
Coordinated Multi-Layer Loss Recovery in TCP over Optical Burst-Switched (OBS) Networks
Rajesh RC Bikram, Neal Charbonneau, and Vinod M. Vokkarane

Department of Computer and Information Science, University of Massachusetts, Dartmouth, MA
E-mail: {rrc, u ncharbonne, vvokkarane}@umassd.edu

Abstract— It is well-known that the bufferless nature of OBS
networks causes random burst loss even at low traffic loads.
When TCP is used over OBS, these random losses make the
TCP sender decrease its congestion window even though the
network may not be congested. This results in significant TCP
throughput degradation. In this paper, we propose a coordinated
multi-layer loss-recovery approach for TCP over OBS networks
using Snoop and ARQ. We developed an analytical model for
end-to-end TCP throughput using the hybrid approach over
OBS and verified the results using simulations. We evaluate
the performance of independent and coordinated Snoop and
ARQ over an OBS network. Based on the numerical results,
the proposed coordinated multi-layer Snoop and ARQ approach
outperforms all other approaches at all traffic loads. 1

Keywords: TCP, IP, ARQ, Snoop, and OBS.
I. INTRODUCTION

Optical burst switching (OBS) is a promising candidate
to support the next-generation Internet. Packets arriving into
the OBS network are assembled into bursts and subsequently
transmitted through the network optically [1]. A burst header
packet (BHP) is transmitted ahead of the associated burst
in order to reserve the data channel and configure the core
switches along the burst’s route. The BHP carries information,
such as source address, destination address, burst duration, and
offset time of the associated burst. In just-enough-time (JET)
signaling scheme [2], the transmission of the data burst follows
an out-of-band BHP that is processed before the burst arrives
at intermediate nodes.

In recent years, TCP-based applications, such as web
(HTTP), email (SMTP), cloud computing, and peer-to-peer
(P2P) file sharing, account for a majority of data traffic in the
Internet, thus understanding and improving the performance
of TCP implementations over OBS networks is critical. The
fundamental assumption for most of the TCP flavors, such
as TCP SACK and TCP Reno is that they are carried on an
electronic medium and packets experience queuing delays due
to congestion at the IP router buffers. The bufferless nature of
the OBS core in addition to one-way JET signaling produces
random burst losses even at low traffic loads. When TCP traffic
traverses over OBS networks, the random burst loss may be
falsely interpreted as network congestion by TCP.

There are three kinds of TCP flows, namely fast flows,
medium flows, and slow flows [3]. For a fast flow, all the
segments in a TCP source’s sending window are assembled
into a single outgoing burst. For a slow flow, at most one
segment in a TCP source’s sending window is included in any
given outgoing burst. Thus, the loss of a burst will correspond
to a single TCP segment being lost. For a medium flow,
the number of segments for a TCP source included in a
burst should be more than one and less than the sender’s
entire window size. If a fast flow based burst is dropped
due to a random contention at low traffic loads , then the
TCP sender times out, leading to false congestion detection,

1This work was supported in part by the National Science Foundation (NSF)
under grant CNS-0626798.

which is referred to as a false timeout (FTO) [4]. When
the TCP sender detects this (false) congestion, it will trigger
slow start, resulting in significantly reduced TCP throughput.
Another example is when a random burst loss triggers TCP fast
retransmission for medium flows or slow flows. The random
burst loss in OBS will be interpreted as light congestion,
leading to one or more TCP false fast retransmissions (FFR).

There are several contention resolution (or loss minimiza-
tion) techniques, such as optical buffering [5], wavelength
conversion [5], deflection routing [6], and segmentation [7].
Instead of loss minimization, loss recovery techniques, such
as cloning [8] and burst retransmission (ARQ) [9] can be used.

In this paper, we propose a coordinated multi-layer loss
recovery approach for OBS networks. At the lowest layer, we
implement ARQ to minimize data loss due to random burst
contentions. At the next higher layer, we implement Snoop to
eliminate any FTOs/FFRs. Finally, TCP is used to retransmit
any lost packets using timeouts and fast retransmissions.
We implement simple coordination between Snoop and ARQ
layers to minimize redundancy and improve performance.

