MASCOT: Manycast Architecture for Service-Oriented
Tactical Operations

Neal Charbonneau, Vinod M. Vokkarane and Ramprasad Balasubramanian
Department of Computer and Information Science, University of Massachusetts, Dartmouth, MA
E-mail: {u_ncharbonne, vvokkarane,r.bala} @umassd.edu
Address: 285 Old Westport Rd, N. Dartmouth, MA - 02747
Phone: (508) 910-6692

Abstract— In this paper we present our work on the Manycast
Architecture for Service-Oriented Tactical Operations, or
MASCOT, a project between the University of Masschusetts,
Dartmouth and the United States Marine Corps (USMC).
MASCOT is a service that can be used by the Combat Operation
Centers (COCs) to efficiently allocate tactical field resources
given a task request, or mission, and set of constraints. We have
implemented a prototype as a standalone Java application that
is able to allocate resources for tactical missions. COCs deal
with a large amount of dynamic input from other systems and
must manage a number of tactical field resources. Finding good
resources given a specific request involves examining a large
solution space which is difficult for human operators. MASCOT
can make this task faster and more accurate.

[. INTRODUCTION

MASCOT is a tool to allocate tactical field resources, such
as humvees, marines, and UAVs given a mission and set of
constraints, called service priorities. The efficient allocation
of tactical field resources by Combat Operation Centers
(COCs) is important to provide battle rthythm and to the
success of a mission or set of missions. The operators at
the COC must deal with a huge amount of input from
various tactical data systems (TDSs) and based on this data
must choose resources to carry out specific missions. The
solution space for sets of resources to carry out a particular
mission is very large. This makes the task difficult for a
human operator. MASCOT is designed to provide some
automation for this process while still allowing the operator
to make changes to the resource recommendations or service
priorities.

MASCOT is a tactical planning tool to be used by COCs
to manage field resources. We have currently developed
a prototype application and are working with the USMC
to determine how the prototype will evolve. MASCOT
works with data that can be collected from other resources
available to the COC and its own data store. MASCOT
utilizes a communication paradigm called manycasting [1]

978-1-4244-4179-2/09/$25.00 ©2009 IEEE

171

to select a set of field resources based on a request. In
manycast communication, the specific recipients are not
specified, as they are in unicast communication. A manycast
request simply specifies a set of possible recipients and
a number of recipients that must be reached. Let the set
of all possible recipients be V. Manycasting is concerned
with a subset of destinations called the candidate set, or
D.. The candidate set is specified along with the number
of recipients that must be reached in that candidate set,
denoted by k. The particular destinations to reach is not
specified, any k destinations from D, will satisfy the request.
Formally, D. C V, |D.| > k. The manycast request can
be denoted as (D,, k). For MASCOT, the manycast request
would state that the COC mission needs six Cougars and
five HUMVEES [2], for example. MASCOT would then
use an optimization algorithm to choose the Cougars and
HUMVEES of a larger set (the candidate destination set)
instead of directly specifying the exact resources.

There has been previous research on mission planning
using different types of computer algorithms [3] [4]. These
applications focus on using genetic algorithms to generate
courses of action. These courses of action are the plans that
will direct the resources into battle. MASCOT is similar,
but does not do planning of courses of action. Instead,
MASCOT focuses only on tactical field resource allocation.
Given a type of mission and set of priorities, it finds the
best resources to use. The generation of the plan of action
for these resources is still left to the COC operator.

This paper will provide details about the current imple-
mentation of MASCOT. We will first discuss the overall
blackbox model and then go into how the functionality
and optimization algorithms are implemented. We will also
discuss the future of the prototype based on our continuing
collaboration with the USMC. MASCOT started as a request
for proposals from the USMC [5] and now with a completed
prototype is entering phase two.

The paper is organized as follows, Section II will discuss in
more detail the problem MASCOT is designed to solve and
its importance. Section III will describe the architecture of
MASCOT, both how it works as a service and its implemen-
tation, Section IV discusses our current prototype, Section V
will discuss where our work with the USMC is heading
and how MASCOT will evolve as far as functionality, and

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on January 15, 2010 at 13:05 from IEEE Xplore. Restrictions apply.

