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Optical Circuit Switching

For each request,
- Set-up a static circuit (lightpath)
- Transfer data
- Release connection

Pros:

- Suitable for smooth, longer-term, high-bandwidth applications
Cons:

- Long circuit set-up latency

- Inefficient for short-term bursty applications
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Optical Circuit Switching (cont.)
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e Circuit switched networks optimized for Voice e Data tends to be bursty
e Data: Accounts for majority of total traffic e Static bandwidth allocation is not efficient
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Optical Packet Switching

A photonic packet contains a header and the payload

Packet header is processed all-optically at each node
and switched to the next hop

Pros:
- Statistical multiplexing of data
- Suitable for bursty traffic

Cons:
- Very fast switching speeds (nanoseconds)
- Synchronization
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Optical Burst Switching

Multiple IP packets assembled into a burst

An out-of-band control header transmitted ahead of each data
burst

Pros:
- Statistical multiplexing of data
- Suitable for bursty traffic
- Low data-transfer latency
- Electronic control plane (practically feasible)
- Optical data plane (high-speed)
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Motivation for OBS

 Optical
Circuit Low High Slow Low Low
Switching

Optical
Packet High Low Fast High High
Switching

Optical
Burst High Low Medium Low High
Switching

OBS combines the best of the two while avoiding their shortcomings
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Layered Network Model

IP layer

(Electronic)

IP Router

Y& optical switch
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OBS Network Architecture
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OBS Node Architecture
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Burst Assembly

Aggregate multiple (IP) packets going to the same
destination into a single burst

Assembly Mechanisms: Timer-based and Threshold-based

e Timer-based assembly:

— After a fixed timer interval, all the packets in the queue are framed into
a single burst

e Threshold-based assembly:

— After a fixed length threshold is reached, all the packets in the queue
are framed into a single burst.
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Burst Assembly

Aggregate multiple (IP) packets going to the same destination into a single burst

Time or length A header is generated
DST 1 threshold is reached | 2nd sentout
. 0 |
A unique . I
packet queue Burst %, Control Channel
for every * Assembly
destination ® ° Node
egress node ° y &Data Channel
N | .
Burst transmitted
IP Packet Queues after offset time

IP Packet
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Signaling Technique

» One-way based (un-acknowledged) signaling

- Reservation Mechanism: Based on the start of the reservation
- Immediate Reservation: Immediately after the control heater
- Delayed Reservation: At the start of the burst

+ Release Mechanism: Based on the release of the reservation
- Implicit Release: based on burst length information
- Explicit Release: explicit release control packet used

74

Burst Header
- — Offset—>|
Explicit Implicit Delayed Immediate
Release Release Reservation Reservation
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Just-Enough-Time (JET) Signaling

Delayed Reservation and

Src Dst | Implicit Release
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Data Loss in OBS: Burst Contentions

-Contention occurs when more than one burst attempts to go out of same
output port (or wavelength) at the same time

Unique to all-optical networks

-Traditional networks employ electronic buffering to resolve
contentions

-Lack of optical buffers (cannot store light)

Original burst

G T Contending burst

—— Broep Entire Burst

Core Switch

- Drop Policy:

- One of the bursts will be dropped in its entirety
- Even though overlap between the bursts may be minimal
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TCP over OBS

+  Transmission Control Protocol (TCP)

- Majority Internet applications depend on TCP for reliable data
transmission

- TCP assumes packet loss in the network is due to network congestion

- TCP congestion avoidance mechanisms will reduce sending rate in the
event of a packet loss

- OBS
- Random burst loss occurs even when the network is NOT congested

TCP over OBS

- TCP falsely reduces sending rate even when the network is NOT
congested (False Timeout)

- Significantly degrade throughput
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Toward a Reliable OBS
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Traditional Contention Resolution

Optical Buffering (FDLs)
- Achieved through Fiber Delay Lines
- Issues: Limited buffer capacity and additional hardware cost

Wavelength Conversion

- Converting the wavelength of an incoming channel to another
wavelength at the outgoing channel

- TIssues: Additional hardware cost

Deflection Routing

- Deflect contending bursts to alternate port

- Issues: Higher delay and out-of-sequence delivery
- No additional hardware cost
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Burst Segmentation

When contention occurs, only overlapping segments are dropped
Two Approaches: Head Dropping and Tail Dropping
Details: Vokkarane and Jue [IEEE ICC 2002, New York]