The remainder of the paper is organized as follows: Sec-
tion II discusses related work. Section III describes how multi-
layer loss recovery is implemented over an OBS network.
Section IV describes the analytical model of the proposed co-
ordinated approach. Section V discusses the numerical results,
and Section VI concludes the paper.

II. RELATED WORK
While false congestion detection is an issue for TCP over

OBS networks, it is also an issue in TCP over a wired-cum-
wireless network. The main problem with TCP performance
in networks that have both wired and wireless links is that
packet losses that occurred due to bit-errors in the wireless
network are mistakenly interpreted by the TCP sender as being
due to network congestion. This causes the TCP sender to
drop its transmission window and often timeout, resulting in
degraded throughput. Among the proposed solutions, Split-
TCP [10] shows significant improvement in the overall end-
to-end throughput. However, Split-TCP violates the end-to-end
semantics of TCP.

The Snoop protocol [11] for wireless networks addresses the
issues of TCP end-to-end semantics violation. Snoop works
by deploying an agent at the base station and performing
retransmissions of lost segments over the wireless portion
based on duplicate TCP acknowledgments (which it also
suppresses). Snoop does not acknowledge any data sent by the
sender, so the end-to-end semantics are not violated. It simply
tries to retransmit packets sent over the wireless network based
on the receipt of duplicate ACKs before the TCP sender times
out. In this paper, we incorporate Snoop for providing packet-
level loss recovery over OBS networks.

Burst retransmission (ARQ) is a link-layer loss recovery
approach for OBS. In the burst retransmission approach,
before transmitting a burst, the ingress buffers them in an

1

2

electronic buffer. When a contention occurs in the OBS
core, the core node sends an explicit ARQ message back
to the OBS ingress. When the ARQ message is received,
the ingress retransmits the burst from its buffer. It has been
shown that ARQ improves performance compared to a regular
OBS network but it behaves differently for different types of
TCP flows [9]. For a TCP fast flow, if a burst experiences
contention and is successfully recovered by ARQ, there are
no adverse side-effects. For medium flows, however, a burst
contention may trigger fast retransmissions even when OBS-
layer retransmission is employed. In this case, packets from
a given TCP flow may be spread across multiple bursts.
Since the retransmitted burst incurs an extra retransmission
delay, bursts that are sent after the contending burst may
actually reach the egress node prior to the retransmitted burst.
The earlier arrival of these other bursts will result in the
generation of duplicate ACKs, leading to the triggering of
fast retransmission at the source. Once fast retransmission is
triggered, the TCP sender will retransmit a lost packet and
unnecessarily reduce its send rate.

The ARQ loss recovery approach is independent of TCP and
does not violate end-to-end semantics like Split-TCP. In order
to overcome the issue of FFRs caused by reordering of bursts
in ARQ, we propose using Snoop along with ARQ. Snoop
is able to suppress duplicate acknowledgements (dupacks)
generated by ARQ. We discuss this approach in detail in the
following sections.

III. MULTI-LAYER LOSS RECOVERY IN OBS
In this section, we first discuss reliability over OBS in gen-

eral, then discuss our proposed multi-layer approach. There are
two main techniques to provide reliability in OBS networks.
They can be classified as loss minimization and loss recovery
mechanisms. Loss minimization involves either minimizing
the probability of contentions or minimizing data loss after a
contention. The former case is known as contention avoidance
and is a proactive approach and the latter is a reactive approach
known as contention resolution.

Loss recovery involves either responding to explicit failure
messages about a burst not being successfully transmitted or
sending redundant information with each burst in order to
recover from a loss. We can also divide loss recovery into
proactive and reactive mechanisms. In proactive loss recovery,
the OBS network assumes there will be contentions and there-
fore sends extra data (overhead) into the network to handle the
contentions. Reactive loss recovery mechanisms first assume
that there will be no contentions in the network, but then
responds to a contention if one does occur. Snoop and ARQ
are both reactive loss recovery approaches. ARQ recovers
by retransmitting a burst upon receiving an ARQ request,
while Snoop recovers by handling duplicate ACKs. Generally,
proactive approaches are used for delay-sensitive traffic and
where loss probability is high while reactive approaches are
used where loss probability is low and bandwidth is scarce.

