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Abstract Recent advances in optical switching tech-
nology allows for the creation of networks in which
data bursts are switched optically at each node, offer-
ing a greater degree of flexibility suitable for handling
bursty Internet traffic. TCP-based applications account
for a majority of data traffic in the Internet; thus un-
derstanding and improving the performance of TCP
implementations over OBS networks is critical. Previ-
ously, several articles show that load-balanced routing
improves loss-performance in OBS. In this paper, we
identify the ill-effects of load-balanced OBS on TCP
performance caused by false time-outs and false fast-
retransmits. We propose a source-ordering mechanism
that significantly improves TCP throughput over a load-
balanced OBS network.

Keywords Load-balancing · TCP · OBS

1 Introduction

Next-generation high-speed optical Internet will be re-
quired to support a broad range of emerging applica-
tions which may not only require significant bandwidth,
but may also have strict requirements with respect to
end-to-end delays and reliability of transmitted data.

In optical burst switching (OBS), data to be trans-
mitted is assembled in to bursts and are switched through
the network all optically [1]. Each burst has an asso-
ciated control packet called the burst header packet

Portions of this paper were published in IEEE/OSA
OFC/NFOEC 2007 and IEEE BroadNets 2007. This work
was supported in part by NSF Grant CNS-0626798.

Department of Computer and Information
University of Massachusetts, Dartmouth, MA 02747
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(BHP) and the BHP is sent ahead of time in order to
configure the switches along the bursts’ route. In OBS
networks, apart from the data channels, each link has
one or more control channels to transmit BHPs. BHPs
carries information about the burst such as source, des-
tination, burst duration, and offset time. Offset time is
the time at which the burst and BHP are separated
at the source and the subsequent intermediate nodes.
The offset time allows for the BHP to be processed at
each intermediate node before the data burst arrives. As
the BHP travels from source to destination, it is pro-
cessed at each intermediate node in order to configure
the optical switches accordingly. Then the data burst
cuts through the optical layer avoiding any further de-
lays. Bandwidth is reserved only for the duration of the
burst, this reservation technique is called just-enough-
time (JET) [2].

The primary issue in the OBS core network is con-
tention resolution, since the core does not have any
buffers. Contention occurs when two or more bursts
contend for the same output port at the same time.
There are several contention resolution techniques, such
as optical buffering [3], wavelength conversion [4,5], and
deflection routing [6]. These contention resolution tech-
niques are reactive in nature, that try to resolve the
contention when it occurs. These contention resolution
techniques attempt to minimize the loss based on the
local information at the node. An alternative to con-
tention resolution is to avoid contention before it hap-
pens.

Load-balanced routing is an approach to implement
contention avoidance in OBS [7]. Load-balanced rout-
ing involves two stages, route calculation and route se-
lection. Both route calculation and route selection can
be implemented in a static or a dynamic manner. In
this paper, we adopt the a load-balanced routing tech-
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2

nique with static route-calculation and dynamic route-
selection as proposed in [7]. At every τ seconds, all
the ingress OBS node dynamically selects the least-
congested path (among the two static link-disjoint min-
imum hop paths) to all their destination nodes using
the cumulative congestion information of all the links
along the two pre-calculated paths. A link is said to be
congested, if offered load on Link (i, j), Li,j ≥ Pmax,
where Pmax is the maximum load threshold on a link.
Let τs and τd be the duration of successful burst ar-
rivals and dropped burst arrivals during the interval
τ , respectively. The offered load on each of the node’s
outgoing link is expressed as the duration of all arriving
bursts over the interval τ , is given by, Li,j = τs+τd

τ .
Load-balanced routing is possible since we imple-

ment source-routing. With source-routing, the ingress
node specifies the route that a burst will take. The in-
termediate core nodes simply read the route informa-
tion from the BHP and forward the burst to the next
hop specified. Source-routing requires knowledge of the
network topology. OBS networks may be implemented
in long haul or metro area networks so knowledge of the
entire network is possible. The dissemination of network
load on all the links can be done through a routing pro-
tocol using link state updates like OSPF. Again, OBS
networks will be limited in size so link state updates will
not cause congestion on the control channels. Based on
these load updates, the source can change the path that
a burst will take by specifying the path in the BHP.

