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Abstract It is well-known that the bufferless nature of OBS
networks causes random burst loss even at low traffic loads.
When TCP is used over OBS, these random losses make the
TCP sender decrease its congestion window even though
the network may not be congested. This results in signifi-
cant TCP throughput degradation. In this paper, we propose
a multi-layer loss-recovery approach with ARQ and Snoop
for OBS networks given that TCP is used at the transport
layer. We evaluate the performance of Snoop and ARQ at
the lower layer over a hybrid IP-OBS network. Based on
the simulation results, the proposed multi-layer hybrid ARQ
+ Snoop approach outperforms all other approaches even at
high loss probability. We developed an analytical model for
end-to-end TCP throughput and verified with the simulation
results.
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1 Introduction

Optical burst switching (OBS) is a promising candidate to
support the next-generation Internet. Optical burst switching
provides a middle-ground between optical packet switching
(OPS) and optical circuit switching (OCS). OBS is able to
support bursty traffic that OCS cannot and is also techno-
logically feasible in the near future since it does not require
extremely fast switching as in OPS.

Packets arriving into the OBS network are assembled
into bursts and subsequently transmitted through the net-
work optically [1]. A burst header packet (BHP) is transmit-
ted ahead of the associated burst in order to reserve the data
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channel and configure the core switches along the burst’s
route. The BHP carries information, such as source address,
destination address, burst duration, and offset time of the as-
sociated burst. In just-enough-time (JET) signaling scheme
[2], the transmission of the data burst follows an out-of-band
BHP that is processed before the burst arrives at intermedi-
ate nodes. Most of the OBS signaling and reservation pro-
tocols are unidirectional in nature. They fail to inform the
source about burst contentions along the route to the desti-
nation. Due to contentions at the core nodes, bursts will be
dropped and the higher-layer protocol has to take responsi-
bility to retransmit the lost data.

In recent years, TCP-based applications, such as Web
(HTTP), email (SMTP), and peer-to-peer (P2P) file sharing,
account for a majority of data traffic in the Internet, thus un-
derstanding and improving the performance of TCP imple-
mentations over OBS networks is critical. The fundamen-
tal assumption for most of the TCP flavors, such as TCP
SACK and TCP Reno is that they are carried on an elec-
tronic medium and packets experience queuing delays due
to congestion at the IP router buffers. The bufferless nature
of the OBS core network in addition to one-way JET signal-
ing produces random burst losses even at low traffic loads.
When TCP traffic traverses over OBS networks, the random
burst loss may be falsely interpreted as network congestion
by TCP.

There are three kinds of TCP flows, namely fast flows,
medium flows, and slow flows [3]. For a fast flow, all the
segments in a TCP source’s sending window are assembled
into a single outgoing burst. For a slow flow, at most one
segment in a TCP source’s sending window is included in
any given outgoing burst. Thus, the loss of a burst will cor-
respond to a single TCP segment being lost. For a medium
flow, the number of segments for a TCP source included in
a burst should be more than one and less than the sender’s
entire window size. If a fast flow based burst is dropped due



to contention at a low traffic load, then the TCP sender times
out, leading to false congestion detection, which is referred
to as a false timeout (FTO) [4]. When the TCP sender detects
this (false) congestion, it will trigger slow start, resulting in
significantly reduced TCP throughput. Another example is
when a random burst loss triggers TCP fast retransmission
for medium flows or slow flows. The random burst loss in
OBS will be interpreted as light congestion, leading to one
or more TCP false fast retransmissions (FFR).

There are several contention resolution (or loss mini-
mization) techniques, such as optical buffering [5], wave-
length conversion [5], deflection routing [6], and segmenta-
tion [7]. Most loss minimization techniques are reactive in
nature since they try to resolve the contention when it oc-
curs. An alternative to loss minimization is to implement
loss recovery techniques, such as cloning [8] and burst re-
transmission (ARQ) [9].

In this paper, we propose multi-layer data loss recovery
for OBS networks. At the lower layer, we implement ARQ
to minimize data loss due to random burst contentions. At
the next higher layer, we implement Snoop to eliminate any
FTOs/FFRs in it’s network. Finally at the higher, TCP re-
transmit the lost packets using timeouts and fast retransmis-
sion mechanism. We implement the ARQ and Snoop layer to
minimize redundancies and improve performance (through-
put). Loss recovery is important in OBS to hide random
burst losses from TCP that cause false congestion detection
as discussed previously.This will be discussed in more detail
in the following sections.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses background information, related work, and
motivation. Section 3 describes how the multi-layer loss re-
covery is achieved over OBS and the components of our pro-
posed approach. Section 4 describes the analytical modeling
of proposed Snoop and ARQ over OBS. Section 5 discusses
the numerical results, and Section 6 concludes the paper and
discusses potential areas of future work.

