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Abstract— This paper presents a tabu search meta-heuristic creation of a Steiner tree. Since manycast is a generalizati
to solve the static manycast routing and wavelength assigrent  of multicast, it is also NP-hard.
problem (MA-RWA). The problem is to route a set of static many Supporting manycast over optical networks is important

cast requests over a wavelength-routed WDM network such tha . . . o .
the number of wavelengths required is minimized. We present because supporting point-to-multipoint communicatiorihwi

the details of a tabu search meta-heuristic for this problemand ~Unicast results in wasted resources at the optical layer [5]
compare it to another MA-RWA heuristic called lambda path  Solving MA-RWA will help in dimensioning and enabling

heuristic (LPH) as well as a multicast RWA heuristic. The talu  fyture networks to support new applications. For example,
search meta-heuristic shows a 10% improvement over LPH and ¢qngider a grid network with replicated services. MA-RWA
a 30-40% improvement over the multicast heuristic for variaus . N
realistic networks. * can choose the _approprlate destln_atlons for long-termestigqu
that are known in advance. Also, in the case of IPTV content
distribution, where resources required for a certain tiraequol
across a core network may be known ahead of time, MA-RWA
can create light-trees to satisfy the resource requests.
The paper is organized as follows: Section Il discusses
. INTRODUCTION related work, Section Il gives a formal definition of the
Future Internet applications, such as IPTV, cloud stoRroblem while Section IV presents our tabu search meta-
age/computation, video conferencing, and peer-to-peaPyP heuristic. Section V presents a performance evaluation and
will require large amounts of bandwidth and support for poinSection VI concludes the paper.
to-multipoint communication. To support these applicasio

Keywords: manycast, multicast, tabu search, WDM,
wavelength-routing, and RWA.

the next-generation Internet will be based on optical netao [l. RELATED WORK
that can provide huge amounts of bandwidth. Manycast [1], S o

) o . ; Quorumcast, which is a specific case of manycast where
[2] is a communication paradigm that can support the paint-t =" 5 |

multipoint nature of future applications, in addition tqport- "~ = [ 2 W was proposed by [1], [2]. Since then, a number
ing traditional communication paradigms. Manycast supspo©f quorumcast routing algorithms have been proposed [1], [6
communication from a sender to ahyout of m (k < m) [7],_ [8]. Manycast has also been proposed over optical burst
candidate destinations where the candidate destinatign §¥itched networks [9], [10], [11], [12]. The main challenge
|D.| = m, is a subset of nodes in the network. If we changfé’r manycasF over OBS is providing reliability d_esplte_ ran-
the parameters of the manycast request, we can also perf@@f? contentions. These works focus on dynamic traffic and
unicast & = m = 1), multicast & = m > 1) and anycastk = distributed routing algorithms or unicast routing algoniis to
1 < m). Manycast is a powerful communication frameworlerovide reliable manycast for OBS. These approaches t}ypica
that is important for next-generation applications [3h&i the do not setup a route tree for each re_qu_est. The aut_hors in [_13]
future Internet will based on optical networks, it is imgort Propose an ILP and several heuristics for solving multi-
In this work we will consider the static MA-RWA prob|em_consider that each node provides a single resource, sodb rea
In this problem we are given a set of manycast requests ahdesources we must rea¢hnodes. Multi-resource manycast
for each request we must assign a route tree (or light-trfge [gen_erallzes manycast by allowing nodes to provide more than
and a wavelength. The objective is to minimize the numb@Single resource. Recently, an anycast RWA algorithm was
of wavelengths required to satisfy all the manycast regquegRroPosed for wavelength-routed networks [14]. Anycast is a
We can define a manycast request(asD,, k) where s is specific instance of manycast whgfe: L <m.To the best_
the source,D, is the candidate destination set, ahds the of our knowledge, th_|s is the first time static manycast mogti
number of nodes necessary to reach oubgf This is related and wavelength assignment has been proposed. _
to the multicast problem, but is more general. In multicast Tabu search is a meta-heuristic often used for combinatoria
the destinations are specified ahead of time, in manycast fdimization problems. It explores the solution space for a
destinations must be chosen. To solve the multicast prblefymber of iterations or until some other stopping critesa i
a Steiner tree must be generated, which has been showd"@g}: An initial solution is first generated either randomly
be NP-hard [2]. Because the destinations must be choserPfnPy using another heuristic. Given the current solution,

manycast, there ar(é’:,’;‘) combinations of nodes to use in the® Neighborhood set of solutions is generated by performing
simplemovedrom the current solution. The best solution from

