
Tabu Search Meta-Heuristic for Static Manycast Routing andWavelength Assignment
over Wavelength-Routed Optical WDM Networks

Neal Charbonneau and Vinod M. Vokkarane
Department of Computer and Information Science, University of Massachusetts, Dartmouth, MA

E-mail: u ncharbonne@umassd.edu and vvokkarane@umassd.edu

Abstract— This paper presents a tabu search meta-heuristic
to solve the static manycast routing and wavelength assignment
problem (MA-RWA). The problem is to route a set of static many-
cast requests over a wavelength-routed WDM network such that
the number of wavelengths required is minimized. We present
the details of a tabu search meta-heuristic for this problemand
compare it to another MA-RWA heuristic called lambda path
heuristic (LPH) as well as a multicast RWA heuristic. The tabu
search meta-heuristic shows a 10% improvement over LPH and
a 30-40% improvement over the multicast heuristic for various
realistic networks. 1
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I. I NTRODUCTION

Future Internet applications, such as IPTV, cloud stor-
age/computation, video conferencing, and peer-to-peer (P2P),
will require large amounts of bandwidth and support for point-
to-multipoint communication. To support these applications,
the next-generation Internet will be based on optical networks
that can provide huge amounts of bandwidth. Manycast [1],
[2] is a communication paradigm that can support the point-to-
multipoint nature of future applications, in addition to support-
ing traditional communication paradigms. Manycast supports
communication from a sender to anyk out of m (k ≤ m)
candidate destinations where the candidate destination set,
|Dc| = m, is a subset of nodes in the network. If we change
the parameters of the manycast request, we can also perform
unicast (k = m = 1), multicast (k = m > 1) and anycast (k =
1 < m). Manycast is a powerful communication framework
that is important for next-generation applications [3]. Since the
future Internet will based on optical networks, it is important
to support manycast over wavelength-routed networks.

In this work we will consider the static MA-RWA problem.
In this problem we are given a set of manycast requests and
for each request we must assign a route tree (or light-tree [4])
and a wavelength. The objective is to minimize the number
of wavelengths required to satisfy all the manycast requests.
We can define a manycast request as(s, Dc, k) where s is
the source,Dc is the candidate destination set, andk is the
number of nodes necessary to reach out ofDc. This is related
to the multicast problem, but is more general. In multicast,
the destinations are specified ahead of time, in manycast the
destinations must be chosen. To solve the multicast problem,
a Steiner tree must be generated, which has been shown to
be NP-hard [2]. Because the destinations must be chosen in
manycast, there are

(

|Dc|
k

)

combinations of nodes to use in the
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creation of a Steiner tree. Since manycast is a generalization
of multicast, it is also NP-hard.

Supporting manycast over optical networks is important
because supporting point-to-multipoint communication with
unicast results in wasted resources at the optical layer [5].
Solving MA-RWA will help in dimensioning and enabling
future networks to support new applications. For example,
consider a grid network with replicated services. MA-RWA
can choose the appropriate destinations for long-term requests
that are known in advance. Also, in the case of IPTV content
distribution, where resources required for a certain time period
across a core network may be known ahead of time, MA-RWA
can create light-trees to satisfy the resource requests.

The paper is organized as follows: Section II discusses
related work, Section III gives a formal definition of the
problem while Section IV presents our tabu search meta-
heuristic. Section V presents a performance evaluation and
Section VI concludes the paper.

II. RELATED WORK

Quorumcast, which is a specific case of manycast where
k =

⌈

|Dc|
2

⌉

, was proposed by [1], [2]. Since then, a number
of quorumcast routing algorithms have been proposed [1], [6],
[7], [8]. Manycast has also been proposed over optical burst-
switched networks [9], [10], [11], [12]. The main challenge
for manycast over OBS is providing reliability despite ran-
dom contentions. These works focus on dynamic traffic and
distributed routing algorithms or unicast routing algorithms to
provide reliable manycast for OBS. These approaches typically
do not setup a route tree for each request. The authors in [13]
propose an ILP and several heuristics for solving multi-
resource manycast in mesh networks. In manycast we may
consider that each node provides a single resource, so to reach
k resources we must reachk nodes. Multi-resource manycast
generalizes manycast by allowing nodes to provide more than
a single resource. Recently, an anycast RWA algorithm was
proposed for wavelength-routed networks [14]. Anycast is a
specific instance of manycast wherek = 1 < m. To the best
of our knowledge, this is the first time static manycast routing
and wavelength assignment has been proposed.