2 Related Work and Motivation

While false congestion detection is an issue for TCP over
OBS networks, it is also an issue in TCP over a wired-cum-
wireless network. The main problem with TCP performance
in networks that have both wired and wireless links is that
packet losses that occurred due to bit-errors in the wire-
less network are mistakenly interpreted by the TCP sender
as being due to network congestion. This causes the TCP
sender to drop its transmission rate and often timeout, result-
ing in degraded throughput. Among the proposed solutions,
Split-TCP shows significant improvement in the overall end-
to-end throughput. In the Split-TCP approach for wireless
networks, the base station works as a proxy between the
sender and the mobile host. The base station ACKs received

data from the TCP sender in the wired network and then re-
lays the received data into the wireless network on behalf of
the sender, allowing any loss in the wireless network to be
hidden from the sender on the wired network. The perfor-
mance increases by isolating the loss at wireless link from
the sender.

The Split-TCP approach was recently modified to work
on a hybrid IP-OBS network in [10] and was shown to pro-
vide significant improvement. In the Split-TCP approach over
OBS, a single end-to-end TCP flow is divided into three
independent TCP flows. One from the sending host to the
optical ingress node (over the ingress IP-access), another
TCP connection over the optical core, and the last connec-
tion from the optical egress node to the original destination
host (over the egress IP-access). By splitting the connection,
we can isolate burst contention losses over the OBS network
from the IP-access networks. We can also implement differ-
ent TCP flavors specific to each network segment that can
boost end-to-end throughput. In the N:1:N Split-TCP ap-
proach, a persistent OBS-core TCP flow will be setup once
and will continue until all the IP-access TCP flows have ter-
minated. Although Split-TCP provided a significant perfor-
mance improvement, the approach violates the end-to-end
semantics of conventional TCP. Most Internet applications
are sensitive to end-to-end TCP semantics.

The Snoop protocol [11] for wireless networks addresses
the issues of TCP end-to-end semantics violation. Snoop
works by deploying an agent at the base station and per-
forming retransmissions of lost segments over the wireless
portion based on duplicate TCP acknowledgments (which it
also suppresses). Snoop does not acknowledge any data sent
by the sender, so the end-to-end semantics are not violated.
It simply tries to retransmit packets sent over the wireless
network based on the receipt of duplicate ACKs before the
TCP sender times out. This paper proposes Snoop for OBS
networks.

Burst retransmission (ARQ) is a link layer loss recov-
ery technique for OBS. In the burst retransmission approach,
before sending a burst, the ingress buffers them in an elec-
tronic buffer. When a contention occurs in the OBS core, the
core node sends an explicit ARQ message back to the OBS
ingress. When the ARQ message is received, the ingress re-
transmits the burst from its buffer. It has been shown that
ARQ improves performance compared to a regular OBS net-
work but it behaves differently for different types of TCP
flows. For a TCP fast flow, if a burst experiences contention
and is successfully recovered by ARQ, there are no adverse
side-effects. For medium flows, however, a burst contention
may trigger fast retransmission even when OBS-layer re-
transmission is employed. In this case, packets from a given
TCP flow may be spread across multiple bursts. Since the re-
transmitted burst incurs an extra retransmission delay, bursts
that are sent after the contending burst may actually reach



the egress node prior to the retransmitted burst. The earlier
arrival of these other bursts will result in the generation of
duplicate ACKs, leading to the triggering of fast retransmis-
sion at the source. Once fast retransmission is triggered, the
TCP sender will retransmit a lost packet and unnecessarily
reduce its send rate.

We prefer the ARQ loss recovery approach since it is
independent of TCP and does not violate end-to-end seman-
tics like Split-TCP. However, we’d like to be able to over-
come the issue of false fast retransmits caused by reordering
of bursts. To do this, we propose using Snoop along with
ARQ since Snoop is able to suppress duplicate acknowl-
edgements. We discuss this approach in detail in the follow-
ing sections.

3 Multi-layer Loss Recovery in OBS

In this section, we first discuss reliability over OBS in gen-
eral, then discuss our proposed multi-layer approach. There
are two main techniques to provide reliability in OBS net-
works. They can be classified as loss minimization and loss
recovery mechanisms. Loss minimization involves either min-
imizing the probability of contentions or minimizing data
loss after a contention. The former case is known as con-
tention avoidance and is a proactive approach and the lat-
ter is a reactive approach known as contention resolution.
An example of a contention avoidance approach is load-
balanced routing [12]. Load-balancing tries to minimize the
probability of contention by sending a burst on the least-
congested path. An example of a contention resolution tech-
nique is deflection routing [6]. Deflection routing tries to
reroute data after a contention by sending a burst to an al-
ternate port.