1This work was supported in part by the National Science Fatiod (NSF) the neighborhooq is then chosen as th? curre.nt solution a_nd
under grant CNS-0626798. the process continues. In order to avoid getting trapped in



local minima, atabu listis maintained. The tabu list recordsAlgorithm 1 Lambda Path Heuristic for static MA-RWA.
moves that were used to generated selected solutions. Thesesort_desc(M)

moves cannot be performed again as long as they are on thefor all m in M do

list. Tabu search meta-heuristics also use diversificagioth 3. D = {}

intensification steps. Diversification is typically usedemithe  4:  aliTrees = list()

best solution has not improved after a number of iterationss:  while D,,. — D # ¢ do

Diversification typically generates a new solution elsexghe 6:
in the search space and the tabu search begins again there.
Intensification can be used to perform a more thorough search
of the neighborhood of a good solution that has been found:
Details of tabu search can be found in [15]. There is no proab:
of convergence to an optimal solution, but tabu search oftan:

T=(V,E)st.V ={sn)},E =
path = min{SP(sm,u)} u € Dpe — D
Update(T, path)

D = U{u}

copy =1

while copy < k do

works quite well in practice. 12: path = min{SP(ui,u2)} u1 € V', ug € Dy —
Tabu search has been used to solve routing and wavelength Vv’
assignment problems, see [16], [17], [18], among others. 13: Update(T, path)
14: copy = copy + 1
15: end while
[1l. PROBLEM DEFINITION 16: T.cost = Z Cij
i,jEE

The static MA-RWA problem can be defined as follows. Wg 5.
are given a network/ = (V, £) and a set of manycast requestsg.
M = {(81, Dqe, kl), (82, Do, kg), ceey (Sn, Dy, kn)}, where 19:
s; € VVi, D C VVi, andk; < [D;.|Vi. We must then find .
a route tree, or light-tree, and wavelength assignmentdohe ;. FirstFit(G,T)
manycast request i/ such that the number of wavelengths,,. updateWeights(a, 1 — )
required is minimized. Since the requests are known ahesg ond for
of time, this is done offline. We use a single route tree fot
each request and assume each request needs one wavelength.

We assume wavelength converters are not available so each o
tree must satisfy the wavelength continuity constrainptier A Lambda Path Heuristic (LPH)

words, each tree must use the same wavelength on all linksyye iyl first briefly describe the LPH heuristic then go
The other constraint is that no two light-trees can use theesa,, jetail about our tabu search. Once the static requests a
wavelength over the sam(? link. . placed in some order, LPH is run over the set. To satisfy each
~ We assume all nodes in the network are able to split §lividual request, we use a modified version of the improved
incoming signal to any number of output ports. These types Qfih heuristic (IMP) [1]. We modify it to include wavelength
switches are known as mquca_st-capabIe opt|c_al cros_seman assignment, an additional constraint to minimize wavetleng
(MC-OXCs). These can be implemented with splitter-anggqyired, load-balancing, and to also iterate over morm&te
delivery (SaD) [19] or tunable SaD switches [20]. We alsgees. The heuristic is shown in Algorithm 1. Before desogh
do not consider impairment or power-awareness in this papggyy it works, we will define the functions that it uses. First,
In a realistic scenarios, especially with splitters, the@oand o gp function finds the shortest path between the two
signal-to-noise ratio should be taken into account forimgut qqes specified as parameters. Thipdate function adds
in optical networks. We have investigated this prople_m ig path to the specified treéB. The increasesW L function
previous work for manycast over OBS [11], [12], but this i$ OWetermines if assigning a wavelength to a tree, using Fitst-
of the scope of this paper and we will investigate impairmenf,ouid require an increase in the wavelength count given the
awareness in the future. wavelengths currently used for the previous requests .y, ast
the updateWeights function is used for load-balancing. It
updates the weight of each link accordingde (1—a)* —“—,
where ¢ is the current number of wavelengths on the link,
The tabu search heuristic that we propose uses another. iS number of wavelengths on the most congested link
heuristic that we have created called the lambda path hieuri@nd 0 < « < 1. Depending on the value af, this helps
(LPH). Given a set of manycast requests, LPH orders thetghieve a degree of load-balancing in the network.
and then iterates over the set assigning a route tree ando satisfy a manycast request, there 4@‘) possible
wavelength to each request in order. The ordering of requesbmbinations of nodes that can be used to create Steiner tree
has a significant impact on the solution. There must exisesofhis heuristic works by creating jusD.| Steiner trees using
optimal ordering or orderings that produce the least numbthe shortest-path heuristic proposed in [21]. The shopast
of wavelengths required. Our tabu search heuristic attemapt heuristic creates a Steiner tree by building it increméntél
find this optimal ordering by searching different permuwa adds each new node to the tree using to the shortest path
of orderings. from any node already on the trefD.| Steiner trees are