Specification = [{(Ezp, .65, H), (Delay, .2, M), (Readiness, .15, L)}, { (Humuvee, 2), (Cougar, 3) }, (bearing, z/y, speed)]

Response = [{H1, H3,Cg, C3,C12}]

Section VI will conclude the paper.

II. PROBLEM STATEMENT

In this section we describe the goal of MASCOT and the
problem it is intended to solve. MASCOT is not a mission
planner in the sense of generating actions and predicting
results. Instead, MASCOT focuses on choosing the “best”
tactical field resources for a given mission. The COC is still
responsible for mission planning, but can rely on MASCOT
to choose a good set of resources to use for a specific
mission. For example, the COC may know that it needs two
Cougars and two Abrams. The COC already has the mission
planned, but now needs to choose which field resources
to use for the mission. This is where MASCOT is used.
MASCOT is designed to allocate tactical field resources
given a mission and set of service priorities. The service
priorities are a key aspect of MASCOT. They are used by
MASCOT as constraints to solve the optimization problem.
Service priorities are mappable to the attributes of individual
field resources. An example of a service priority would
be past mission experience. Each resource can have an
experience level and this can be used in determining which
are the “best” resources. The current MASCOT prototype
uses experience, readiness, agility, and delay sensitivity
as service priorities. Experience is defined as how many
times a resource has executed a particular mission. Missions
completed successfully are given more weight than others.
Readiness is defined as the inverse of the resource’s load,
where the load is how many missions are currently assigned
to the resource. A high level of readiness implies that the
resource does not have prior responsibilities. Agility is an
attribute of the type of resource. It describes how well the
resource can move over various terrain. A marine has higher
agility than an Abrams. Lastly, delay sensitivity is used to
describe how delay sensitive the mission is. If it is highly
delay sensitive, this means that the mission must commence
as soon as possible, which requires resources that can reach
the destination soon. When applying delay sensitivity to
resources, it is a function of their distance and the type of
resource since certain resources can move faster than others.
New service priorities can be added as long as they are
mappable to attributes of resources.

MASCOT will be integrated as a service that is accessible by
the COC. One possible solution is to implement MASCOT
as a web service, for example. As previously mentioned,
if the search space to find a set of good resources is very
large, then it is difficult for human operators to find the best
resources. Another important reason for MASCOT is that it
will aide the USMC in integrating more technology in their

172

(€]

COCs. MASCOT will introduce the need to collect more
information that can then be used for other services such as
mission tracking and path planning.

III. MASCOT ARCHITECTURE

MASCOT is a service that outputs a set of field resources
given a specific task request. The details of the task request
and output will be described in the following subsection.
We will then describe the actual implementation MASCOT,
which involves the Manycast Service Engine (MSE) in
Section III-B.

A. Blackbox Model

This section will describe the system in terms of inputs
and outputs while the next subsection will discus actual
implementation details. MASCOT takes as input a fask
specification and outputs a task response.

The task specification takes three parameters: p, which is a
set of three-tuples describing the service priorities, ¢, which
is a set of two-tuples describing the resources requested, and
[, which describes the target. The three-tuples in p consist of
the service priority, the weight (importance) of that priority,
and the value of that priority which is on a scale of High,
Medium, or Low. The weight of a service priority is typically
defined by the type of mission. For example, experience may
be the most important for a hostage rescue mission, so this
would have the highest weight. The value of the service
priority (High/Medium/Low) is used to filter resources. For
example, we may only be interested in resources with high
experience. We will discuss how this works in detail in the
following subsection.

A task response is simply a set of field resources that
satisfy the task specification. Along with the task response,
a number of metrics are available that will be discussed in
Section IV. An example of a task specification and task
response is shown in (1).

In the task specification, the first set contains the three-tuples
for service priorities. The first element in the tuple is the
service priority name, the second is the weight, and the last
is the value. So here the first service priority is experience
with a weight of 0.65 and a value of High. The second
set contains the tuples of requested resources. Here the
request is specifying that two HUMVEES and three cougars
are required. Lastly the target information is provided. To
specify a target, the target’s bearing, coordinates, and speed
must be specified.

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on January 15, 2010 at 13:05 from IEEE Xplore. Restrictions apply.