Loss recovery involves either responding to explicit fail-
ure messages about a burst not being successfully transmit-
ted or sending redundant information with each burst in or-
der to recover from a loss. We can also divide loss recovery
into proactive and reactive mechanisms. In proactive loss re-
covery, the OBS network assumes there will be contentions
and therefore sends extra data (overhead) into the network to
handle the contentions. An example of this would be burst
cloning [8] where a redundant copy of each burst is sent into
the network. If a original burst experiences contention, it is
possible to recover using the clones. Reactive loss recovery
mechanisms first assume that there will be no contentions in
the network, but then responds to a failure if one does occur.
Snoop and ARQ are both reactive loss recovery approaches.
They send data into the network assuming it will be success-
fully received, but then respond to burst contentions. ARQ
does so by retransmitting a burst upon receiving an ARQ
request, while Snoop does so by handling duplicate ACKs.
Generally, proactive approaches are used for delay-sensitive

traffic and where loss probability is high while reactive ap-
proaches are used where loss probability is low and band-
width is scarce.

Any of the above mechanisms can be combined to pro-
vide reliability in OBS. As previously mentioned, we evalu-
ate the impact of combining two reactive loss recovery mech-
anisms: Snoop and ARQ. With multiple recovery mecha-
nisms, we explore multi-layer reactive loss recovery over
OBS.

In this paper, we evaluate the performance of three in-
dependent layers of loss recovery. The first being the trans-
port layer, or TCP, which uses fast retransmit and timeouts
as its loss recovery mechanisms. TCP is clearly indepen-
dent of any lower layer recovery mechanisms. The other
two layers of loss recovery are Snoop and ARQ, both work-
ing at the OBS layer, but at different granularity. The Snoop
layer works on a packet-level and uses triple duplicates to
determine when to attempt recovery, while ARQ works on
a burst-level and uses explicit requests to attempt recovery.
Both of these approaches are independent of one another but
complement each other.

We are going to describe TCP, ARQ, and Snoop com-
ponents of the proposed multi-layer loss recovery approach
and then discuss how they are combined.

3.1 TCP

TCP congestion control mechanisms include slow start, con-
gestion avoidance, fast retransmission, and fast recovery. If
a TCP segment is lost, there are two types of loss indica-
tions: time outs (TO) and triple duplicates (TD). A TO loss
is detected by a retransmission timeout (RTO) when an ac-
knowledgment for a segment is not received within a certain
period of time. TCP interprets a TO loss as a loss due to
heavy network congestion; the TCP sender retransmits the
lost segment and enters into a slow start phase. A TD loss is
detected when a TCP sender receives three duplicate ACKs,
which indicates that a packet is lost due to light network
congestion; the TCP sender enters into fast retransmission
and fast recovery without waiting for RTO.

3.2 ARQ

The basic idea of burst retransmission is to allow contending
bursts to be retransmitted by the OBS layer rather than hav-
ing higher-level protocols, such as TCP, recover lost data. In
this mechanism, BHPs are sent out prior to data burst trans-
mission in order to reserve resources. After an offset time,
the burst is transmitted. The ingress node stores a copy of the
transmitted burst for possible retransmissions. If the chan-
nel reservation fails at a core node due to burst contention,
the core node will send an automatic retransmission request
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Fig. 1 ARQ approach.

(ARQ) to the ingress node in order to report the reservation
failure. Upon receiving an ARQ, the ingress node retrans-
mits a duplicate of the requested burst preceded by a corre-
sponding BHP. If the network is lightly loaded, the retrans-
mission scheme has a good chance of successfully retrans-
mitting contending bursts. Hence, the retransmission mech-
anism improves the loss performance in an OBS network at
the burst level. Since the contending burst can be retransmit-
ted multiple times, if necessary prior to TCP timeout, ARQ
can avoid FTOs for the above TCP layer. Retransmission
may cause more fast retransmits when there are medium
flows as retransmitted bursts may arrive out of order at the
destination. If the network is heavily loaded, the retransmit-
ted bursts have a lower probability of being successfully re-
ceived. The ingress node can continue to attempt retrans-
mission until the retransmission delay exceeds a threshold
value, in which case the burst is dropped and no longer re-
transmitted when a contention occurs. We denote the delay
incurred in the access network as 7T,, the burst assembly and
disassembly delay as T, the one-way propagation delay in-
curred in OBS network as T},