T.newW L = increasesW L(G,T)
allTrees.append(T)

end while

T = min(allTrees)

IV. TABU SEARCH



created by forcing selection of the first node in Line 7 whefilgorithm 2 Tabu Search Meta-Heuristic.

building the tree. During the first iteration, the shorteath 1
node is selected, in the next iteration the next shortett-pa 2:
node is selected, and so on. Selecting a different start node
each time makes it likely that a different tree will be create 4:
each iteration. Each time a node is selected to be the initid
node it is added td. lteration terminates wheP = D.. This  6:
ensures that all nodes i, are in at least one Steiner tree and 7:
that multiple trees are generated. The goal of this is to find a:
good Steiner tree without having to try 4l,<') combinations o
of nodes. After the generation of each tree, Line 17 checks:
to see if assigning a wavelength according to First-Fit \@oul11:
result in an increase in wavelength count required. Once the:
trees have been generated, the heuristic chooses the mininms:
cost tree that requires no increase in wavelength coungusim:
First-Fit wavelength assignment. If there is no such trast | 15:
the minimum cost tree is chosen. The cost is defined as the tse
with the least number of links. The reasoning behind thig cos7:
function is that using smaller trees will leave more resesrc 18:
for future requests. After the tree is assigned the wavéieng19:

the costs of the links are updated. 20:
21:
B. Tabu Search (TS) 22

As we mentioned earlier, the tabu search explores ti28:
solution space by trying different permutations of the neasy 24
request set. Instead of defining the requests as a set, #or
purposes of tabu search we will define it as a sequend;
since ordering is important. Given a sequence, LPH is used 26
assign route trees and wavelengths to each request in the o2
specified by the sequence. This ordering of requests and thef:
route tree and wavelength assignments constitutes a @oluti30:
The cost of a solution is defined by the number of wavelengtl3s:
required to satisfy all the requests. The objective is to find 32:
solution that requires the minimum. 33:

We will describe our tabu search by describing each of ths#:
individual parts: the initial solution, the neighborhoad,gabu  35:
list, diversification strategies, and intensification t&gges. 36:

Initial Solutiont the initial solution is the sequence obtaine®7:
by ordering the manycast request set according to the karges:
k; value first (largest request first). Given this sequence, LP$%:
is used to assign routes and wavelengths. 40:

Neighborhood Seto obtain the neighborhood set, we defineti:
the move operation that creates a neighbor given the current
solution. The move operation simply swaps two requests,43:
and j wherei # j, in the sequence. If we performed all44:
valid moves the neighborhood set size WOU|dM. 45:
Note, the movd, j) is same agj, ). For large request sets, 46:
this neighborhood size is too large, so we perform a smaller:
number of random moves to generate the neighborhood. T4
number of moves we perform is proportionate to the actua$:
neighborhood size. For example, we can specify that ti%e:
neighborhood size be, say 6%, of the full neighborhood siz&1:
This generates random moves (without duplication) until 82:
neighborhood size 6% of the full size is created. Once tt&s:
neighborhood is generated, the least cost neighbor istedlecs4:

input : iterations, frac, tenure, diverse, intense
sort_desc(M)
current = LPH (M)
best = current
W OImprov = 0; divW OImprov =0
tabuList = {}
nSize = W
fracNSize = nSize * frac
while iterations— > 0 do
neighborhood = {}
curNSize =0
while curNSize < fracN Size do
move = genRandomM ove()
M' = swap(move, current)
neighborhood.add(LPH (M"))
curN Size++
end while
current = get Best(tabuList, tenure, neighborhood)
if current.cost < best.cost then
best = current
tWOImprov = 0; divW OImprov =0
else
tWOImprov++
end if
if itWOImprov < diverse then
continue
end if
if divWOImprov < intense then
current = LPH (genRandomPerm(M))
wtWOImprov = 0; divW OImprov++
tabuList.clear
else
tolntensify = getTop()
while TRUE do
fullNeighborhood = {}
for i =0toi=|M]| do
forj=i¢+1toj=|M|do
move = (i, )
M’ = swap(move, tolntensify)
neighborhood.add(LPH (M'"))
end for
end for
tolntensify = neighborhood.best
if toIntensify.cost > best then
break
else
best = toIntensify
end if
end while
W OImprov = 0; divWOImprov =0
current = best
updateT op()
end if
end while

as the new current solution, subject to the tabu list.
Tabu List the tabu list maintains a list of recently performed
moves, where a move is the two indicésand j, that were



swapped. Note that, j) = (4,7). A move cannot be chosenlist stores the best solutions from different areas of tleece
to create a new solution if it is already on the tabu list unlespace that can be used during intensification.
it meets an aspiration criteria. In this case, if the tabu enov In addition to the tabu search method described above, we
would result in a solution better than the current best syt tried another tabu search meta-heuristic that did not perfo
it is allowed. as well. The other tabu search started by generatiaigernate
Diversification this is typically used to try to explore othertrees for each manycast request. The tabu search would then
areas in the solution space. We use diversification if tlsearch the solution space of different combinations obteew
solution has not improved after a number of iterations. Ouised the largest-first graph coloring heuristic to assigmewa
diversification step simply randomly permutes the sequeniemgths. The tabu search using the LPH heuristic performed
of requests. The tabu list is also cleared. better due to load-balancing and because the selectiorchf ea
Intensification instead of only recording the best and curtree takes into account the previously assigned wavelsngth
rent solutions, our tabu search records the top five solsition 2) Complexity: In this section we discuss the complexity
seen so far. These are then used for intensification while theour tabu search in terms of the complexity of generating
tabu search is running. If there is no improvement after eighborhood solutions. The number of neighbors created
number of iterations, diversification is used to generatewa nduring each iteration directly impacts the runtime, sinoe f