Tabu search is a meta-heuristic often used for combinatorial
optimization problems. It explores the solution space for a
number of iterations or until some other stopping criteria is
met. An initial solution is first generated either randomly
or by using another heuristic. Given the current solution,
a neighborhood set of solutions is generated by performing
simplemovesfrom the current solution. The best solution from
the neighborhood is then chosen as the current solution and
the process continues. In order to avoid getting trapped in
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local minima, atabu list is maintained. The tabu list records
moves that were used to generated selected solutions. These
moves cannot be performed again as long as they are on the
list. Tabu search meta-heuristics also use diversificationand
intensification steps. Diversification is typically used when the
best solution has not improved after a number of iterations.
Diversification typically generates a new solution elsewhere
in the search space and the tabu search begins again there.
Intensification can be used to perform a more thorough search
of the neighborhood of a good solution that has been found.
Details of tabu search can be found in [15]. There is no proof
of convergence to an optimal solution, but tabu search often
works quite well in practice.

Tabu search has been used to solve routing and wavelength
assignment problems, see [16], [17], [18], among others.

III. PROBLEM DEFINITION

The static MA-RWA problem can be defined as follows. We
are given a networkG = (V, E) and a set of manycast requests
M = {(s1, D1c, k1), (s2, D2c, k2), ..., (sn, Dnc, kn)}, where
si ∈ V ∀ i, Dic ⊂ V ∀ i, andki ≤ |Dic| ∀ i. We must then find
a route tree, or light-tree, and wavelength assignment for each
manycast request inM such that the number of wavelengths
required is minimized. Since the requests are known ahead
of time, this is done offline. We use a single route tree for
each request and assume each request needs one wavelength.
We assume wavelength converters are not available so each
tree must satisfy the wavelength continuity constraint. Inother
words, each tree must use the same wavelength on all links.
The other constraint is that no two light-trees can use the same
wavelength over the same link.

We assume all nodes in the network are able to split an
incoming signal to any number of output ports. These types of
switches are known as multicast-capable optical cross connects
(MC-OXCs). These can be implemented with splitter-and-
delivery (SaD) [19] or tunable SaD switches [20]. We also
do not consider impairment or power-awareness in this paper.
In a realistic scenarios, especially with splitters, the power and
signal-to-noise ratio should be taken into account for routing
in optical networks. We have investigated this problem in
previous work for manycast over OBS [11], [12], but this is out
of the scope of this paper and we will investigate impairment-
awareness in the future.

IV. TABU SEARCH

The tabu search heuristic that we propose uses another
heuristic that we have created called the lambda path heuristic
(LPH). Given a set of manycast requests, LPH orders them
and then iterates over the set assigning a route tree and
wavelength to each request in order. The ordering of requests
has a significant impact on the solution. There must exist some
optimal ordering or orderings that produce the least number
of wavelengths required. Our tabu search heuristic attempts to
find this optimal ordering by searching different permutations
of orderings.

Algorithm 1 Lambda Path Heuristic for static MA-RWA.

1: sort desc(M)
2: for all m in M do
3: D = {}
4: allT rees = list()
5: while Dmc − D 6= φ do
6: T = (V ′, E′) s.t. V ′ = {sm}, E′ = φ

7: path = min{SP (sm, u)} u ∈ Dmc − D

8: Update(T, path)
9: D = ∪{u}

10: copy = 1
11: while copy < k do
12: path = min{SP (u1, u2)} u1 ∈ V ′, u2 ∈ Dmc−

V ′

13: Update(T, path)
14: copy = copy + 1
15: end while
16: T.cost =

∑

i,j∈E′

ci,j

17: T.newWL = increasesWL(G, T )
18: allT rees.append(T )
19: end while
20: T = min(allT rees)
21: FirstF it(G, T )
22: updateWeights(α, 1− α)
23: end for

A. Lambda Path Heuristic (LPH)

We will first briefly describe the LPH heuristic then go
into detail about our tabu search. Once the static requests are
placed in some order, LPH is run over the set. To satisfy each
individual request, we use a modified version of the improved
path heuristic (IMP) [1]. We modify it to include wavelength
assignment, an additional constraint to minimize wavelengths
required, load-balancing, and to also iterate over more Steiner
trees. The heuristic is shown in Algorithm 1. Before describing
how it works, we will define the functions that it uses. First,
the SP function finds the shortest path between the two
nodes specified as parameters. TheUpdate function adds
a path to the specified treeT . The increasesWL function
determines if assigning a wavelength to a tree, using First-Fit,
would require an increase in the wavelength count given the
wavelengths currently used for the previous requests. Lastly,
the updateWeights function is used for load-balancing. It
updates the weight of each link according to:α+(1−α)∗ c

cmax

,
where c is the current number of wavelengths on the link,
cmax is number of wavelengths on the most congested link
and 0 ≤ α ≤ 1. Depending on the value ofα, this helps
achieve a degree of load-balancing in the network.

