
1

Unfairness in TCP Performance over Lossy Optical Burst-Switched (OBS) Networks
Julie Sullivan, Paul Ramos, and Vinod M. Vokkarane

∗ Department of Computer and Information Science, University of Massachusetts, Dartmouth, MA 02747, USA
E-mail:{u j7sullivan,pramos1,vvokkarane}@umassd.edu

Abstract—One of TCP’s primary objectives is to provide fair-
ness to all flows competing for resources in a network. Since
the popular flavors of TCP were designed to work with electronic
packet-switched networks, they behave differently when used over
optical burst-switched networks (OBS). In OBS, burst loss occurs
due to random contention of data bursts. Since TCP is unaware of
the underlying physical media, the responsibility of fairness must
be provided by the burst assembler. We investigate several flow-
aware and flow-unaware mechanisms that improve TCP fairness
over OBS.

Index Terms—WDM, TCP, OBS, and IP

I. INTRODUCTION

Optical burst switching (OBS) is a promising technology,
having a huge potential integrating IP with wavelength division
multiplexing (WDM) technology and offering huge bandwidth
in the order of 50 THz. OBS has a granularity between optical
circuit and optical packet switching networks, making it a
pragmatic technology to be employed.

OBS network architecture consists of core nodes and edge
nodes. Edge nodes handle all incoming traffic (like TCP/IP and
UDP) and aggregate the incoming data into bursts.

Contention occurs when more than one burst is scheduled
to go on the same output port at the same time. In electronic
packet switching, the primary method for resolving contention
is through buffering. In OBS, the contention resolution mecha-
nisms include fiber delay lines, wavelength conversion, deflec-
tion routing, and burst segmentation [2].

TCP is the dominant transport protocol over IP and accounts
for the majority of data traffic over the Internet. The need for
a reliable transport protocol is evident when we think in terms
of supporting a multitude of applications, especially ones that
require high bandwidth and having long end-to-end delays. The
fundamental assumption of the various TCP versions is that
the underlying physical medium is electronic and the packets
experience queuing delay at IP routers.

In TCP/IP over OBS, multiple TCP packets are assembled
into a single burst and transmitted. A single burst loss would
generally cause multiple packet losses. TCP reacts to the packet
loss via a timeout (TO) or fast retransmit (FR). The specifics
of the congestion control algorithms in the different versions
of TCP have been discussed thoroughly in [5].

The various techniques TCP employs to deal with and avoid
congestion provide fairness across all flows in the network.
While these techniques are successful in providing fairness in
an electronic network, they are unsuccessful in an OBS network
when there are random burst contentions. Since TCP exists at
the transport layer, and is unaware of the underlying physical
medium, it cannot properly provide fairness for OBS. The
responsibility of fairness must then be given to the underlying
medium, which in the case of OBS is the burst assembly
mechanism.

II. PREVIOUS WORK AND TOPOLOGIES

Previous work has been done to study TCP fairness over
OBS [6]. They show that TCP is generally fair over OBS, using
Jain’s Fairness index where bi is the fraction of the capacity of
the bandwidth flow i is using:

f =
(Σn

i=1bi)2

n ∗ (Σn
i=1b

2
i)

(1)

They use three different kinds of topologies; local aggrega-
tion, edge aggregation, and core aggregation. We will only pay
attention to local and edge aggregations as they are the only
topologies involving burst assembly among different flows. All
topologies are dumbbell topologies.

A. Local Aggregation

Local aggregation concentrates all flows on a single TCP
sender node. This node is connected to the ingress edge node
with one link. At the other end, the egress edge node is
connected to the single TCP receiver node.

B. Edge Aggregation

With edge aggregation, each TCP flow is sent from a separate
node. There is only one flow per node.

III. PROPOSED BURST ASSEMBLY MECHANISMS

We propose different burst assembly mechanisms to spread
out the different flows among the bursts. This is intended to
create fairness.

These assembly mechanisms would require a buffer for every
flow, becoming unrealistic in a typical network with thousands
of flows. Thus, we propose a set number of buckets which flows
will map into. The burst assembler will take packets from these
buckets, which may have many different flows in them (Fig. 1).
Several different mapping policies from the flows to the buckets
are proposed below.

Fig. 1. Proposed Burst Assembly with Buckets

A. Mapping Policies

Here we discuss the different policies we can use to map the
flows into the set number of buffers.