solution. If, after a number of diversifications, we stillviea each neighbor, LPH must be run. The LPH algorithm, once
not improved our best solution, intensification is perfodne shortest paths have been computed, rur(ik| D..|?) for each
During intensification, the entire neighborhood set is yred  individual request. After each tree is selected, the linkgives
instead of just a random portion of it. When intensificatioare updated so the shortest paths must be computed again,
is to be performed, the best solution is selected from the lighich can be done i®(]V|). Generating a single solution
of the top five. If this solution has already been “intensified given a sequence therefore takeg|M| * (k| D.|*> + |V [?)).
then the next solution is used, and so on. The intensificaionf the entire neighborhood space is searched each iteration
also a depth-first search process. If a better solution isdouthere areO(|M|?) neighbors generated, which would result
upon intensification, that new solution is used for anoth@f a runtime ofO(|M|? x (k| D.|* + |V|?)) for each iteration.
intensification. Once no better solution is found, tabu aarFor large|M|, this is clearly not efficient, so we randomly
continues as normal with the best solution that was gereratgenerate small fractions of the full neighborhood set topkee
If the list of best solutions contains multiple solutionsttwi the neighborhood spad@(|M|).
equal scores that have already be searched by intensificatio 3) Example: We will describe an example of our move
only one is kept in the list and the remaining are discardeghperation to generate a neighborhood set. Consider aaliniti
This allows new solutions to be added to the list to be sea@rchset of manycast requestd/ = {R;, R., R3, R4}, where
by the intensification process later. R; = (si, Dic, ki). The requests are first sorted in descending
The detailed algorithm can be found in Algorithm 2order according td:;. Let the sorted sequence now b& =
The inputs to the algorithmiterations, frac, tenure, diverse, (R,, R;, Ry, R3). Given this sequence, the LPH heuristic is
intensg are the number of iterations, the fraction of theun on the requests in order to generate a solution.
neighborhood size to explore, the tabu tenure, the number oburing the first iteration, some percentage of the
iterations before diversifications, and the number of difer neighborhood would be explored. The entire neighborhood
cations before intensification. The number of iterationot® consists of all possible combinations generated by
diversification and intensification are incremented as lesg swapping two elements. In this simple example, we can
no better solution is found. The functigret Random M ove generate six solutions by swappingRi, R2), (Ri, R3),
on Line 13 generates random indices to swap. The same We , Ry), (R2,R3), (Ro,Ry), and (Rs,Ry). With large
are never chosen during an iteration. Tieg Best function |M| values, this is too large, so instead a series of
on Line 18 will choose the best solution based on the tabdndom moves are generated. Let us assume that a 50%
list. If the solution in the neighborhood is on the tabu listheighborhood size was specified. This may result in the
it is not selected unless it meets the aspiration crite@nd moves (R1,R4), (R2,R3), and (R, R4) being randomly
better than the best solution seen so far. The move is algénherated. With these moves, the neighborhood set becomes:
added to the tabu list. TheetT'op function on Line 33 will  {(R,, Ry, R, Ry), (R1, Rs, Ro, Rs), (R1, R4, R3, Ry)}.
find a solution in the list of top solutions that has not yegiven this set, LPH is run on each sequence and the best one