To satisfy a manycast request, there are
(

|Dc|
k

)

possible
combinations of nodes that can be used to create Steiner trees.
This heuristic works by creating just|Dc| Steiner trees using
the shortest-path heuristic proposed in [21]. The shortest-path
heuristic creates a Steiner tree by building it incrementally. It
adds each new node to the tree using to the shortest path
from any node already on the tree.|Dc| Steiner trees are
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created by forcing selection of the first node in Line 7 when
building the tree. During the first iteration, the shortest-path
node is selected, in the next iteration the next shortest-path
node is selected, and so on. Selecting a different start node
each time makes it likely that a different tree will be created
each iteration. Each time a node is selected to be the initial
node it is added toD. Iteration terminates whenD = Dc. This
ensures that all nodes inDc are in at least one Steiner tree and
that multiple trees are generated. The goal of this is to find a
good Steiner tree without having to try all

(

|Dc|
k

)

combinations
of nodes. After the generation of each tree, Line 17 checks
to see if assigning a wavelength according to First-Fit would
result in an increase in wavelength count required. Once the
trees have been generated, the heuristic chooses the minimum
cost tree that requires no increase in wavelength count using
First-Fit wavelength assignment. If there is no such tree, just
the minimum cost tree is chosen. The cost is defined as the tree
with the least number of links. The reasoning behind this cost
function is that using smaller trees will leave more resources
for future requests. After the tree is assigned the wavelength,
the costs of the links are updated.

B. Tabu Search (TS)

As we mentioned earlier, the tabu search explores the
solution space by trying different permutations of the manycast
request set. Instead of defining the requests as a set, for
purposes of tabu search we will define it as a sequence,
since ordering is important. Given a sequence, LPH is used to
assign route trees and wavelengths to each request in the order
specified by the sequence. This ordering of requests and their
route tree and wavelength assignments constitutes a solution.
The cost of a solution is defined by the number of wavelengths
required to satisfy all the requests. The objective is to finda
solution that requires the minimum.

We will describe our tabu search by describing each of the
individual parts: the initial solution, the neighborhood set, tabu
list, diversification strategies, and intensification strategies.

Initial Solution: the initial solution is the sequence obtained
by ordering the manycast request set according to the largest
ki value first (largest request first). Given this sequence, LPH
is used to assign routes and wavelengths.

Neighborhood Set: to obtain the neighborhood set, we define
the move operation that creates a neighbor given the current
solution. The move operation simply swaps two requests,i

and j where i 6= j, in the sequence. If we performed all
valid moves the neighborhood set size would be|M|∗(|M|−1)

2 .
Note, the move(i, j) is same as(j, i). For large request sets,
this neighborhood size is too large, so we perform a smaller
number of random moves to generate the neighborhood. The
number of moves we perform is proportionate to the actual
neighborhood size. For example, we can specify that the
neighborhood size be, say 6%, of the full neighborhood size.
This generates random moves (without duplication) until a
neighborhood size 6% of the full size is created. Once the
neighborhood is generated, the least cost neighbor is selected
as the new current solution, subject to the tabu list.

Tabu List: the tabu list maintains a list of recently performed
moves, where a move is the two indices,i and j, that were

Algorithm 2 Tabu Search Meta-Heuristic.
1: input : iterations, frac, tenure, diverse, intense

2: sort desc(M)
3: current = LPH(M)
4: best = current

5: itWOImprov = 0; divWOImprov = 0
6: tabuList = {}

7: nSize = |M|∗(|M|−1)
2

8: fracNSize = nSize ∗ frac

9: while iterations−− > 0 do
10: neighborhood = {}
11: curNSize = 0
12: while curNSize < fracNSize do
13: move = genRandomMove()
14: M ′ = swap(move, current)
15: neighborhood.add(LPH(M ′))
16: curNSize++
17: end while
18: current = getBest(tabuList, tenure, neighborhood)
19: if current.cost < best.cost then
20: best = current