Any of the above mechanisms can be combined to provide
reliability in OBS. As previously mentioned, we evaluate the
impact of combining two reactive loss recovery mechanisms:
Snoop and ARQ. With multiple recovery mechanisms, we
explore multi-layer reactive loss recovery over OBS.

We can further classify multi-layer loss recovery mech-
anisms into independent and coordinated multi-layer loss
recovery. In the coordinated approach the layers know about
each other and communicate to provide reliability. While with
independent multi-layer recovery, each layer does not need
to know about the other. Both independent and coordinated
approaches are used to analyze Snoop and ARQ over OBS
network.

In this paper, we evaluate the performance of three inde-
pendent layers of loss recovery. The first being the transport
layer, or TCP, which uses fast retransmit and timeouts as its
loss recovery mechanisms. TCP is clearly independent of any
lower layer recovery mechanisms. The other two layers of
loss recovery are Snoop and ARQ, both working at the OBS
layer, but at different granularity. The Snoop layer works at the
packet-level and uses triple duplicates to determine when to
attempt recovery, while ARQ works at the burst-level and uses
explicit requests to attempt recovery. Both of these approaches
are independent of one another but complement each other.

We are going to describe how independent and coordinated
multi-layer loss recovery using Snoop and ARQ work over
OBS networks with an illustration example.

A. Independent Snoop and ARQ
ARQ causes FFRs with TCP medium flows as we men-

tioned earlier. Snoop can hide the FFRs caused by ARQ from
the TCP sender since it can suppress dupacks. We propose a
hybrid approach that implements both Snoop and ARQ. Both
of them perform loss recovery, where Snoop performs recovery
at the packet-level and ARQ at the burst-level. Snoop is
triggered by the receipt of dupacks while burst retransmission
is triggered by explicit ARQ messages. In most cases, ARQ
prevents timeouts by retransmitting lost bursts, but ARQ can
trigger FFRs due to the out-of-order delivery of bursts. By
using Snoop on top of ARQ, we can prevent these FFRs.

Let us consider a loss scenario with the Snoop and ARQ
approach implemented at the OBS ingress. Each new packet
sent by the TCP source is stored in the Snoop cache before
being forwarded to the OBS burstification process. A burst
and its corresponding BHP are created during the burstification
process. After the burst is created, a copy of the burst is stored
in a retransmission buffer. In the event of a burst loss, the OBS
ingress will receive an ARQ. A duplicate burst is retransmitted
from the retransmission buffer. If the TCP destination receives
packets out-of-order, it sends dupacks back to the TCP source.
These dupacks are received as a burst on the reverse path.
During deburstification, the Snoop will detect the dupacks, and
using the Snoop cache, the Snoop will retransmit the missing
packet and suppress the duplicate acknowledgement.

The burst loss event can lead to two scenarios. In the
first scenario, ARQ successfully retransmits the lost burst and
Snoop suppresses all of the duplicate acknowledgements. In
second scenario, ARQ is unable to recover the lost burst. In
this case, Snoop has to individually retransmit all the lost pack-
ets in addition to suppressing duplicate acknowledgements.

If there is no loss in the OBS core, there is no additional
control overhead. Each acknowledgement received in the cor-
rect order removes the corresponding data packets from the
Snoop cache.

3

(a)

Snoop ARQ
Receiver

2Ta + 2 Tb

2Ta + 2 Tb

T
r

p1 p2

p3 p4 p5 T
b

AR
Q

2T
a

T
s

Sack Aware Snoop retransmits
lost packets p1 and p2 as get

dupacks of p1

p1 p2

T
b

Receive ACKs for p1, p2, p3, p4 and p5
by OBS-layer burst retransmission and
 Snoop retransmission and forwards

to sender.