There is a tremendous need to support reliable con-
nection oriented end-to-end transport service for sup-
porting new applications, such as the Grid systems. In
the recent years, transmission control protocol (TCP)-
based applications, such as Web (HTTP), Email (SMTP),
peer-to-peer file sharing [8,9], and grid computing [10],
account for a majority of data traffic in the Internet;
thus understanding and improving the performance of
TCP implementations over OBS networks is critical.
One problem that arises when TCP traffic traverses
over OBS networks is that the random burst loss due to
contention may be falsely interpreted as network con-
gestion by the TCP layer. We will discuss this in detail
in Section 2.

While load-balanced routing can reduce the num-
ber of random contentions, it can also lead to reorder-
ing at the TCP layer, which can degrade TCP per-
formance. In this paper, we propose a source ordering
mechanism, that aims to neutralize the negative impact
of the delay-differential between multiple transmission
paths in the OBS network on higher-layer TCP per-
formance so the benefits of load-balancing can still be
obtained. The remainder of the paper is organized as
follows. Section 2 will provide background for TCP and

TCP over OBS. Section 3 discusses the issue of support-
ing TCP over an independently load-balanced OBS net-
work. Section 4 describes the proposed source ordering
mechanism in order to improve TCP performance over
a load-balanced OBS network. Section 5 discusses the
simulations results and Section 6 concludes the paper.

2 Background

In this section we will provide some background on
TCP and the issues with TCP over OBS networks. We
will discuss further issues with TCP over load-balanced
OBS networks in Section 3.

The TCP flavors we will evaluate are High Speed
TCP with SACK option [11,12] (we will refer to this as
HS-TCP-SACK), TCP FAST [13], and TCP CUBIC
[14]. The fundamental assumption of all these TCP fla-
vors is that the underlying medium is electronic in na-
ture, and that the packets experience queueing (buffer-
ing) delays during congestion in the electronic IP routers
along the path of the TCP flow.

TCP flavors primarily differ in their implementation
of congestion control mechanisms. TCP and its vari-
ous flavors can be classified into three categories based
on congestion control mechanisms, they are loss-based,
delay-based, and rate-based. HS-TCP-SACK and CU-
BIC are loss-based congestion-control techniques that
use packet losses to estimate the available bandwidth
in networks. TCP SACK is a widely deployed TCP ver-
sion in the Internet. HS-TCP-SACK and CUBIC em-
ploy loss-based congestion-control using time-out (TO)
and fast-retransmit (FR) based mechanisms [15].

On the other hand, delay-based TCP flavors, such as
TCP FAST, use delay measurements to estimate avail-
able bandwidth in the network. The queueing delay
measured in TCP can provide information about the
degree of network congestion, which will make TCP im-
plementation easier to stabilize a network with a target
fairness and high utilization.

HS-TCP-SACK, CUBIC, and FAST were designed
for high speed networks so they can take advantage of
large amounts of bandwidth. HS-TCP-SACK modifies
TCP SACK’s window increase and decrease algorithm.
In traditional TCP, after a loss detection by triple du-
plicates the congestion window is halved. While in con-
gestion avoidance, the congestion window is increased
by one per RTT (assuming a window can be sent and
ACKed in one RTT). This behavior causes TCP to per-
form poorly in networks with large bandwidth because
a single loss cuts the window drastically and it takes
many RTTs to recover. With HS-TCP-SACK, both the
window increment in congestion avoidance and the win-
dow decrement after triple duplicates is a function of
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3

the current window size. When the window gets larger,
the increases are larger and the decreases are smaller.
This allows HS-TCP to utilize large amounts of band-
width.