21: itWOImprov = 0; divWOImprov = 0
22: else
23: itWOImprov++
24: end if
25: if itWOImprov < diverse then
26: continue

27: end if
28: if divWOImprov < intense then
29: current = LPH(genRandomPerm(M))
30: itWOImprov = 0; divWOImprov++
31: tabuList.clear

32: else
33: toIntensify = getT op()
34: while TRUE do
35: fullNeighborhood = {}
36: for i = 0 to i = |M | do
37: for j = i + 1 to j = |M | do
38: move = (i, j)
39: M ′ = swap(move, toIntensify)
40: neighborhood.add(LPH(M ′))
41: end for
42: end for
43: toIntensify = neighborhood.best

44: if toIntensify.cost > best then
45: break

46: else
47: best = toIntensify

48: end if
49: end while
50: itWOImprov = 0; divWOImprov = 0
51: current = best

52: updateTop()
53: end if
54: end while
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swapped. Note that(i, j) = (j, i). A move cannot be chosen
to create a new solution if it is already on the tabu list unless
it meets an aspiration criteria. In this case, if the tabu move
would result in a solution better than the current best solution,
it is allowed.

Diversification: this is typically used to try to explore other
areas in the solution space. We use diversification if the
solution has not improved after a number of iterations. Our
diversification step simply randomly permutes the sequence
of requests. The tabu list is also cleared.

Intensification: instead of only recording the best and cur-
rent solutions, our tabu search records the top five solutions
seen so far. These are then used for intensification while the
tabu search is running. If there is no improvement after a
number of iterations, diversification is used to generate a new
solution. If, after a number of diversifications, we still have
not improved our best solution, intensification is performed.
During intensification, the entire neighborhood set is analyzed
instead of just a random portion of it. When intensification
is to be performed, the best solution is selected from the list
of the top five. If this solution has already been “intensified”,
then the next solution is used, and so on. The intensificationis
also a depth-first search process. If a better solution is found
upon intensification, that new solution is used for another
intensification. Once no better solution is found, tabu search
continues as normal with the best solution that was generated.
If the list of best solutions contains multiple solutions with
equal scores that have already be searched by intensification,
only one is kept in the list and the remaining are discarded.
This allows new solutions to be added to the list to be searched
by the intensification process later.

The detailed algorithm can be found in Algorithm 2.
The inputs to the algorithm (iterations, frac, tenure, diverse,
intense) are the number of iterations, the fraction of the
neighborhood size to explore, the tabu tenure, the number of
iterations before diversifications, and the number of diversifi-
cations before intensification. The number of iterations before
diversification and intensification are incremented as longas
no better solution is found. The functiongetRandomMove

on Line 13 generates random indices to swap. The same two
are never chosen during an iteration. ThegetBest function
on Line 18 will choose the best solution based on the tabu
list. If the solution in the neighborhood is on the tabu list,
it is not selected unless it meets the aspiration criteria: being
better than the best solution seen so far. The move is also
added to the tabu list. ThegetT op function on Line 33 will
find a solution in the list of top solutions that has not yet
gone through intensification. Lastly, theupdateTop function
on Line 52 will update the list of top five solutions, removing
any if necessary.

1) Justifications:The idea behind the tabu search is for the
diversification and normal iterations to find solutions thatcan
be added to the list of best solutions. The list of best solutions
may contain solutions from different areas of the search space
due to diversification. The intensification step can then perform
a depth-first search or a local search in those areas to try to
improve the solution’s score. This is the reason for using a
list of top five solutions instead of just the top solution. The

list stores the best solutions from different areas of the search
space that can be used during intensification.

In addition to the tabu search method described above, we
tried another tabu search meta-heuristic that did not perform
as well. The other tabu search started by generatingk alternate
trees for each manycast request. The tabu search would then
search the solution space of different combinations of trees and
used the largest-first graph coloring heuristic to assign wave-
lengths. The tabu search using the LPH heuristic performed
better due to load-balancing and because the selection of each
tree takes into account the previously assigned wavelengths.