We illustrate a bust retransmission scenario in Fig. 1. In
this figure, the BHP is transmitted at time ¢, while the burst
is duplicated and stored at the ingress node before being
transmitted. The burst is transmitted at time ¢; after some
offset time. At to, the burst reservation fails at Node 3, trig-
gering Node 3 to send an ARQ back to the ingress node.
The ingress node receives the ARQ at ¢3, then sends a new
BHP and retransmits a duplicate burst at ¢4 after some off-
set time. Assuming the retransmission is successful, at ¢5
the burst arrives at the egress node. A duplicate burst may
be retransmitted multiple times until the burst successfully
reaches the egress node or some threshold is reached.
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Fig. 2 Illustration of ARQ for medium flows.

As previously mentioned, ARQ can cause false fast re-
transmissions with medium TCP flows if bursts are reordered
due to burst retransmission. Fig. 2 illustrates a scenario for
a TCP medium flow with ARQ. Packets Py, P,, P3, P4, and
Ps5 belong to the same TCP sender’s window. Packets P}
and P, are assembled into burst By, and packets Ps, Py, and
Ps5 are assembled into burst By. B; is dropped in the core
while Bj is successfully delivered. ARQ will retransmit By,
but the ACKs from B, are duplicate acks and trigger a FFR
at the sender even though B; is successfully retransmitted.

3.3 Snoop

We modify the standard Snoop approach for a hybrid IP-
OBS network. Snoop performs local flow-level loss-recovery
using the Snoop caches where packets transmitted by the
TCP source are stored. Here, the Snoop agent resides on top
of the OBS ingress. All the packets passing through the edge
nodes are stored in the local Snoop caches per flows. Snoop
uses these local caches to retransmit packets in the event
of packet loss. Also, the Snoop agent suppresses duplicate
acknowledgments received from the TCP receiver. The re-
transmission of lost packets by Snoop from its caches most
of the time makes the TCP source unaware of random loss in
the OBS network. This isolates the random loss in the OBS
network from the TCP source allowing it to maintain a high
send rate at most of the time.

When a packet arrives from the TCP source in-sequence
and has a sequence number greater than the previous packet,
Snoop caches the packet at the ingress and forwards the
packet to the OBS burstification process. If an out-of-sequence



packet with sequence number less than the one already ac-
knowledged is obtained, this is interpreted as a retransmit-
ted packet from the TCP source. If this retransmitted packet
was already received by the TCP receiver but the acknowl-
edgement was lost, Snoop sends another acknowledgment
packet back to the TCP source so that the TCP source does
not trigger a timeout. Otherwise, the Snoop agent forwards
the packet for burstification and caches this packet as being
retransmitted by the TCP source.

Snoop uses two important functions for implementing
its functionality, snoop_data() and snoop_ack() [11]. In the
forward direction, the snoop_data() function processes and
caches the packets before OBS burstification at the OBS
ingress. In the reverse direction, the snoop_ack() function
processes the acknowledgments received from the TCP re-

ceiver and performs packet retransmissions, if necessary. When-

ever an ack is received from the OBS deburstification pro-
cess, Snoop distinguishes it as either genuine ack, spurious
ack, or dupack. If it is a genuine ack; an ack that is in or-
der, Snoop clears its cache up to this sequence number and
forwards the ack to the TCP source. If it is an ack with a
sequence number smaller than the one previously received,
it is a spurious ack and is discarded. If it is a dupack and the
packet is not in the Snoop cache, it needs to be resent by the
TCP source.

If the packet was a retransmitted packet from the TCP
source, the dupack needs to be routed to the TCP source,
because the TCP stack maintains state based on the number
of duplicated acknowledgment it receives when it transmits
a packet.

Consider a single packet loss scenario. If a specific packet
is lost during transmission and if the successive packets in
the flow successfully reach to TCP destination. The arrival
of each successive packet in the window at the TCP destina-
tion causes a dupack to be generated for the lost packet. This
can cause the TCP source to enter fast retransmission, there
by reducing the send rate by half. In the presence of Snoop,
the first dupack triggers retransmission of the lost packet at
the OBS ingress. In addition the Snoop agent will suppress
all the following dupack with the same sequence number
leading to increase TCP throughput. In order to minimize
the dupack as much as possible, the lost packet is retransmit-
ted to burstification process as soon as the loss is detected at
edge node where Snoop is implemented. For additional de-
tails about the implementation of Snoop refer [11].