Manycast Service Engine 7

AFATDS @.{ &)
Task Parser |V Fi A
ilter / "

e — T Weight Calculator
' _{Tearner| [Update 4

Module Monitor @ ;

Y

Network Resource Selector

_¥| Monitor _ v
_____Parameter Data Store
Fig. 1. MASCOT architecture.

Given this request, MASCOT will search the solution space
(combinations of resources) using an optimization algorithm
and will provide a list of ten recommendations. In (1) we
only show one of the recommendation. The recommendation
is simply a set of the specific resources that satisfy the
task specification. Here the recommendation contains the
two specific HUMVEES and three specific cougars. A more
precise definition of a request is given in (2).

Speci fication = (p,t,1)

p= {pOapla 7pn}
p; = (service priority;, weight;, level;)

n
where Z weight; =1
i=0
level; = {High|M edium|Low}
t = {resourceg, resourcey, ...resource,}
resource; = (name;, requested;)

[= (bearing, coordinates, speed)

(2)
B. Implementation Details

In this section we will discuss the architecture and imple-
mentation details of MASCOT. The heart of MASCOT is
the Manycast Service Engine (MSE) that takes the task
specifications as input and outputs the task responses. The
overall architecture is shown in Fig. 1.

We will go over each of the numbered steps as seen in the
figure. Step 1 shows input coming in from various tactical
data systems (TDSs). MASOT utilizes this information using
the TDS data adapter. This information is used for updates
to target information. The COC operator then inputs the
necessary data into an interface to MASCOT in step 2
based on this information. Our Task Parser creates a task
specification from this data in step 3. The Weight Calculator,

173

which we will discuss further when we explain the opti-
mization algorithm, creates a weight function that is used to
evaluate resources in step 4. In step 5 the Resource Selectors
will provide a list of weighted resources of each type. The
weights are based on the resource’s current status and the
service priorities of the mission. The better the resource
satisfies the priorities, the higher the weight it will have. The
Resource Selector uses information in the Parameter Data
Store which contains data collected on resources from other
tactical data systems and also data that MASCOT creates on
its own. This is then sent to the Filter/Joiner is step 6. The
Filter first filters out resources that do not meet the service
priority values in order to reduce the search space and then
the Joiner will combine the results into recommendations
which are turned to the user. The results are combinations
of the individual weighted resources. The remaining steps
are not implemented in our prototype, but may be included
in future versions. Once the task is executed, it goes over
the network as shown in step 8. Lastly, in step 9 we
receive feedback from resources that is used to update the
Parameter Data Store. We also show a Learning Module in
the architecture, which is an area of future work that will
be described later.

The MSE performs optimizations in order to select the best
resources. We will discuss steps 4, 5, and 6 in more detail
here. The general idea behind the algorithm is to use the
service priorities as objective functions, so each one gives
a score to the resource. We then use a weight function
to combine the scores of the individual priorities into a
single score for the resource. Next, we use a heuristic to
combine individual resources into groups that match the
task specification. The algorithm will find a minimum of
ten recommendations and then return them to the user.
When the user is creating the request, each of our four
service priorities: Delay Sensitivity, Readiness, Expertise,
and Agility are given one of three values: Low, Medium
or High. A value of High for Expertise means the user is
requesting resources with only a high level of expertise for
the given mission. Each resource in the field can be given a

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on January 15, 2010 at 13:05 from IEEE Xplore. Restrictions apply.

EmascoT vo.s

% UMass

MASCOT

Tactical Asset Recommendations

Target Choose Mission Service Priorities Select Assets Recormmendations Refine Execute @
Target Summary Mission Summary Priorities Summary
Location: {799.6, 1560.6) Mission Mame: Hostage Rescue Primary
Bearing: 90.5 Delay Sensitivity Med
Mobile: Mot Mobile 2 A?::!ity ::DW
£adiness ()
Speed: = Expertise High

Terrain: CRSCTY

Select one of the recommendations below.