CUBIC is a more drastic change to TCP Reno. In-
stead of Reno’s additive increase and decrease, CUBIC
uses a cubic function to control the congestion window.
The concave and convex portions of the cubic function
allow CUBIC to quickly reach a steady state in the net-
work and then to probe for available bandwidth. CU-
BIC also provides better fairness than HS-TCP since
the growth of the congestion window is based on the
time since the last congestion event instead of RTT as
in traditional TCP flavors.

FAST is based on the same concept as TCP Ve-
gas [16]. FAST uses queueing delays as a indication that
the network is congested instead of loss events like tra-
ditional TCP. FAST measures the RTT and uses this to
estimate the number of packets queued in the network.
FAST tries to keep a constant number of packets in the
network, so if the estimated number is smaller than this
amount, FAST increases its send rate. It also decreases
its send rate when the number of estimated packets in
the network is too high. FAST uses larger increments
and decrements depending on the estimated number of
packets in the network than TCP Vegas. All three of
these TCP flavors require only sender side modifica-
tions.

Using TCP over OBS networks results in poor per-
formance. Due to the bufferless nature of OBS core net-
work and the one-way based signaling scheme, the OBS
network will suffer from random burst losses even at low
traffic loads. One problem that arises when TCP traffic
traverses over OBS networks is that the random burst
loss may be falsely interpreted as network congestion by
the TCP layer. For example, if a burst that contains all
of the segments of a TCP sending window is dropped
due to contention at a low traffic load, then the TCP
sender times out, leading to false congestion detection.
This false congestion detection is referred to as a false
time-out (FTO) [17]. When the TCP sender detects this
(false) congestion, it will trigger the slow start conges-
tion control mechanism, which will result in the TCP
throughput being reduced. Another example is when a
random burst loss triggers TCP fast retransmission for
the case in which segments in a TCP sending window
are assembled into multiple bursts. A burst loss will be
interpreted as light network congestion and will trigger
one or more TCP-layer fast retransmissions.

3 TCP over Load-Balanced OBS

Static load-balanced routing techniques uses two fixed
paths to transmit data between each source-destination
pair, a primary path and an alternate path. The alter-
nate typically being longer than and link-disjoint from
the primary. In such a scenario, the bursts transmit-
ted on the alternate path incurs longer delay compared
to the bursts transmitted on the primary path. The
path delay-differential (δ) encountered may cause out-
of-order reception of TCP segments (IP packets) at the
destination, resulting in FTOs and FFRs.

Consider the following illustration scenario to bet-
ter understand the issue of FTOs and FFRs due to
load-balanced routing in OBS networks. In Fig. 5(a),
Burst B1 consisting of three segments [S1,S2,S3] is trans-
mitted and the corresponding acknowledgements [A2,
A3, A4] are received. Assuming that the flow is in slow-
start phase, congestion window doubles and the sender
can possibly send at least six packets. Burst B2 consist-
ing of segments [S4,S5,S6] is sent followed by Burst B3
consisting of segments [S7,S8,S9] and so on. In Fig. 5(b),
load-balanced routing in the OBS-layer may result in
Burst B2 and Burst B3 being transmitted on two dif-
ferent paths, say B2 on secondary path and B3 on the
primary shortest path. The Burst B2 [S4,S5,S6] gets
delayed due to the longer alternate path, Burst B3
[S7,S8,S9] reaches destination before Burst B2 since
Burst B3 contains three out-of-order segments [S7,S8,S9],
the receiver will send three duplicate ACKs [A4,A4,A4]
to the TCP sender. This results in FFRs at the TCP
sender. Note that if the path delay-differential is signif-
icant, TCP sender may experience FTOs.