3.4 TCP SACK Aware Snoop

From the illustration examples Fig. 3(a) we show the prob-
lem of TCP SACK with Snoop. Let us assume all the pack-
ets before sequence number 6 have been transmitted to the
receiver successfully and that packets 7, 8, 9 and 10 have
been dropped (these packets are part of burst which has been

dropped in OBS network). Receiver sends a duplicate ac-
knowledgment for packet 7 when packet 11 is received by
it. This duplicate acknowledgment when received by Snoop
makes it retransmit packet 7 from its local cache and sup-
press the dupacks for 7. In the meantime, packet 12 gener-
ates another duplicate acknowledgment for packet 7. When
packet 7 is received by the receiver, it sends acknowledg-
ment packet 8. All the acknowledgments received by the
Snoop are actually SACK blocks asking the sender to send
packets 7, 8 , 9, and 10 in one RTT. With the introduction
of Snoop between sender and receiver only retransmitted
packet 7 and all duplicate acks (which are SACK blocks)
are dropped. The SACK sender is thus not able to retransmit
all the packets in one RTT and the basic SACK mechanism
is thus disrupted. If a SACK block such as that having se-
quence number 8 reaches the SACK source, a retransmis-
sion of all the packets 8, 9, and 10 takes place. These pack-
ets upon reaching Snoop are dropped as Snoop already has
them in its cache and considers them unnecessary retrans-
missions from the sender. This once again leads to band-
width wastage.

In order to analyze the problem of unnecessary retrans-
missions of the SACK sender and enable Snoop to retrans-
mit all the missing packets in one RTT, the TCP SACK
Aware Snoop algorithm is proposed [9]. As the name sug-
gests, this algorithm helps Snoop differentiate between an
ordinary ack and an acknowledgment containing a SACK
block.

From the illustration Fig. 3(b), we show how SACK aware
Snoop handles the problem generated by the TCP sack over
Snoop. Assume that packets 7, 8, 9 and 10 are lost and that
packets 7, 8, and 9 are present in the Snoop cache where
as 10 is not, the SACK block received due to the dupli-
cate acknowledgment for 7 indicates the SACK sender to
retransmit these missing packets. When TCP SACK Aware
Snoop receives this packet and determines that it is a SACK
block, it immediately retransmits the packets 7, 8, and 9, as
13 is the largest continuous sequence number that is avail-
able in its cache, and drops the duplicate acknowledgment.
Upon reception of these packets, the receiver generates an
acknowledgment requesting 10 and also indicating the re-
ception of packets 7, 8 and 9. This acknowledgment is for-
warded to the sender so that it does not timeout for any of the
packets 7, 8 or 9. The sender retransmits packet 10 after the
reception of three duplicate acknowledgments. Packet 10 is
now stored in the Snoop cache and forwarded to the receiver.
This helps in reducing the sender retransmissions of packets
and also enables retransmission of multiple packets in one
RTT thus maintaining a good flow of packets.
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3.5 Hybrid (ARQ + Snoop)

As we have shown, ARQ causes FFRs with medium TCP
flows. Snoop can hide the FFRs caused by ARQ from the
sender since it suppresses dupacks. We propose a hybrid ap-
proach that implements both Snoop and ARQ. Both of them
perform loss recovery, where Snoop performs recovery at
the packet level and ARQ at the burst level. Snoop is trig-
gered by the receipt of a duplicate acknowledgment while
burst retransmission is triggered by explicit ARQ messages.
In most cases, ARQ prevents timeouts by retransmitting the
bursts, but ARQ can trigger FFRs (as shown in Fig. 2) due
to the out-of-order delivery of bursts. By using Snoop on top
of ARQ, we can prevent the FFRs.

Let us consider a loss scenario with ARQ+Snoop im-
plemented at the OBS ingress. Each new packet sent by
the TCP source is stored in the Snoop cache (handled by
snoop_data()) before being forwarded to the OBS burstifi-
cation process. A burst and its corresponding BHP are cre-
ated during the burstification process. After the burst is cre-
ated, a copy of the burst is stored in a retransmission buffer.
In the event of a burst loss, the OBS ingress will receive
an ARQ. A duplicate burst is retransmitted from the retrans-
mission buffer. If the TCP destination receives packets out of
order, it sends duplicate acknowledgements back to the TCP
source. These duplicate acknowledgements are received as
a burst on the reverse path. During deburstifications, the
snoop_ack() will detect the duplicate acknowledgements,

and using the Snoop cache, the snoop_data() will retrans-
mit the missing packet and suppress the duplicate acknowl-
edgement.