2) Complexity: In this section we discuss the complexity
of our tabu search in terms of the complexity of generating
neighborhood solutions. The number of neighbors created
during each iteration directly impacts the runtime, since for
each neighbor, LPH must be run. The LPH algorithm, once
shortest paths have been computed, runs inO(k|Dc|

2) for each
individual request. After each tree is selected, the link weights
are updated so the shortest paths must be computed again,
which can be done inO(|V |3). Generating a single solution
given a sequence therefore takesO(|M | ∗ (k|Dc|

2 + |V |3)).
If the entire neighborhood space is searched each iteration,
there areO(|M |2) neighbors generated, which would result
in a runtime ofO(|M |3 ∗ (k|Dc|

2 + |V |3)) for each iteration.
For large |M |, this is clearly not efficient, so we randomly
generate small fractions of the full neighborhood set to keep
the neighborhood spaceO(|M |).

3) Example: We will describe an example of our move
operation to generate a neighborhood set. Consider an initial
set of manycast requests,M = {R1, R2, R3, R4}, where
Ri = (si, Dic, ki). The requests are first sorted in descending
order according toki. Let the sorted sequence now beM ′ =
(R2, R1, R4, R3). Given this sequence, the LPH heuristic is
run on the requests in order to generate a solution.

During the first iteration, some percentage of the
neighborhood would be explored. The entire neighborhood
consists of all possible combinations generated by
swapping two elements. In this simple example, we can
generate six solutions by swapping:(R1, R2), (R1, R3),
(R1, R4), (R2, R3), (R2, R4), and (R3, R4). With large
|M | values, this is too large, so instead a series of
random moves are generated. Let us assume that a 50%
neighborhood size was specified. This may result in the
moves (R1, R4), (R2, R3), and (R2, R4) being randomly
generated. With these moves, the neighborhood set becomes:
{(R4, R2, R3, R1), (R1, R3, R2, R4), (R1, R4, R3, R2)}.
Given this set, LPH is run on each sequence and the best one
is chosen as the sequence to use in the next iteration (subject
to the tabu list).

V. EVALUATION

To evaluate our proposed tabu search meta-heuristic, we use
it for static MA-RWA over four different network topologies.
We ran extensive simulations on the AT&T network (scaled
version), the NSF network, the Italian WDM network, and
a 24-node mesh network shown in Fig. 1. We use the link
distances for calculating the average tree delay, but routing
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(a) Scaled AT&T network.
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Fig. 1. Networks used for heuristic evaluation.

is done based on hops. We generate a set of 150 requests
for static MA-RWA. The source node for each request is
uniformly distributed over all nodes in the network. For each
request, the size ofDic is uniformly distributed from3, ..., Dm

c

(a parameter representing the maximum candidate destination
size) andk =

⌈

Dic

2

⌉

. The destination nodes are also uniformly
distributed across the network for each request.

To evaluate the effectiveness of our proposed tabu search,
we compare it to a single run of LPH as well as a multicast
heuristic called shortest path tree (SPT). For each request, SPT
choosesk out of Dc that are closest to the source according
to the shortest paths. It then uses the minimum path heuristic
(MPH) [21] to create a multicast tree to these destinations.The
main difference between SPT and LPH is that LPH considers
multiple Steiner trees by including different nodes while SPT
makes a single decision on which nodes to include. MPH is
a 2-approximation for Steiner trees, so we use it as an upper-
bound to show that improvements can be made by taking into
account the ability to choose destinations dynamically.

In Table I we compare tabu search (TS), LPH, and SPT. The
network characteristics are given in the table whereV is the
number of nodes,E is number of edges,δ is average nodal
degree, andτ is average delay per edge (ms). We ran each
heuristic with different maximum destination set sizes,Dm

c ,
and recorded the average number of wavelengths required,wa,
and average tree delay,da (ms), for 150 requests. The average
tree delay is defined as the average delay from the root to each

destination node. Referring to Algorithm 2, the parametersfor
the tabu search are as follows:iterations = 1000, tenure =
20, frac = 0.06, diverse = 25, and intense = 2. For both
LPH and the tabu searchα = 0.8 for load-balancing. Most of
these parameters were obtained empirically, this is discussed
later in this section.

The table shows a significant decrease in the number of
wavelengths required (wa columns) between TS and SPT
as well as a significant decrease between TS and LPH. TS
reduces wavelengths required by between 30-40% compared
to SPT. The greatest gains are in the Italian network while
NSFnet has the smallest gains. TS also performed about 10%
better than LPH.