" Group: Primary ﬁ

Marine ID: 30, 25, 22, 23

=

Edit Mission |

Recommendation 1:

Abrams M1A1 ID: 34, 35, 33

Edit: Fricrities |

Cougar HE ID: 44, 40, 43, 42

" Group: Primary g

Te

=

Rocommendation 2:

Refine |

- hd|

F) Compare all | Wiew Metrics |

Fig. 2. Example of a set of recommendations provided by the MASCOT prototype.

score for each of the service priorities to determine which
category it falls in. Once each resource has a score for each
service priority, the scores are combined based on a weight
function. The weight function is based on the current mission
and gives higher weights to certain Service Priorities. For
example, some missions may require high levels of agility.
In this case, the agility service priority will be given a higher
weight in the weight function compared to the other service
priorities. With this information, each resource now has a
single weighted value. Simply choosing the top resources
from each resource type may not be the a good solution
because we must also consider the score of the combined
group. To do this, there are two remaining phases of the
algorithm: the first phase filters available resources while
the second phase joins the results together to form the final
recommendations.

The Filter uses the service priority values specified by the
user to order the results by how well each resource satisfies
those service priorities. The Filter starts by searching for
resources that match the users original request and then
relaxes each of the service priority values one by one
and recording the additional resources that now match the
settings. When this phase is complete, the best resources and
the corresponding filter values those resources meet will be
stored in sorted order from best to worst.

174

The Joiner then considers the users request and how many
resources of each type the user requires. The Joiner begins
by trying to find enough resources that satisfy the users orig-
inal service priority values and by only searching possible
combinations of these resources. This reduces the search
space. For example, if the current service priority levels
specified by the user contain enough resources that meet
them to satisfy the request, the Joiner will then search com-
binations of these resources to create teams for the mission
(we implement a limit of checking two times the number
requested, to reduce the search space further). If there are
not enough resources then the Joiner will relax the service
priority levels to be able to search for combinations from a
bigger pool of resources that may not all satisfy the users
original request. All of this information is already available
from the filter phase. Once the Joiner is able to find enough
resources, either the first time or by relaxing the service
priority levels, each of the combinations are enumerated and
each of these teams of resources are ranked according to
the sum of the scores of their resources (using the service
priorities and weight function). If all of the resources come
from a single unit then this recommendations score will be
increased by 10%. We do this because we want to favor
requests that can be satisfied from a single unit to increase
the safety of this team. Once all of the combinations are
ranked, the top ten are presented to the user. This algorithm
is suitable for a relatively small number of assets (tens

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on January 15, 2010 at 13:05 from IEEE Xplore. Restrictions apply.

4 Recommendation Comparisons

Mormalized WETEag

Primary Group

1

=lolx|

e [Orveral Score s [V Expertise
[Agility s [Radiness
08
ae /h\«/\\v/‘\v/'_<
07 '\-q_ﬁ._ i i i = iy 1
o /\/\
. //\/
= 05
=
Medium
04
0.2
0.2
0.1
a
1 2 3 4 L & 7 =] a 10
Recommendation
Fig. 3. Comparing recommendations with the MASCOT prototype.

or hundreds). One area of future work is exploring new
optimization algorithms that are more efficient and can scale.

IV. CURRENT PROTOTYPE

MASCOT is currently implemented as a standalone Java
application prototype. We will briefly describe how the
prototype works.

The prototype takes the user through a sequence of screens
that will formulate the task specification as described in III-
A when complete. First, the user is presented with a list
of possible targets to choose from. This screen will gather
all the target information required. Once this is chosen,
the user is then presented with a list of mission types
to choose from. Based on the type of mission, a set of
service priorities are selected and assigned their weight
values given their importance for that particular mission.
Next, the user specifies the values for each of the service
priorities (High/Medium/Low). The service priorities are
now completely defined. The last thing that must be specified
are the types and number of resources requested. The next
screen will provide the user with information about how
many are available and allow the user to select the required
amount. At this point, the task specification is completed.
The engine will run the optimization algorithm and present

175

the user with a list of results. An example list can be seen
if Fig. 2.

MASCOT also provides information about why the re-
sources were selected. It provides a set of metrics that
describe how well each of the recommendations matches
the original task specification. The metrics provide the
overall score given to the group of resources, the distance
travelled, the time to target, and information about how well
they satisfied the original service priorities. It also provides
a graphical representation of how well the overall group
performs based on the service priorities and allows the user
to compare all of the recommendations together. An example
of this can be seen in Fig. 3 (the High/Medium/Low in
the figure correspond to High/Medium/Low of the service
priorities). Here the user can look at the tradeoffs between
groups and make a decision about which recommendation
to choose. A certain group may have a very high score
for a particular service priority and average scores for the
remaining causing it to not be the first recommendation,
but here the system givess the user the ability to make that
tradeoff.