Tail Dropping

- Original burst

Dropped Segments

‘ Contending burst

Head Dropping

Core Switch
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Evaluation Criteria

»  Evaluation of proposed policies
- Average end-to-end packet loss probability

- Average number of hops (delay)
- TCP Throughput

* Numerical Analysis
- Analytical modeling
- Simulation results
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Burst Segmentation: Analytical Loss Model

- Burst Arrivals: Poisson Process
+ M/G/1/1 Queueing Model

Burst Length Distribution (After khops)A
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Simulation Network

Assumpfions 14-node NSFNET

Burst Arrivals Poisson

Average Burst Length 100 us (exponentially dist.)
Link Transmission Rate 10 Gb/s

Packet Length 1500 Bytes

Switching Time 10 ps

Optical Buffering NO

Wavelength Conversion NO
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Packet Loss Performance
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Average Number of Hops (~Delay)
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TCP Throughput
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Toward a Reliable OBS
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Reactive Loss Recovery: Burst Retransmission

Ingress Node  Node 1 Node 2 Node 3 Egress Node

Objective

- To recover from burst loss when
hetwork is not congested

Basic idea _-
- Refransmit lost bursts at source e
hodes Retransmission °*
- Stop retransmission when Delay

Tr > Delay Constraint (8)
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Analysis for Burst Retransmission

Objective
- Analyze the average burst loss probability in the network
Basic idea

- No retransmission for bursts blocked by retransmission buffers
- P:PbPC"'(l‘Pb) (PC)R+1

Edge Node P, Burst ConténtiohyProbability

No Retransmission P,
—

> OBS Network

Retransmission

Buffer ~ ~% Retransmission
(1-Py) |
R - ﬂ
(P.)

Burst Loss
Burst Loss Probability P
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Simulation Assumptions

* No. of wavelengths on each link is 4

*+  Transmission rate on a wavelength is 10 Gb/s
* Burst arrival is Poisson

*  Traffic are uniformly distributed

- Average burst length are 10045

Computer and Information
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Burst Loss Probability
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Analysis and Simulation Results for
Burst Loss Probability
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Average Burst Delay
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Buffer Capacity at Edge Nodes
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Performance of TCP Versions
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Burst Retransmission

* Pros
- Reduce burst loss probability
- Correctly indicate network congestion
- Significantly improve TCP sending rate
» Cons
- Additional electronic buffers at edge nodes

- Longer delay for retransmitted bursts
- Higher burst contention probability
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Proactive Loss Recovery: Forward Redundancy (FR)

Some or all the original packets of a burst are copied
and sent in the forward direction from source to
destination

Receiver can recover from selective packet loss in the
forward direction

Policies
Partial (< 100%) or Complete (>= 100%) FR

Serial or Parallel FR
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Serial Forward Redundancy (SFR)
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Simulation Assumptions

No. of wavelengths on each link: 8
Transmission rate: 10 Gbps per wavelength
Burst arrivals: Poisson

Packet size: 1250 byte [10 Kb]

Fixed burst length: 100 packets [IMb]
Traffic: uniformly distributed

Switching time = 10 ps

NSF Network
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Packet Loss Performance
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Packet Loss Probability
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End-to-End Packet Delay
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Packet Loss Probability
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Analytical Loss Model Results
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TCP Throughput

- Baseline
== Segmentation
== 10%

-8~ 20%

=B 50% SFR

- 100%

[y
o
T T

TCP Throughput(kbps) ———>
i

3.2 4.8 6.4 8 9.6 1.2 14.4 16

vvokkarane@umassd.edu Computer and Information

Science Department




Presentation Outline
© Toreoduction to Oorical Transoort Paradigms
- Ooricadl Buest Switening

» Rzliaolz Dara Transoorr in 025
- Lozs Minimizarion Mzenanisms

—_—

) .
Loss Rzcovzey zenanisms

+ Conclusion and Future Work

vvokkarane@umassd.edu Computer and Information

Science Department




Conclusion

- OBS Network

- Promising optical core data-transport paradigm
- Suited for delay-sensitive applications

* Loss Minimization and Loss Recovery Mechanisms
- Evaluated several new mechanisms
- Proposed mechanisms significantly improves the reliability

- Future Work

- Develop Dynamic mechanisms
- Impact on newer high-speed TCP versions
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