4 Source Ordering

In order to neutralize the negative impact of the path
delay-differential caused by load-balanced routing in
OBS, we propose source ordering. In OBS, all the ingress
nodes implement source routing to transmit bursts to
their corresponding destinations. In source ordering,
the ingress node pre-calculates the path delay-differential
between the primary minimum-hop path and the alter-
nate second minimum-hop path, δ =| P1 − P2 |, where
P1 is the end-to-end delay on the primary path and P2

is the end-to-end delay on the alternate path.
We observe that every time the ingress node per-

forms a path-switch from the longer alternate path to
the shorter primary path, some of the bursts transmit-
ted on the primary path may overtake the previously
transmitted bursts on the longer alternate path before
reaching the destination. Every time we perform a long-
to-short path-switch, this scenario is quite common es-
pecially when the δ value is large. This differential in



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4

(a)

S7
S8
S9

S1
S2
S3

A2,A3,A4

A8,A9,A10

B1

B2

B3

B4

S4
S5
S6

A5,A6,A7

S1
S2
S3

S4
S5
S6

S7
S8
S9

S10
S11
S12

(b)

S7
S8
S9

S1
S2
S3

A2,A3,A4

A4,A4,A4

Delayed Burst

B1

B2

B3

B2  on longer path

Triple Duplicates

S4
S5
S6FFR

S1
S2
S3

S4
S5
S6

S7
S8
S9

Reduce window size
Retransmit B2

(c)

S7
S8
S9

S1
S2
S3

A2,A3,A4

A5,A6,A7

Delayed Burst

B1

B2

B3

S1
S2
S3

S4
S5
S6

S7
S8
S9

S4
S5
S6

A8,A9,A10
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Source Ordering

Fig. 1 (a) TCP-over-OBS with fixed-routing, (b) FFR in TCP
over load-balanced OBS, and (c) source-ordering to minimize
FFR (and FTO) in TCP over load-balanced OBS.

path-delay can result in FFRs and possibly FTOs (re-
fer Fig. 1(b)). In source ordering, every time a long-to-
short path-switch occurs, we electronically buffer the
bursts for δ seconds before we start transmitting on
the shorter path.

In Fig. 1(c), every time a long-to-short path-switch
occurs we delay the burst for the amount of time equiv-
alent to the path delay-differential of the two paths, us-
ing electronic buffering at the ingress OBS node. Note
that the ingress node is aware of the path delay-differential
since OBS implements source-routing.

Implementation of the source-ordering mechanism
can be done entirely at the ingress node. We assume
static route calculation, so each ingress node knows the
primary and alternate paths for a given egress node to
use for load-balancing. Only burst scheduling needs to
be modified at the ingress. When a path-switch occurs
from the longer path to the shorter path, the scheduler
will have to delay the next burst to be sent, long enough
so that it would not reach the egress before the last
burst sent on the longer path. Implementation of source
ordering does not need to take into account individual
flows, it only needs to ensure that bursts (destined to
the same egress) are delivered in order.

Another possibility to overcome the issues with re-
ordering is to implement destination ordering, where
the egress reorders bursts instead of the ingress. The
issue with this approach is that the destination does
not know when a path switch has occurred so it will
not know if a burst has arrived out-of-order because
of a path switch or because of a contention. This will
result in longer recovery times in a case of contention
since the egress will have to wait to see if the expected
burst will arrive before deburstification the out-of-order
burst. The egress would also need some mechanism to
determine if an arriving burst is in order or not, like
sequence numbers for bursts. Destination ordering as
highlighted above leads to several complications; we re-
strict the evaluation of source ordering in the paper.