T
s

Packets from sender

t2

t1

t3

t4

Edge Node Core Destination

Unwanted
retransmission
 by Snoop

(b)

Snoop ARQ
Receiver

2Ta + 2 Tb

2Ta + 2 Tb

T
r

p1 p2

p3 p4 p5 T
b

AR
Q

 δ+ T
s
+ 2T

a

Receive ACKs for p1, p2, p3, p4 and p5
by OBS-layer burst retransmission

T
s

Packets from sender

 δ

Packets from the Sender
via Snoop

t1

t2

t3

t4

AR
Q

T
s

Edge Core Destination

Fig. 1. (a) Independent and (b) Coordinated Snoop and ARQ.

B. Coordinated Snoop and ARQ
In this section, we develop the mechanism to coordinate

between Snoop and ARQ. We illustrate in Fig. 1 the problems
with Snoop and ARQ if they work independent of each
other. If Snoop somehow knows about the ARQ status, then
it can try to prevent unwanted packet retransmission from
its Snoop cache. Snoop uses locally saved retransmission
timers for each packet, and the ARQ information for that
packet to decide whether to delay packets or not. The delay
constraint, ρ, information from the ARQ is passed to the
Snoop. The delay constraint specifies how long ARQ keeps
a burst before removing it from its buffer and therefore giving
up on retransmission. More details about calculation of ρ
is described in paper [9]. The coordinated scenario is more
important when ARQ retransmission is successful when one
of the sequence of burst gets dropped in the core node. We
denote the delay incurred in the access network as Ta, the
burst assembly and disassembly delay as Tb, the one-way
propagation delay incurred in OBS network as Tp, and the
delay incurred by Snoop cache as Ts. We will describe the
problem with an illustrative example.

Fig. 1(a) illustrates a scenario for a TCP medium flow
where Snoop and ARQ work independently. Since Snoop and
ARQ are implemented at the edge nodes, there is negligible
propagation delay between them. Let packets P1, P2, P3, P4,
and P5 belong to the same TCP sender’s window. Packets P1

and P2 are assembled into burst B1, and packets P3, P4, and
P5 are assembled into burst B2. Lets suppose B1 is dropped
in the core while B2 is successfully delivered. ARQ will
retransmit B1 in its delay constraint time, ρ, while in the mean
time Snoop receives duplicate acks for B1 triggering Snoop to
retransmit the lost packets, P1 and P2, in same RTT (as Snoop
is sack-aware), even though B1 is successfully retransmitted
by ARQ. These unwanted packet retransmission from Snoop
causes waste of bandwidth.

To overcome the unwanted retransmission problem by
Snoop as in Fig. 1(a), ARQ sends the ρ information to the
Snoop so that it can delay its retransmission timer. By delaying
the retransmission timer, Snoop receives the acknowledgment
for B1 before the Snoop retransmits the lost packets through

its local cache. From the illustration Fig. 1(b) Snoop delays
the retransmission timer by ρ + 2Ta so that Snoop can always
guarantee t3 < t4. This means that Snoop received the acks for
P1, P2, P3, P4, and P5 before Snoop retransmitted the packets
P1 and P2 (as Snoop is Sack aware). In this way, we minimize
the unwanted packet retransmission when ARQ retransmission
is successful as illustrated in Fig. 1(b). Coordination between
Snoop and ARQ always adds to the overall end-to-end delays
but these added delays for Snoop are always much less than
overall end-to-end TCP delays.

IV. PERFORMANCE ANALYSIS

In this section, we develop an analytical model for evaluat-
ing the end-to-end burst loss probability for OBS networks
with two layers of retransmission burst level and packet
level. Burst level retransmission is done by ARQ where as
packet level retransmission is done Snoop. We developed an
analytical model for evaluating TCP throughput when TCP is
implemented over an OBS network with Snoop and ARQ.