The burst loss event can lead to two scenarios. In the first
scenario, ARQ successfully retransmits the lost burst and
Snoop suppresses all of the duplicate acknowledgements. In
second scenario, ARQ is unable to recover the lost burst. In
this case, Snoop has to individually retransmit all the lost
packets in addition to suppressing duplicate acknowledge-
ments.

If there is no loss in the OBS core, there is no additional
control overhead. Each acknowledgement received in the
correct order removes the corresponding data packets from
the Snoop cache.

3.6 Multi-layer loss recovery architecture

Fig. 4 depicts the multi-layer loss recovery architecture for
OBS networks. The TCP end-to-end flow is from A-B-C-D.
Snoop operates over the flow segment B-C-D, while ARQ
operates only over the flow segment B-C. If both Snoop and
ARQ are unable to recover the lost packets, then TCP at the
transport layer recovers it.

Two order of loss recovery can be achieved using Snoop
and ARQ. First order reliability is by ARQ retransmission.
ARQ retransmission fails only if either ARQ exceeds the
delay constraints time, p, as described in [9] or number of
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retransmission exceeds for lost burst. Snoop usually retrans-
mits the packets if it receives duplicate acknowledgment.
To control the delay and overflow of the packets at Snoop,
Snoop tries to retransmit the packets for specified threshold
numbers and gives up by notifying congestion in network if
it exceeds the threshold of packet retransmission.

4 Performance Analysis

In this section, we develop an analytical model for evaluat-
ing the end-to-end burst loss probability for OBS networks
with two layers of retransmission; burst level and packet
level. Burst level retransmission is done by ARQ whereas
packet level retransmission is done by Snoop. We developed
an analytical model for evaluating TCP throughput when
TCP is implemented over an OBS network with ARQ and
Snoop.

We analyze TCP throughput for a TCP fast flow and
a TCP medium flow. For the TCP fast flow, all three TCP
flavors have the same behavior. For the TCP medium flow,
since TCP SACK performs the best, we only analyze TCP
SACK throughput. In TCP fast flows with ARQ, successful
retransmission in the OBS network do not produce any false
fast retransmissions (FFRs) and false timeouts (FTOs) when
burst is lost in OBS network. In this scenario, Snoop ex-
plicitly does not have any effects as Snoop does not get any
duplicate acknowledgements during fast flows. ARQ failure
to retransmit the lost burst in OBS for fast flows generates
FTOs. In this scenario, Snoop does not have direct impact
on the overall TCP performance as we know Snoop gets trig-
gered only by duplicate acknowledgements. During medium
flows, ARQ may generate FFRs when the burst is lost in the
OBS network. Snoop controls this situation by suppressing
the duplicate acknowledgment and retransmits the packets
of the lost burst to burst assembly process. If ARQ get suc-
ceed to retransmit the lost burst, Snoop retransmits unneces-
sary packet, which will be a research for future work. TCP
medium flows for ARQ with Snoop behaves as fast flows
for ARQ only. With Snoop FFRs get suppressed and sender

Wn:
ZT O

usually never gets duplicated acknowledgements as in fast
flows. Our analytical modeling is base on [9] paper.

In this section, we analyze the TCP throughput over an
OBS network with ARQ and Snoop. In the existing analy-
sis of TCP throughput over an OBS network without burst
retransmission [3],[9], burst loss probability is equal to burst

contention probability. When OBS retransmission is employed,

a burst is only considered lost if it experiences contention
and it is not successfully retransmitted. Thus, the burst loss
probability differs from the burst contention probability. In
the analysis, we must take into account both burst loss prob-
ability and burst contention probability which includes the
packet retransmission scenario due to Snoop.

As defined in [9], a TCP sending round refers to the pe-
riod during which all packets in the sending window are sent
and the first acks for one of the packets in the sending win-
dow is received. We assume that the time needed to send all
the packets in the sending window is less than RT"T". Hence,
the duration of a round is equal to RTT. We also assume
that the number of packets that are acknowledged by a re-
ceived ACK is one. Furthermore we assume that Snoop has
sufficient cache to accommodate each packet received from
the senders.

We introduce the following notation for a TCP flow:

pc: burst contention probability.

pq: burst dropping probability.

B: TCP throughput.

TCP maximum window size (in packets).
: duration of a sequence of TOs.

H: number of TCP segments sent in Z7©,

4.1 TCP Medium Flow

Our analysis of a TCP medium flow is similar to that in [3].
However, in our analysis for the case with OBS retransmis-
sion, the successfully retransmitted bursts are treated differ-
ently from the bursts that do not experience any contention.
The retransmitted bursts suffer from an extra retransmission
delay, which has a negative effect on the TCP throughput.