gone through intensification. Lastly, thexdateTop function s chosen as the sequence to use in the next iteration ($ubjec
on Line 52 will update the list of top five solutions, removingo the tabu list).

any if necessary.

1) Justifications:The idea behind the tabu search is for the
diversification and normal iterations to find solutions tban
be added to the list of best solutions. The list of best sofigti  To evaluate our proposed tabu search meta-heuristic, we use
may contain solutions from different areas of the searcleespat for static MA-RWA over four different network topologies
due to diversification. The intensification step can thefiqper We ran extensive simulations on the AT&T network (scaled
a depth-first search or a local search in those areas to tryvarsion), the NSF network, the Italian WDM network, and
improve the solution’s score. This is the reason for usingaa24-node mesh network shown in Fig. 1. We use the link
list of top five solutions instead of just the top solution.eThdistances for calculating the average tree delay, but mguti

V. EVALUATION
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Fig. 1. Networks used for heuristic evaluation.

is done based on hops. We generate a set of 150 requesistination node. Referring to Algorithm 2, the paramefers
for static MA-RWA. The source node for each request ithe tabu search are as followgerations = 1000, tenure =
uniformly distributed over all nodes in the network. For leac20, frac = 0.06, diverse = 25, andintense = 2. For both
request, the size dd,. is uniformly distributed frons, ..., DI* LPH and the tabu seareh = 0.8 for load-balancing. Most of
(a parameter representing the maximum candidate destinathese parameters were obtained empirically, this is désalis
size) andk = (DT] The destination nodes are also uniformljater in this section.
distributed across the network for each request. The table shows a significant decrease in the number of
To evaluate the effectiveness of our proposed tabu searalayvelengths requiredu(, columns) between TS and SPT
we compare it to a single run of LPH as well as a multicasis well as a significant decrease between TS and LPH. TS
heuristic called shortest path tree (SPT). For each regBB3t reduces wavelengths required by between 30-40% compared
choosesk out of D, that are closest to the source accordingp SPT. The greatest gains are in the Italian network while
to the shortest paths. It then uses the minimum path heurigiSFnet has the smallest gains. TS also performed about 10%
(MPH) [21] to create a multicast tree to these destinatibhs. better than LPH.
main difference between SPT and LPH is that LPH considersLow delay is a requirement for many next-generation appli-
multiple Steiner trees by including different nodes whilRTS cations so the heuristics must not significantly impact yela
makes a single decision on which nodes to include. MPH 8/en though SPT results in a smaller average tree delay
a 2-approximation for Steiner trees, so we use it as an uppgl; columns), the savings in wavelengths when using TS is
bound to show that improvements can be made by taking irdignificantly larger. The largest difference in delay betwe
account the ability to choose destinations dynamically. SPT and TS is around 1ms. The average tree delays of TS
In Table | we compare tabu search (TS), LPH, and SPT. Thad LPH were very similar and TS was able to reduces
network characteristics are given in the table wheérés the wavelengths required by about 10% compared to LPH.
number of nodesE is number of edges) is average nodal As expected, as the maximum destination set size decreases,
degree, and- is average delay per edge (ms). We ran eathe number of wavelengths required also decreases. The set
heuristic with different maximum destination set sizéy;', size of 150 was chosen for demonstration purposes. We
and recorded the average number of wavelengths requitgd, evaluated the heuristics on varying set sizes from 50 to
and average tree delay, (ms), for 150 requests. The averag@00 with similar results. We chose these four networks to
tree delay is defined as the average delay from the root to eaepresent realistic scenarios with varying nodal degrébs.



TABLE |
COMPARISON OFTS, LPH,AND SPTOVER DIFFERENT NETWORK TOPOLOGIES FOR A STATIC SET OE5OMANYCAST REQUESTS

D" =10 D" =38 D" =6
Netw. VIE|d ]| T TS LPH SPT TS LPH SPT TS LPH SPT
Wq dg Wq dg Wq dg Wq dg Wq dg Wq dg Wq dg Wq dg Wq dg
ATT 27| 41| 3.0 3.4 317 | 115 | 358 | 11.7 | 474 10.7 | 30.7 | 11.3) 33.7 | 11.1 46.1 | 10.7 | 29.1 | 11.4 329 | 11.7 | 44.4 11.3
NSFnet | 14| 21| 3 | 43/ 39.2 | 99 | 436 | 114 | 5571 84 | 349 | 96| 390 | 93| 483 | 83 | 326 | 96| 36.7 | 9.4 | 454 85
Italy 21| 36| 3.4 0.6/ 33.0 | 1.7 372 | 17 | 5213 15 | 328 | 17| 369 | 17| 535 | 15 | 293 | 1.7| 333 | 1.7 | 489 15
24-node | 24| 43| 3.6/ 3.9 28.3 | 11.3 | 31.8 | 11.4 | 42.7 10.2 | 27.0 | 11.§ 30.1 | 11.4 40.2 | 10.2 | 25.7 | 11.4 29.0 | 11.5 | 38.1] 10.7

networks represent backbone or long-haul networks for whiproblem. We compared tabu search with two other simpler
wavelength-routed WDM network is a good candidate. Weeuristics and found that it decreases wavelengths retjbire
also calculated 95% confidence intervals for all resultsdidit between 30-40% compared to the multicast heuristic andtabou
not include them here because they are very similar to th@% compared to LPH. There is no significant difference in
values presented. average tree delay for the different approaches.

A. Tabu Search parameters Areas of future work include considering networks with
arse splitting, i.e., not all the nodes are equipped wi@ M

Two decisions that affect both the tabu search and the L . . . ) .
Cs. We will also consider physical-layer impairments whe

heuristic are the choice ef for load-balancing and the choice . : . .

) : -creating route trees, such as power, optical signal to mats®
to use link distance versus hop count for shortest pathrrguti crosstalk. and nonlinearities
We found that, with the exception of the AT&T network, using ' '
hop count instead of link distance had a negligible affect on REFERENCES
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