We analyze TCP throughput for a TCP fast flow and a
TCP medium flow. For the TCP fast flow, all three TCP
flavors have the same behavior. For the TCP medium flow,
since TCP SACK performs the best, we only analyze TCP
SACK throughput. In TCP fast flows with ARQ, successful
retransmission in the OBS network do not produce any false
fast retransmissions (FFRs) and false timeouts (FTOs) when
burst is lost in OBS network. In this scenario, Snoop explicitly
does not have any effects as Snoop does not get any duplicate
acknowledgements during fast flows. ARQ failure to retrans-
mit the lost burst in OBS for fast flows generates FTOs. In
this scenario,too Snoop does not have direct impact on the
overall TCP performance as we know Snoop gets triggered
only by duplicate acknowledgements. During medium flows,
ARQ may generate FFRs when burst is lost in the OBS
network. Snoop control this situation by suppressing the
duplicate acknowledgment and retransmits the packets of lost
burst to burst assembly process. TCP medium flows for ARQ
with Snoop behaves as fast flows for ARQ only. With Snoop
FFRs get suppressed and sender usually never gets duplicated
acknowledgements as in fast flows. Our analytical modeling
is base on [9] paper.

4

As defined in [9], a TCP sending round refers to the period
during which all packets in the sending window are sent and
the first acks for one of the packets in the sending window
is received. We assume that the time needed to send all the
packets in the sending window is less than RTT . Hence, the
duration of a round is equal to RTT . We also assume that
the number of packets that are acknowledged by a received
ACK is one (b = 1). Furthermore we assume that Snoop has
sufficient cache to accommodate each packet received from
the senders.

We introduce the following notation for a TCP flow:
pc: burst contention probability.
pd: burst dropping probability.
B: TCP throughput.

Wm: TCP maximum window size (in packets).
ZTO: duration of a sequence of TOs.

H: # of TCP segments sent in ZTO.
1) TCP medium flow: Our analysis of a TCP medium flow

is similar to that in [3]. However, in our analysis for the case
with OBS retransmission, the successfully retransmitted bursts
are treated differently from the bursts that do not experience
any contention. The retransmitted bursts suffer from an extra
retransmission delay, which has a negative effect on the TCP
throughput.

Medium flow triggers TD events, but these TD events are
suppressed by Snoop. The medium flow imitates the TCP fast
flow behavior, so we are using TCP fast flow modeling instead
of medium flow modeling.

Since a TCP fast flow does not trigger TD, multiple suc-
cessful sending rounds are only followed with one or multiple
lossy rounds. Therefore, as in [3], a given time out period
includes a sequence of successful rounds and a sequence of
lossy rounds. In this time out period, let X be the number of
successful rounds, Y be the number of segments sent before
the first lossy rounds, and A be the duration of the sequence of
successful rounds. We can then calculate the TCP throughput
as given below:

Bf =
E[Y] + E[H]

E[A] + E[ZTO]
. (1)

The sequence of successful rounds consists of a portion
of rounds in which the burst does not experience contention
and a portion of rounds in which the burst experiences con-
tention, but is successfully retransmitted. Hence, we obtain the
probability of a successful round in which a burst experiences
contention but is successfully retransmitted as

psr =
pc − pd

1− pd
. (2)

The probability of a successful round in which there is no
burst contention can be calculated as

pnc =
1− pc

1− pd
. (3)

We assume that each retransmission of a burst takes an
average time of Tp. Then, the average number of retransmis-
sions for a retransmitted burst, given that the burst needs to be
retransmitted at least once and the retransmission is successful,
is

E[rb] =
bδ/Tpc−1∑

i=1

ipi−1
c (1− pc) + b δ

Tp
cp(b δ

Tp
c−1)

c . (4)

where E[rb] is average RTT due to burst retransmission.
We assume that each retransmission of a packet takes an

average time of Tp (assuming that packets are already in the
Snoop Cache). Then, the average number of retransmission
packets, given that the packet need to be retransmitted at least
once and the retransmission is successful, is

E[rs] =
N−1∑

i=1

ipi−1
c (1− pc) + Np(N−1)

c . (5)

where, N is total number of packet retransmission and E[rs]
is average number of RTT due to packet retransmission.