Medium flow triggers TD events, but these TD events are
suppressed by Snoop. The medium flow imitates the TCP
fast flow behavior, so we are using TCP fast flow modeling
instead of medium flow modeling.

Since a TCP fast flow does not trigger TD, multiple suc-
cessful sending rounds are only followed with one or multi-
ple lossy rounds. Therefore, as in [3], a given time out period
includes a sequence of successful rounds and a sequence of
lossy rounds. In this time out period, let X be the number
of successful rounds, Y be the number of segments sent be-
fore the first lossy rounds, and A be the duration of the se-
quence of successful rounds. We can then calculate the TCP



throughput as given below:

E[Y]+ E[H]

B! = E[A] + E[ZTO]’

)]

The sequence of successful rounds consists of a portion
of rounds in which the burst does not experience contention
and a portion of rounds in which the burst experiences con-
tention, but is successfully retransmitted. Hence, we obtain
the probability of a successful round in which a burst expe-
riences contention but is successfully retransmitted as

_ Pc—Pd

Dsr : 2
1—pqg

The probability of a successful round in which there is no
burst contention can be calculated as
1- DPc
1 —pa

Pne = (3)

We assume that each retransmission of a burst takes an
average time of T},, where T}, is one way propagation delay
incurred in OBS networks. Then, the average number of re-
transmissions for a retransmitted burst, given that the burst
needs to be retransmitted at least once and the retransmis-
sion is successful, is

[6/Tp)—1

E[Tb] = Z

=1

o 5, (E]-D
i (L=pe) + Lo ™ @)
p

where E[rp] is average RTT due to burst retransmission.

We assume that each retransmission of a packet takes an
average time of T}, (assuming that packets are already in the
Snoop cache). Then, the average number of retransmission
packets, given that the packet need to be retransmitted at
least once and the retransmission is successful, is

N—-1
Elr =Y ipi (1 —pe) + Np{N Y. (5)

i=1

where, N is total number of packet retransmission and E|[r]
is average number of RTT due to packet retransmission.
Hence, the average round trip time experienced by a suc-
cessful burst and packet retransmission by ARQ and Snoop,
respectively is
RTT, = RTT + E[ry|T, + E[rs]T), ©6)
= RIT + T,(Elry] + E[rs]). @)

We then obtain F[A] as
E[A] = ps EIX|RTT, + pnE[X|RTT. (8)

Based on the equations (14), (16), (18), and (28) in [3],
we have

f(pa)
1—pg’

E[ZT°] = RTO ©

where, f(pa) = 1+ pa + 2p? + 4p3 + 8p3 + 16p5 + 32p5.

BlH) = 17 (10)
1—pg
ElX] = YR (11)
and
oz DPd > Wl
ElY]| =<7 m 12
] % otherwise. (12)

Since only burst losses result in TOs for a fast flow, the burst
loss probability in an OBS network with burst retransmis-
sion is applied in the above equations.

By substituting equations (8), (9), (10), and (12) into
(15), we have

f_ pg—patl
pa[(1=pa)(Pe—pa) RTTr+(1—pa)(1—pc) RTT+pa f(pa) RTO]’

13)

when pg > +—, and

Bf = Pi+ Wi —Wimpa
(1=pa)(®c—pa) RTT,+(1—pa)(1—pc) RTT+pa f(pa) RTO”

(14)

1

when pg < o

4.2 TCP Fast Flow

Our analysis of a TCP fast flow is similar to that in [3].
Snoop comes in effect with the recipient of duplicate ac-
knowledgments. With TCP fast flow, burst loss in OBS pro-
duces timeouts and Snoop isolates itself for TCP fast flows.
Throughput modeling of Snoop with ARQ is the same as
just ARQ modeling. We are using ARQ modeling for TCP
fast flow from the paper [9].
We can calculate TCP throughput as

5 _ _ElY]+EH]

" E[A]+ E[Z70] )

We use equations (6), (7), (8), and (10) in [9] to obtain

Bf — pg—patl
pa[(1=pa)(Pe—pa) RTTr+(1—pa)(1—pc) RTT+pa f(pa) RTO]’

(16)

when pg > 7, and

PG+ Wi —Wmpa
(1=pa)(Pe—pa) RTT+(1—pa)(1—pc) RTT+pa f(pa) RTO”

A7)

Bf =

1
when pg < o



90 T T T T

80

70

60

50

40

Throughput (Mb/s)
|
Fhrotighput-thtbrsy

30

20

10 -

Simulation results for ARQ+Snoop fast flow ——
Analytical results for AR?*—Snoop fast flow %

110 T T T T

100

90

80 -

70 B

60 1

50 B

40 g
30 g
20 + g

10 q
Simulation results for ARQ+Snoop medium flow —4—

Analyt‘\cal results for ARQTSnoop medium flovy —X—

le-05 le-04 0.001 0.01 0.1 1

Contention Probability

(a) TCP fast flow.