A B
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E F
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Fig. 2 Simulation Topology.
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5 Simulation Results

In this section we will discuss simulations results ob-
tained from ns2 with the OWns module [18] for simulat-
ing OBS networks. We evaluate source ordering over a
load-balanced OBS network under a number of different
scenarios and then compare source ordering to regular
TCP over load-balanced OBS. The load-balanced rout-
ing uses two fixed paths and the least-congested path
is dynamically chosen. First, we vary the delay differ-
ential between the primary and alternate path. Next
we evaluate source ordering with different burst sizes.
After that we examine the impact of loss on source or-
dering. The impact of the load balancing parameter ρ

is also investigated.
The topology used in the simulations is shown in

Fig. 2. We have an access network consisting of 10 nodes
connected to the OBS ingress node. Each access node
has a TCP flow to the corresponding nodes on the right
side. The electronic nodes are numbered while the OBS
nodes use letters. The primary path in the network is
A-B-D-E-F while the alternate path is A-B-C-E-F.

The TCP flows use the High Speed TCP window in-
crease and decrease functionality [12] with SACK. Each
flow sends a 1GB file using FTP. The network uses load
balancing between the two paths in the core. The τ pa-
rameter is set to 500ms and ρmax is set to 5%. This
means that every 500ms the path will change if the
congestion on the current path exceeds 5%. The other
parameters are as follows: the max burst size is 100KB,
the burst assembly timer (BAT) is 10ms, the delay dif-
ferential, δ, is 5ms, and there is no loss. Each of these
parameters (except BAT) will be varied in the following
subsections while analyzing the performance of source
ordering. In our graphs, we use “with SO” labels to
mean with source ordering.

5.1 Performance with Varying Delay Differential

In the first set of simulations we vary the delay differ-
ential between the primary and alternate path. There
is no intentional loss for these simulations. The results
are shown in Fig. 3.

From Fig. 3(a) we observe that even a difference of
1ms in the alternate paths results in reordering. Source
ordering is able to adjust since it reorder the burst at
the ingress but HS-TCP-SACK experiences false fast
retransmissions whenever reordering occurs, resulting
in much higher completion times. Fig. 3(b) shows that
each of the 10 flows with source ordering does not ex-
perience even a single false fast retransmit, while HS-
TCP-SACK flows without source ordering experience
false fast retransmits repeatedly. In this case, we ob-
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Fig. 3 Comparison of performance of FTP file transfers, each of
the 10 flows sending a 1GB file, with varying delay differential.

serve up to an 300% improvement in average comple-
tion time for a 1GB file.

5.2 Performance with Varying Burst Size

In this section, we briefly analyze the affects of burst
size on reordering. In Fig. 4(a) we plot the completion
time while varying the maximum burst size. The burst
size has little affect with source ordering approach but
does have an affect on HS-TCP-SACK without source
reordering. From Fig. 4(b), there is a decrease in the
number of false fast retransmits experienced by regu-
lar HS-TCP-SACK as the burst size increases. This is
simply because as the bursts get bigger, more data is
able to be sent on the same path instead of getting split
onto different paths.

5.3 Performance with Varying Loss Levels

We analyze the affects of random contentions in the
OBS core on TCP’s performance. Fig. 5(a) shows the
average completion time for HS-TCP-SACK with and
without source ordering. The delay differential, δ, is set
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Fig. 4 Comparison of performance of FTP file transfers, each of
the 10 flows sending a 1GB file, with varying max burst sizes.

to 50ms. We can observe that for low loss probabil-
ity there is a significant increase in performance, up
to 300%, but as loss probability increases, there is lit-
tle gain. This is due to the fact that real loss results in
lower TCP send rate, this leads to lower load in the core.
Lower TCP arrival rate may not trigger load-balanced
routing since we have only TCP-based traffic in the
network.

The interesting point on this graph is the perfor-
mance at 0.001 loss probability. This is the last point
where there is reordering in the network, at higher loss
probabilities there is not enough TCP traffic to cause
reordering. There is a 60s difference in completion time,
or about a 6% improvement.