2

1) Flow unaware vs. Flow aware: Here we run into an out-
of-ordering issue. If we allow the flows to map into any bucket,
some flows may map to several different buckets. For example,
Flow 1 may send a packet to Bucket 1, then send its next packet
to Bucket 2. The second packet from Flow 1 may be put into
the burst before the first packet.

To take care of this problem, we can introduce flow aware-
ness. Once a flow has mapped to a specific bucket, that mapping
is tracked, and all later packets from that flow will be sent
to the same bucket. The mapping is tracked until the burst is
sent, then it is reset. This way, flows will not be stuck with
a single bucket for their entire duration. Both flow aware and
flow unaware mapping policies will be considered.

2) Round Robin: The round robin (RR) mapping policy will
take the flows as they come in and map them to the buckets in
order. The first packet will map to the first bucket, then second
packet to the second bucket, and so on. The flow-aware RR
mapping policy will send the same flows to the same buckets.
This mapping policy is expected to evenly distribute the flows
among the buckets.

3) Least Used: The least-used (LU) mapping policy maps to
the bucket with the least packets in it. This should help ensure
that all buckets have flows in them, allowing for a more even
distribution. With flow awareness, this mapping policy should
be the most able to keep the buckets evenly populated.

4) Random: The random mapping policy will take packets
from flows and place them in random buckets. This is the most
likely to suffer from out-of-ordering without flow awareness.

B. Burst Assembly Mechanisms

1) Round Robin: A round robin (RR) burst assembler will
take one packet from each bucket, starting from the first packet.
It will skip any buckets without packets. RR burst assembly will
ensure that several different flows end up in a packet, so long
as there are several different flows in the different buckets.

2) Circular Round Robin: A circular round robin (CRR)
burst assembler acts like a RR burst assembler, except that it
changes the order of the buckets that it takes from first after
each burst has been completely assembled. It will start off like a
regular RR burst assembler, taking a packet from the first bucket
first, then going through the rest of the buckets. However, on its
next turn, it will start with the second buckets, then go through
the rest of the buckets. It will continually change which bucket
it starts from, circling through all buckets as the starting bucket.
We expect this to be more fair than a RR burst assembler. This
assembler guarantees that packets will not end up in the same
place in every burst.

3) Random: A random assembler will choose at random
which buckets to take packets from. If the picking among the
buckets is evenly distributed, this should be a fair assembler.
We do not expect it to be as fair as the circular round robin
assembler. It may be more fair than the round robin assembler
because the flows will continually change positions in the burst.

IV. SIMULATION RESULTS
We used NS2 for our simulations and we forced random

contentions. In our local topology, there is one node with 50

flows being sent from it, and in our edge topology, there are
50 nodes with one flow being sent from each. We have five
buckets which the flows will be mapped into for assembly.
All the optical links have a bandwidth of 1Gbps and a delay
of 0.5ms. There are 16 data and control channels. Bursts are
randomly dropped in the core.

Contention greatly affects fairness (Fig. 2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

F
ai

rn
es

s
(J

ai
n’

s
In

de
x)

Contention (Percent)

fairness

Fig. 2. Contention versus Fairness (using Jain’s Index)

We found that the edge aggregation was consistently fairer
than local aggregation, no matter what the contention rate was.
Edge aggregation always performed very well, almost perfectly
fair, for every variable we used. Thus, we will concentrate on
local aggregation for the rest of the paper.

Next we compared flow awareness with no flow awareness.
We found that no flow awareness performs better than flow
awareness with any kind of random assembly or random
mapping policy (Fig. 3(a)). Flow awareness performs better
than no flow awareness without random assembly or random
mapping (Fig. 3(b)).

Next we will compare the mapping policies. These performed
differently with flow awareness (Fig. 4(a)) than without flow
awareness (Fig. 4(b)). When the policies are flow aware, the
least-used mapping policy is consistently fairer than round-
robin or random mapping policies. The assembly mechanism
makes little difference. When the policies are not flow aware,
the random mapping policy is consistently fairer than round-
robin or least-used policies. The gap in performance closes
considerably when we use the random assembly mechanism.

Comparing the assembly mechanisms, we found that when
there is flow awareness, all assembly mechanisms perform
similarly. Round-robin and Circular round-robin mechanisms
perform marginally better than the random mechanism. Without
flow awareness, the random assembly mechanism performs
significantly better than the other two. The margin closes
greatly in conjunction with the random mapping policy.

V. CONCLUSION
We have found that contention makes a big difference in

fairness. Also, edge aggregation performs much better than
local aggregation due to the fact that all flows are on one node
in the local aggregation topology, thus all flows originate in the
same place and are more likely to overpower each other.