Hence, the average round trip time experienced by a suc-
cessful burst and packet retransmission by Snoop and ARQ,
respectively, is given by

RTTr = RTT+E[rb]Tp+E[rs]Tp = RTT+Tp(E[rb]+E[rs]),
(6)where RTTr is round trip time when Snoop and ARQ works

independently. The RTT for coordinated Snoop and ARQ is
given by,

RTTr = RTTr + ρ + 2 ∗ Tp. (7)
We then obtain E[A] as

E[A] = psrE[X]RTTr + pncE[X]RTT. (8)
Based on the equations (14), (16), (18), and (28) in [3], we

have
E[ZTO] = RTO

f(pd)
1− pd

, (9)

where, f(pd) = 1 + pd + 2p2
d + 4p3

d + 8p4
d + 16p5

d + 32p6
d.

E[H] =
pd

1− pd
, (10)

E[X] =
1− pd

pd
, (11)

and

E[Y] =

{
1
p2

d
pd > 1

Wm

Wm

pd
otherwise.

(12)

Since only burst losses result in TOs for a fast flow, the burst
loss probability in an OBS network with burst retransmission
is applied in the above equations.

By substituting equations (8), (9), (10), and (12) into (1),
we have

B
f =

p3
d − pd + 1

pd[(1 − pd)(pc − pd)RT Tr + (1 − pd)(1 − pc)RT T + pdf(pd)RT O]
, (13)

when pd > 1
Wm

, and

B
f =

p2
d + Wm −Wmpd

(1 − pd)(pc − pd)RT Tr + (1 − pd)(1 − pc)RT T + pdf(pd)RT O
, (14)

when pd ≤ 1
Wm

.
2) TCP fast flow: Our analysis of a TCP fast flow is similar

to that in [3]. Snoop comes into effect with the receipt of
dupacks. With TCP fast flow, burst loss in OBS leads to only
TCP timeouts and Snoop isolates itself for TCP fast flows.
Throughput modeling of Snoop with ARQ is the same as just
ARQ modeling. Coordination between Snoop and ARQ does
not have any meaning as Snoop does not receive any duplicate
acknowledgment as most of the time burst lost in network
results TCP timeouts. We are using ARQ modeling for TCP
fast flow from the paper [9].

We can calculate TCP throughput as

Bf =
E[Y] + E[H]

E[A] + E[ZTO]
. (15)

5

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1e-05 1e-04 0.001 0.01 0.1 1

T
hr

ou
gh

pu
t (

M
b/

s)

Contention Probability

Simulation results for TCP fast flow with Snoop+ARQ
Analytical results for TCP fast flow with Snoop+ARQ

Coordination between Snoop and ARQ for TCP fast flow.

(b)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1e-05 1e-04 0.001 0.01 0.1 1

T
hr

ou
gh

pu
t (

M
b/

s)

Contention Probability

Simulation results for Coordinated Snoop+ARQ
Analytical results for Coordinated Snoop+ARQ

Coordination between Snoop and ARQ for TCP medium flow.
Fig. 2. Analytical and Simulation results for Snoop and ARQ.

We use equation (6), (7), (8), and (10) in [9] to obtain

B
f =

p3
d − pd + 1

pd[(1 − pd)(pc − pd)RT Tr + (1 − pd)(1 − pc)RT T + pdf(pd)RT O]
, (16)

when pd > 1
Wm

, And

B
f =

p2
d + Wm −Wmpd

(1 − pd)(pc − pd)RT Tr + (1 − pd)(1 − pc)RT T + pdf(pd)RT O
, (17)

when pd ≤ 1
Wm

.
V. NUMERICAL ANALYSIS

We developed analytical model to verify our simulation
results. The analytical model evaluates the performance of
TCP over an OBS network with Snoop and ARQ. Fig. 2(a)
and (b) compares the analytical and simulation results for TCP
Sack in OBS network with coordinated Snoop and ARQ for
TCP fast flow and medium flow respectively. We simulate a
network [12] with 1 TCP flow. Each flow has the following as-
sumptions, Wm = 10000 packets and Tp = 40ms. We assume
access bandwidth has Ba = 100Mbps and Tb = 10ms for
TCP medium flow and Wm = 1000 for TCP fast flow. Packets
are dropped if snoop retransmission failed after one retrans-
mission and burst are dropped if ARQ exceeds ρ = 2Tb + 2Tp.
We see that simulation results matches with analytical results.