5.4 Performance of CUBIC and FAST

In this section we run simulations using CUBIC [14] and
FAST [13]. Both are designed for high-speed networks.
CUBIC uses a cubic function to determine the sender’s
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Fig. 5 Comparison of performance of FTP file transfers, each of
the 10 flows sending a 1GB file, with random contentions.

congestion window growth, which allows it to ramp up
quickly to reach a stable state and then again to probe
for available bandwidth. FAST is a delay-based TCP
similar to TCP Vegas but modified for high-speed net-
works. For FAST, we use the default ns2 configuration
parameters with α = 100, β = 100, and γ = 0.5.

We first present the results for CUBIC. Fig 6 plots
the completion time for varying δ values, burst sizes,
and loss levels as was done for HS-TCP-SACK. Com-
paring Fig. 6(a) with Fig. 3(a) shows that CUBIC has
very similar performance compared to HS-TCP-SACK
with the exception of the continued increase up to δ =
50 that HS-TCP-SACK experiences without source or-
dering. Similarly, comparing Fig. 4(a) to Fig. 6(b) and
Fig. 5(a) to Fig. 6(c) shows that CUBIC and HS-TCP-
SACK perform similarly in situations for varying burst
sizes and loss.

Fig. 7 shows our results for FAST. Fig. 7(a) shows
FAST with varying δ values. FAST with source ordering
is about 20s slower than HS-TCP-SACK and CUBIC,
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(a) Average flow completion time vs. δ for CUBIC.
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(b) Average flow completion time vs. maximum burst size for CUBIC.
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(c) Average flow completion time vs. loss for CUBIC.

Fig. 6 Comparison of performance of FTP file transfers using
TCP CUBIC.
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(a) Average flow completion time vs. δ for FAST.
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(b) Average flow completion time vs. maximum burst size for FAST.
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Fig. 7 Comparison of performance of FTP file transfers using
TCP FAST.
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while FAST without source ordering performs worse
than HS-TCP-SACK, especially at higher δ values. At
δ = 50ms FAST takes three times longer to finish than
HS-TCP-SACK. Fig. 7(b) compares FAST with vary-
ing burst sizes. For HS-TCP-SACK and CUBIC, larger
burst sizes led to better performance when source order-
ing was not used. This is not the case for FAST. Both
with and without source ordering have worse perfor-
mance as burst size increases. Lastly, Fig. 7(c) compares
FAST’s performance with varying loss. FAST has bet-
ter completion time at higher loss than HS-TCP-SACK
or CUBIC and even at high loss rates FAST with source
ordering still outperforms FAST without source order-
ing. This behavior can be explained by the fact that
FAST was not designed to work on the bufferless OBS
networks. FAST uses estimated RTT to determine its
send rate. When router buffers begin to overflow, the
RTT increases and FAST lowers its send rate. Since
there are no buffers in OBS, FAST does not work as
it was designed to. As the maximum burst size and
path delay differential increase the RTT also increases,
which FAST interprets as congestion, leading to poor
performance.

6 Conclusion

In this paper, we have evaluated the performance of dif-
ferent TCP flavors, such as FAST, HS-TCP-SACK, and
CUBIC over a load-balanced OBS. In load-balanced
routing, two routes are first calculated statically and
the least-congested route is selected dynamically for
data transmission. We identify the ill-effects of OBS-
layer load-balanced routing on higher-layer TCP per-
formance. Through extensive simulations it is clear that
the value of the path delay-differential has a significant
impact on the higher-layer TCP performance. We pro-
pose a simple source-ordering approach that maintains
the order of the bursts using electronic buffers at the
OBS ingress node, so as to minimize the number of
false time-outs and false fast-retransmit. We observe
that source-ordering can improve the TCP throughput
by up to 400%.

An important area of future work is to implement
load-balanced routing with Reordering Robust (RR-
TCP) [19] in order to avoid false fast retransmits and
false time-outs. Another area of future work is to im-
plement TCP over OBS with burst segmentation [20].
Burst segmentation will increase the probability of a
burst reaching the destination, leading to reduction of
false fast-retransmits (and false time-outs). This can
also have a significant positive impact on the TCP-over-
OBS performance.
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