BAT values (a) Baseline-TCP, (b) 1:1:1 Split-TCP, and (c) � � � � �

Split-TCP.

about 65 s for 1:1:1 Split-TCP approach, while Baseline-TCP
approach took about 10 000 s to transfer the same amount of
data [refer Fig. 6(a)]. We observe that after a , the

and 1:1:1 Split-TCP approaches perform flat with
increase of BAT.

H. Split-TCP Framework Over Different OBS Signaling
Techniques

All the previous simulation plots have been obtained using
JET signaling technique. In this section, we evaluate the
performance just-in-time (JIT) signaling technique [35]. JIT
implements regular reservation and explicit release-based
one-way signaling. We implemented JIT in ns 2. JIT favors
simplicity over efficiency. From Fig. 12, JIT perform slightly
worse than JET for all the TCP versions. We observed that
for every BAT value, JET outperforms JIT for all three TCP
approaches, Baseline-TCP, 1:1:1 Split-TCP, and
Split-TCP approaches.

VI. CONCLUSION

From the aforementioned discussions, we can clearly see
that the Split-TCP framework significantly improves overall
TCP performance over a hybrid IP-OBS network. By isolating
random data contention losses over OBS network from regular
IP network, the Split-TCP framework achieves improved TCP
performance. The Split-TCP approach significantly
improves TCP throughput as compared to the 1:1:1 Split-TCP
approach and the conventional TCP approach.

Comparing the total delay required to transfer 1 GB data,
we observe that Split-TCP is 136 times faster
than conventional TCP approach, where as 1:1:1 Split-TCP is
14 times faster than conventional TCP approach for almost all
BAT values greater than 2 ms. Also, if we compare the av-
erage TCP throughput, 1:1:1 Split-TCP is up to ten times better
than conventional TCP and Split-TCP is up to 190
times faster than conventional TCP. Therefore, we can conclude
that adopting the Split-TCP framework is significantly benefi-
cial compared to implementing conventional end-to-end TCP
connections over a hybrid IP-OBS network. We show that our
simulation results closely match the proposed analytical model
results for end-to-end Split-TCP throughput.

The two fundamental issues with the Split-TCP framework
are the violation of the end-to-end semantics and the overhead
incurred in implementing the packet transfer logic at the each
split agent. In order to overcome violation of end-to-end TCP se-
mantics, the split agent can be enhanced to implement a Snoop-
like agent discussed in [22]. The Semi Split-TCP approach can
also preserve the end-to-end semantics of TCP, which is dis-
cussed in [32]. In the Split-TCP framework, OBS edge nodes
have to store large traces of TCP flows. There are several inter-
esting areas of future work, such as cache management, queue
management, queue scheduling, fairness, and scalability.

In this paper, the proposed Split-TCP framework has been
extensively discussed over optical burst-switched networks.
The Split-TCP framework will work with minor modifications
on other WDM-based optical transport networks, such as
optical circuit switching, optical packet switching, and optical
flow switching.

Another area of future work is the in-depth research and
analysis of Split-TCP architecture over OBS ring metro net-
works. OBS metro ring networks is gaining increasing interest
by operators. In an OBS metro ring with N nodes, each node
owns a home wavelength on which it transmits data bursts
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[36]. This ring network can also utilize the benefits of the
proposed Split-TCP framework in order to obtain TCP perfor-
mance speed up. Split-TCP proxies can be implemented on the
gateway nodes that connect metro ring networks.
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