Low delay is a requirement for many next-generation appli-
cations so the heuristics must not significantly impact delay.
Even though SPT results in a smaller average tree delay
(da columns), the savings in wavelengths when using TS is
significantly larger. The largest difference in delay between
SPT and TS is around 1ms. The average tree delays of TS
and LPH were very similar and TS was able to reduces
wavelengths required by about 10% compared to LPH.

As expected, as the maximum destination set size decreases,
the number of wavelengths required also decreases. The set
size of 150 was chosen for demonstration purposes. We
evaluated the heuristics on varying set sizes from 50 to
200 with similar results. We chose these four networks to
represent realistic scenarios with varying nodal degrees.The



6

TABLE I

COMPARISON OFTS, LPH,AND SPTOVER DIFFERENT NETWORK TOPOLOGIES FOR A STATIC SET OF150MANYCAST REQUESTS.

Netw. V E δ τ

Dm

c
= 10 Dm

c
= 8 Dm

c
= 6

TS LPH SPT TS LPH SPT TS LPH SPT

wa da wa da wa da wa da wa da wa da wa da wa da wa da

ATT 27 41 3.0 3.4 31.7 11.5 35.8 11.7 47.2 10.7 30.7 11.1 33.7 11.1 46.1 10.7 29.1 11.6 32.9 11.7 44.6 11.3

NSFnet 14 21 3 4.3 39.2 9.9 43.6 11.4 55.7 8.4 34.9 9.6 39.0 9.3 48.3 8.3 32.6 9.6 36.7 9.4 45.6 8.5

Italy 21 36 3.4 0.6 33.0 1.7 37.2 1.7 52.1 1.5 32.8 1.7 36.9 1.7 53.5 1.5 29.3 1.7 33.3 1.7 48.9 1.5

24-node 24 43 3.6 3.9 28.3 11.3 31.8 11.4 42.7 10.2 27.0 11.5 30.1 11.2 40.2 10.2 25.7 11.6 29.0 11.5 38.1 10.7

networks represent backbone or long-haul networks for which
wavelength-routed WDM network is a good candidate. We
also calculated 95% confidence intervals for all results butdid
not include them here because they are very similar to the
values presented.

A. Tabu Search parameters

Two decisions that affect both the tabu search and the LPH
heuristic are the choice ofα for load-balancing and the choice
to use link distance versus hop count for shortest path routing.
We found that, with the exception of the AT&T network, using
hop count instead of link distance had a negligible affect on
average tree delay while reducing the number of wavelengths
required. For the AT&T network, the delay was in some cases
doubled when using hop count instead of link distance. This
tradeoff of delay versus wavelengths required is something
that must be considered for particular networks, but it seems
in most cases the best choice is to perform shortest path routing
based on hop count.

In order to perform load-balancing, we introduce a pa-
rameter,α, where 0 ≤ α ≤ 1, as we discussed earlier
when describing LPH. The load-balancing updates the weight
of each link after a new tree and wavelength are assigned
according to:α+(1−α)∗ c

cmax

wherec is the current number
of wavelengths on the link andcmax is number of wavelengths
on the most congested link. A smaller value ofα puts more
emphasis on load-balancing when computing shortest paths.
We found that ifα is set too small, (e.g. 0.2), the load in
the network is evenly distributed over most links, but this
actually increases the number of wavelengths required. One
explanation is that this forces trees to get larger in size in
order to use less loaded links, which makes it harder to find a
single wavelength for later trees. Higher values ofα performed
the best. As we mentioned previously, we usedα = 0.8.
This provided better distribution of load over the network
than no load-balancing while also decreasing the number of
wavelengths required.

The parameters specific to tabu search, the number of
iterations, tabu list tenure, diversification iterations,and in-
tensification iterations were obtained empirically. For all but
the Italian WDM network, the best solution was found after
500 iterations half the time and earlier the other half. Typically
clustering around 550-650 and 340-480. There were a number
of times the best solutions were found higher in the 800 range.
Due to this possibility, we set the maximum number to 1000.

VI. CONCLUSION

In this paper we presented a tabu search meta-heuristic for
solving the static manycast routing and wavelength assignment

problem. We compared tabu search with two other simpler
heuristics and found that it decreases wavelengths required by
between 30-40% compared to the multicast heuristic and about
10% compared to LPH. There is no significant difference in
average tree delay for the different approaches.

Areas of future work include considering networks with
sparse splitting, i.e., not all the nodes are equipped with MC-
OXCs. We will also consider physical-layer impairments when
creating route trees, such as power, optical signal to noiseratio,
crosstalk, and nonlinearities.
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