The topology used for this simulation is shown in Fig. 3(a).
There are a total of 2 edge nodes and 3 cores nodes denoted by
E and C, respectively. There is an IP access network connected
to both the ingress and egress OBS nodes. The access networks
have four nodes with one TCP sender on each node. The
nodes in the left access network send data to the nodes in
the right access network. An FTP traffic generator is used to
send a 1GB file over each of the flows, which are TCP Sack
flows. TCP’s advertised window remains constant throughout
the simulation. Each link has 16 data channels with 1Gbps
bandwidth on each channel. The edge nodes use a mixed timer-
threshold burst assembly mechanism with a timer of 10ms and
a maximum burst size of 50KB. Burst contention is simulated
by randomly dropping bursts at core node C2.

In Fig. 3(f) we compare the total burst received by OBS
egress with and without coordination between Snoop and
ARQ. With the increase of the contention probability loss the
total burst received by destination increases with the coordina-
tion as it suppress the unwanted retransmission packets from
the Snoop and retransmits the new packets to ARQ.

In our simulations, Snoop attempts one retransmission per
packet and the Snoop cache size goes up to 9Mb for each TCP.

ARQ uses a maximum of three retransmission attempts to
handle burst loss. We compare regular OBS, OBS with Snoop,
OBS with ARQ, and OBS with and without coordinated Snoop
and ARQ over varying loss probabilities in the core.

In Fig. 3(b) we compare the average file transfer completion
time. The graph shows that coordinated Snoop and ARQ
significantly improves TCP performance. The completion
time stays almost constant for all loss probabilities. At 1%
contention probability there is over an order of magnitude
improvement over regular OBS and at 10% almost three
orders of magnitude. There is also a significant improvement
in completion time between ARQ and Snoop+ARQ with or
without coordination between them. Fig. 3(c) shows that this
is because ARQ causes a large number of FFRs due to
reordering of bursts. As the contention probability increases,
ARQ causes more fast retransmissions. From Fig. 3(c) and
(d) we observe that Snoop alone handles FFRs well while
ARQ alone handles FTOs well. Therefore, the combination
of the two, Snoop+ARQ, provides significant performance
improvement.

We can see that without any loss recovery, regular OBS
performs very poorly. We can see from Fig. 3(e) that the
average congestion window is small enough for the entire
window to fit inside a single burst. As a result, when a burst
is dropped the TCP sender will always enter timeout instead
of fast retransmission. By itself, Snoop does not provide
large performance improvement because it cannot prevent
timeouts even though it handles fast retransmissions as shown
in Fig. 3(c) and (d). Coordinated Snoop+ARQ performs better
than other schemes as the contention probability increases.
There is significant improvement compared to ARQ alone
because of the FFRs caused by ARQ. Snoop handles fast
retransmission by suppressing duplicate acknowledgments but
cannot handle FTOs. The two approaches complement each
other to handle both FTOs and FFRs. These congestion
window values translate directly to throughput obtained as
well.

VI. CONCLUSION
In this paper we have evaluated multi-layer loss recovery

mechanisms, including Snoop, ARQ, and Snoop+ARQ coor-
dinated and independent for TCP over OBS networks. We have
shown that the coordinated Snoop+ARQ approach over OBS

6

(a)

C2

E1 E2

C3

Receiver 3

Sender 1

C1
8.3ms 10.8ms

Sender 2

Sender 3

Sender 4

Receiver 2

Receiver 1

Receiver 4

All Acces link with 10 ms

delay with

100 Mb/s bandwidth

Edge node

Core node

16 data channel @ 1 Gb/s
0.1ms 0.1ms

Simulation network topology.