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on January 15, 2010 at 13:05 from IEEE Xplore. Restrictions apply.

V. FUTURE WORK

We have recently had many discusses with the USMC about
the future work of MASCOT since the completion of our
initial prototype. In this section we will discuss the areas of
future work that we will be investigating for phase two of
the project.

A. Redesign and integration into existing systems

The first goal is to redesign MASCOT, particularly the
MSE, so that it can be used as a web-service to allow
easy integration into the USMC’s existing infrastructure.
MASCOT will also leverage many of the USMC’s existing
systems to gather much of the information that it needs, such
as resource tracking and route selection.

MASCOT will include new resources types such as Un-
manned Ariel Vehicles (UAVs), logistics and support. Our
initial prototype focused on combat resources, but based
on the hierarchical structure of the USMC, it is difficult
to optimize at this level. The USMC will also provide an
updated set of service priorities that more accurately reflect
the important characteristics of resources.

B. New features

There are a number of new features that we plan to imple-
ment for MASCOT. We will briefly describe some of them
here. A natural extension for MASCOT would be to integrate
command logging into the allocation process. MASCOT will
essentially create a mission chronology log that will log
information such as who authorized the mission, the time,
summary, and status information. Part of this would be to
implement role-based authentication for the application.

There are a number of new features that could be added
to deal with missions as a whole. We could implement
different modes of Mission Planning. Currently, MASCOT
is used for resource allocation, but we can provide different
levels of planning. We could also provide Mission track-
ing and updating, which again ties into the command log
described previously. MASCOT could also provide Mission
Simulation based on path performance and past missions.
We can leverage data available from other USMC systems to
provide this and use models to predict the outcome. Another
interesting area would be to implement a “War Planner”,
where instead of planning just a single mission, MASCOT
can plan missions for an entire day or week or longer.

Another important area to investigate is evaluating alter-
native multi-objective optimization approaches. We used a
simple heuristic for optimization. We can investigate more
complex techniques like genetic algorithms or ILPs.

176

C. Long term research

The long term research tasks include handling multiple
missions concurrently and large missions with concurrent
submissions. We plan to develop accurate metrics to evaluate
how well a mission was executed that can be used in the
future. We will also investigate system scalability.

VI. CONCLUSION

In this paper we have presented MASCOT. MASCOT is
our initial prototype for a tactical resource allocation system
for the USMC. The current prototype allows for optimized
resource allocation given a set of service priorities in a task
specification. It then produces a task response consisting of
the top ten recommendations.

We are currently entering phase two of the project with the
USMC and will be evolving MASCOT.

While MASCOT focuses on allocation of combat resources,
it can be used to handle different resource allocation prob-
lems as well.

VII. ACKNOWLEDGEMENTS

We would like to thank David Silvia of the Naval Undersea
Warefare Center, Newport, RI for his guidance and feedback
during the project.

REFERENCES

[1] Xiaodong Huang, Qingya She, V.M. Vokkarane, and
J.P. Jue, “Manycasting over optical burst-switched
networks,” Communications, 2007. ICC ’07. IEEE
International Conference on, pp. 2353-2358, June 2007.

[2] “Jane’s information group,” 2008,
http://www.janes.com/; Last accessed: 08/2008.
[3] R.H. Kewley and M.J. Embrechts, “Computational

military tactical planning system,” Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 32, no. 2, pp. 161-171, May 2002.
Brad Rosenberg, Marc Richards, John T. Langton, Sofya
Tenenbaum, and Daniel W. Stouch, “Applications of
multi-objective evolutionary algorithms to air operations
mission planning,” in GECCO ’08: Proceedings of the
2008 GECCO conference companion on Genetic and
evolutionary computation, New York, NY, USA, 2008,
pp. 1879-1886, ACM.

“Marine corps systems command (MCSC) product
group 11, marine air/ground task force (MAGTF) com-
mand & control (C2) weapons & sensors development
& integration (PG11 MC2I), PG11 effort to stimulate
university research in C2 systems & enablers, request
for proposals,” Feb. 2008.

(4]

(5]

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on January 15, 2010 at 13:05 from IEEE Xplore. Restrictions apply.