Fig. 5 Analytical and Simulation results for TCP fast and medium flows

5 Performance Analysis
5.1 Analytical Validation

We developed analytical model to verify our simulation re-
sults. The analytical model evaluates the performance of TCP
over an OBS network with ARQ and Snoop. Fig. 5(a) and
(b) compares the analytical and simulation results for TCP
SACK through in OBS network with independent Snoop
and ARQ module.

We simulate a network shown in Fig. 6(a) with one TCP
flow that shares a common link. Each flow has the following
assumptions, W,,, = 10000 and T}, = 40 ms. We assume ac-
cess bandwidth has B, = 100 Mbps and T, = 10 ms, where
T, is burst assembly and disassembly delay, for TCP medium
flows and high burst size and less sender window for TCP
fast flows. Packets are dropped if Snoop retransmission failed
after one retransmission and burst are dropped if ARQ ex-
ceeds p = 273 +21T),). We see that simulation results matches
with analytical results.

5.2 Simulation Results

The topology used for this simulation is shown in Fig. 6(a).
There are a total of two edge nodes and three cores nodes
denoted by E and C, respectively. There is an IP access net-
work connected to both the ingress and egress OBS nodes.
The access networks have four nodes with one TCP sender
on each node. We run available bit-rate UDP traffic source
at 50 Mb/s between C'1 to C3 for all the simulation plots.
An FTP traffic generator is used to send a 1 GB file over
each of the five flows, which are TCP SACK flows. TCP’s
advertised window remains constant throughout the simula-
tion.

0
le-05 le-04 0.001

Contention Probability

(b) TCP medium flow.

0.01 0.1 1

Each link has /6 data channels with / Gbps bandwidth
on each channel. The edge nodes use a mixed timer-threshold
burst assembly mechanism with a timer of /0 ms and a max-
imum burst size of 50 KB. Burst contention is simulated by
randomly dropping bursts at core node C'2.

In our simulations, Snoop attempts one retransmission
per packet and the Snoop cache size can go up to 9 MB for
each TCP flow. Snoop Buffer management is out of scope
for this paper. ARQ uses a maximum of three retransmission
attempts to handle burst loss. We compare the performance
of regular OBS, OBS with Snoop, OBS with ARQ, and OBS
with ARQ+Snoop over varying loss probabilities in the core.

In Fig. 6(b) we compare the average file transfer comple-
tion time. The figure shows that ARQ+Snoop significantly
improves TCP performance. The completion time stays al-
most constant for all loss probabilities. At 1% contention
probability there is over an order of magnitude improve-
ment over regular OBS and at 10% almost three orders of
magnitude. There is also some improvement in completion
time between ARQ and ARQ+Snoop as shown in Fig. 6(c),
ARQ causes a large number of FFRs due to reordering of
bursts. As the contention probability increases, ARQ causes
more fast retransmissions. From Fig. 6(c) and (d) we ob-
serve that Snoop alone handles FFRs well while ARQ alone
handles FTOs well. Therefore, the combination of the two,
ARQ+Snoop, provides significant performance improvement.

We can see that without any loss recovery, regular OBS
performs very poorly. As from the Fig. 6(e) that the aver-
age congestion window is small enough for the entire win-
dow to fit inside a single burst. As a result, when a burst is
dropped the TCP sender will always enter timeout instead of
fast retransmission. By itself, Snoop does not provide large
performance improvement because it cannot prevent time-
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outs even though it handles fast retransmissions as shown in
Fig. 6(c) and (d).

In Fig. 6(f) we compare the average per flow throughput.
Again, from the graphs we see ARQ+Snoopperforms better
than other schemes as the contention probability increases.
There is significant improvement compared to ARQ alone
because of the FFRs caused by ARQ. Snoop handles fast
retransmission by suppressing duplicate acknowledgments
but cannot handle FTOs. The two approaches complement
each other to handle both FTOs and FFRs.

6 Conclusion

In this paper we have evaluated multi-layer loss recovery
mechanisms, including Snoop, ARQ, and ARQ+Snoop for
TCP over OBS networks. We have shown that the inde-
pendent ARQ+Snoop approach over OBS significantly im-
proves overall TCP performance. Comparing the average
end-to-end TCP flows completion time, ARQ+Snoop is up
to two orders of magnitude faster than regular OBS while
also providing performance improvements over ARQ, and
Snoop.
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