(b)

 100

 1000

 10000

 100000

 1e+06

 0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 C
om

pl
et

io
n

T
im

es
 in

 S
ec

on
ds

Contention Probability

BaseLine
Snoop

ARQ
Snoop+ARQ Without Co-ordination

Snoop+ARQ With Co-ordination

Average per flow completion time.
(c)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 F
as

t r
et

ra
ns

m
is

si
on

s

Contention Probability

BaseLine
Snoop

ARQ
Snoop+ARQ Without Co-ordination

Snoop+ARQ With Co-ordination

Total number of fast retransmits experienced across all TCP flows.

(d)

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 T
im

eo
ut

Contention Probability

BaseLine
Snoop

ARQ
Snoop+ARQ Without Co-ordination

Snoop+ARQ With Co-ordination

Total number of timeouts experienced across all TCP flows.

(e)

 1

 10

 100

 1000

 0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 C
on

ge
st

io
n

W
in

do
w

s
(in

 P
ac

ke
ts

)

Contention Probability

BaseLine
Snoop

ARQ
Snoop+ARQ Without Co-ordination

Snoop+ARQ With Co-ordination

Average per flow congestion window.

(f)

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 260000

 1e-05 1e-04 0.001 0.01 0.1 1

T
ot

al
 B

ur
st

 R
ec

ei
ve

d

Contention Probability

With no co-ordiantion between Snoop and ARQ
With co-ordination between Snoop and ARQ

Comparing overall performance gain with and without coordination
between Snoop and ARQ.

Fig. 3. TCP performance with different contention probability.

significantly improves overall TCP performance. Comparing
the average end-to-end TCP flows completion time, coordi-
nated Snoop+ARQ is up to two orders of magnitude faster than
regular OBS while also providing performance improvements
over ARQ, independent Snoop+ARQ and Snoop.

REFERENCES

[1] J.P. Jue and V.M. Vokkarane, Optical Burst Switched Networks, Springer,
2005.

[2] C. Qiao and M. Yoo, “Optical burst switching (OBS) - a new paradigm
for an optical Internet,” JHSN, vol. 8, no. 1, pp. 69–84, Jan. 1999.

[3] A. Detti et. al., “Impact of segments aggregation on TCP Reno flows
in optical burst switching networks,” in INFOCOM, 2002.

[4] X. Yu et. al., “TCP implementations and false time out detection in
OBS networks,” in Proceedings, IEEE INFOCOM, Mar. 2004.

[5] I. Chlamtac et al., “CORD: Contention resolution by delay lines,” IEEE
JSAC, vol. 14, no. 5, pp. 1014–1029, Jun. 1996.

[6] S. Yao et. al., “A unified study of contention-resolution schemes in
optical packet-switched networks,” in IEEE/OSA JLT, Mar. 2003.

[7] V. M. Vokkarane and J. P. Jue, “Burst segmentation: An approach for
reducing packet loss in optical burst-switched networks,” SPIE Optical
Networks Magazine, vol. 4, no. 6, pp. 81–89, Nov.-Dec. 2003.

[8] X. Huang et. al., “Burst cloning: A proactive scheme to reduce data loss
in optical burst-switched networks,” in Proceedings, IEEE International
Conference on Communications (ICC), May 2005.

[9] Q. Zhang et. al., “Analysis of TCP over optical burst-switched networks
with burst retransmission,” IEEE Globecom, Nov. 2005.

[10] S. Kopparty et. al., “Split TCP for mobile ad hoc networks,” in
Proceedings, IEEE GLOBECOM, Nov. 2002, vol. 1, pp. 138–142 vol.1.

[11] H. Balakrishnan et. al., “Improving TCP/IP performance over wireless
networks,” in Proceedings, 1st ACM Conf. on Mobile Computing and
Networking, Nov. 1995.

[12] “OBS-NS simulator: http://dawn.cs.umbc.edu/owns/,” .