We found that flow awareness performs much better when
there is random mapping or assembly than when the random
policy is not used. This is likely due to out-of-ordering. With
random mapping and assembly, we are far more likely to have

3

 0

 0.2

 0.4

 0.6

 0.8

 1

R
R

-R
and

C
R

R
-R

and

R
and-R

and

R
and-R

R

R
and-LU

F
ai

rn
es

s
In

de
x

Type of Simulation (Assembly-Mapping)

unaware
aware

(a) With Random Mapping or Random Assembly

 0

 0.2

 0.4

 0.6

 0.8

 1

R
R

-R
R

C
R

R
-R

R

R
R

-LU

C
R

R
-LU

F
ai

rn
es

s
In

de
x

Type of Simulation (Assembly-Mapping)

unaware
aware

(b) Without Random Mapping or Random Assembly

Fig. 3. Flow Awareness Comparison

out-of-ordering, as packets can just go wherever they want
to. However, with flow awareness, they are in order, so even
though there is randomness, it should not be affected greatly.
When there is no randomness, out-of-ordering is much less
likely to occur, so flow awareness only puts a burden on the
mapping. Thus, no flow awareness performs better when there
is no randomness.

When we have flow awareness, the least-used mapping policy
outperforms the other two due to the least-used policy’s ability
to fill the buckets more. With flow awareness, flows are destined
to go to certain buckets once they have been mapped to it, so
in the case of the random and round-robin mapping policies,
some buckets may be empty. In the least-used policy, flows will
occupy the emptiest buckets, making it less likely to have any
empty buckets, increasing fairness.

When we do not have flow awareness, the random mapping
policy outperforms the other two, especially when we use it
in conjunction with the round-robin and circular round-robin
assembly mechanisms. It is likely more fair to combine the
random with a more structured assembly mechanism because
we get a better distribution of flows in each burst. We can see
this as well in the fact that the random assembly mechanism
outperforms the other assembly mechanisms.

Though unexpected, when we do not have flow awareness,
we found that the random assembly mechanism better dis-
tributes packets in the burst than the circular round-robin or
round-robin assembly mechanisms, especially when we use the
round-robin or least-used mapping policies. The round-robin
and least-used mapping policies will not widely distribute the

 0

 0.2

 0.4

 0.6

 0.8

 1

R
R

C
R

R

R
and

F
ai

rn
es

s
In

de
x

Type of Simulation (Assembly)

Rand
RR
LU

(a) Flow Aware

 0

 0.2

 0.4

 0.6

 0.8

 1

R
R

C
R

R

R
and

F
ai

rn
es

s
In

de
x

Type of Simulation (Assembly)

Rand
RR
LU

(b) Not Flow Aware

Fig. 4. Mapping Comparison

flows among the buckets like the random mapping policy. So
when we use the round-robin or circular round-robin assembly
mechanisms, the flows are still in a fairly predictable order
entering the burst. Using the random assembly mechanism
would mix up this order more, thus creating more fairness.

Using randomness with flow awareness seems to be the
fairest approach to using TCP over OBS. Having flow aware-
ness prevents out-of-ordering while random mapping policies
or assembly mechanisms distribute the flows widely, creating
more fairness.

REFERENCES
[1] C. Qiao et al,“Optical Burst Switching (OBS) - A New Paradigm for an

Optical Internet,” Journal of High Speed Networks, Jan. 1999.
[2] V. M. Vokkarane et al, “Segmentation-Based Non-Preemptive Chan-

nel Scheduling Algorithms for Optical Burst-Switched Networks,”
IEEE/OSA Journal of Lightwave Technology (JLT), Special Issue on
Optical Networks, vol. 23, no. 10, pp.3125-3137, Oct. 2005

[3] K. Fall et al, “Simulation-based Comparisons of Tahoe, Reno and Sack
TCP,” ACM SIGCOMM Computer Communication Review, vol. 26, pp.
5-21, July 1996.

[4] M. Mathis et al, “TCP Selective Acknowledgement Options,” RFC 2018,
1996.

[5] B. Sikdar et al, “Analytic Models for the Latency and Steady-State
Throughput of TCP Tahoe, Reno, and SACK,” IEEE/ACM Transactions
on Networking, vol. 11, no. 6, December 2003 , Pages 959-961.

[6] X. Yu et al, “TCP Performance over OBS Networks with Multiple
Flows Input,” Broadband Communications, Networks and Systems, 2006.
BROADNETS 2006. 3rd International Conference on , vol., no., pp.1-10,
1-5 Oct. 2006

