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Presentation Outline

• Introduction to Optical Transport Paradigms

• Optical Burst Switching

• Reliable Data Transport in OBS
– Loss Minimization Mechanisms
– Loss Recovery Mechanisms

• Conclusion and Future Work
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Optical Circuit Switching

• For each request, 
– Set-up a static circuit (lightpath)
– Transfer data
– Release connection

• Pros: 
– Suitable for smooth, longer-term, high-bandwidth applications

• Cons: 
– Long circuit set-up latency
– Inefficient for short-term bursty applications
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Optical Circuit Switching (cont.)

• Circuit switched networks optimized for Voice

• Data: Accounts for majority of total traffic

• Data tends to be bursty
• Static bandwidth allocation is not efficient

Optical Circuit 
Switching
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Optical Packet Switching

• A photonic packet contains a header and the payload

• Packet header is processed all-optically at each node 
and switched to the next hop

• Pros:
– Statistical multiplexing of data
– Suitable for bursty traffic

• Cons:
– Very fast switching speeds (nanoseconds)
– Synchronization
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Optical Burst Switching

• Multiple IP packets assembled into a burst
• An out-of-band control header transmitted ahead of each data 

burst

• Pros:
– Statistical multiplexing of data
– Suitable for bursty traffic
– Low data-transfer latency
– Electronic control plane (practically feasible) 
– Optical data plane (high-speed)
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Motivation for OBS 
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OBS Network Architecture

• Core
– Signaling
– Scheduling
– Contention Resolution

• Edge
– Burst Assembly
– Routing Burst Header
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OBS Node Architecture
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Burst Assembly
• Aggregate multiple (IP) packets going to the same 

destination into a single burst

• Assembly Mechanisms: Timer-based and Threshold-based

• Timer-based assembly:

– After a fixed timer interval, all the packets in the queue are framed into 
a single burst

• Threshold-based assembly: 

– After a fixed length threshold is reached, all the packets in the queue 
are framed into a single burst. 
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Signaling Technique

• One-way based (un-acknowledged) signaling

• Reservation Mechanism: Based on the start of the reservation
– Immediate Reservation: Immediately after the control heater 
– Delayed Reservation: At the start of the burst

• Release Mechanism: Based on the release of the reservation
– Implicit Release: based on burst length information 
– Explicit Release: explicit release control packet used
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Just-Enough-Time (JET) Signaling

• Delayed Reservation and 
Implicit Release 

• Header contains burst length, 
offset time, source, destination

• Offset time necessary for 
processing of header at 
intermediate nodes without 
buffering the data burst

• Just-In-Time (JIT): Immediate 
Reservation and Explicit 
Release
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Data Loss in OBS: Burst Contentions

• Drop Policy: 
– One of the bursts will be dropped in its entirety
– Even though overlap between the bursts may be minimal

•Contention occurs when more than one burst attempts to go out of same 
output port (or wavelength) at the same time

•Unique to all-optical networks
–Traditional networks employ electronic buffering to resolve 
contentions
–Lack of optical buffers (cannot store light)

Core Switch

Original burst

Contending burst

Drop Entire Burst
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TCP over OBS

• Transmission Control Protocol (TCP)
– Majority Internet applications depend on TCP for reliable data 

transmission
– TCP assumes packet loss in the network is due to network congestion
– TCP congestion avoidance mechanisms will reduce sending rate in the 

event of a packet loss

• OBS
– Random burst loss occurs even when the network is NOT congested

• TCP over OBS
– TCP falsely reduces sending rate even when the network is NOT 

congested (False Timeout)
– Significantly degrade throughput
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Toward a Reliable OBS
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Traditional Contention Resolution

• Optical Buffering (FDLs)
– Achieved through Fiber Delay Lines
– Issues: Limited buffer capacity and additional hardware cost

• Wavelength Conversion
– Converting the wavelength of an incoming channel to another 

wavelength at the outgoing channel
– Issues: Additional hardware cost

• Deflection Routing
– Deflect contending bursts to alternate port
– Issues: Higher delay and out-of-sequence delivery
– No additional hardware cost
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Core Switch

Burst Segmentation

Original burst

Contending burst
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Dropped Segments

• When contention occurs, only overlapping segments are dropped
• Two Approaches: Head Dropping and Tail Dropping
• Details: Vokkarane and Jue [IEEE ICC 2002, New York]
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Evaluation Criteria

• Evaluation of proposed policies
– Average end-to-end packet loss probability
– Average number of hops (delay)
– TCP Throughput

• Numerical Analysis
– Analytical modeling
– Simulation results
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• Burst Arrivals: Poisson Process
• M/G/1/1 Queueing Model

Burst Segmentation: Analytical Loss Model

Burst Length Distribution (After k hops):

End-to-End Packet Loss:



vvokkarane@umassd.edu

Simulation Network

14-node NSFNET

NOWavelength Conversion
NOOptical Buffering
10 μsSwitching Time
1500 BytesPacket Length
10 Gb/sLink Transmission Rate 
100 μs (exponentially dist.)Average Burst Length
PoissonBurst Arrivals

Assumptions
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Packet Loss Performance
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TCP Throughput
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Toward a Reliable OBS
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Reactive Loss Recovery: Burst Retransmission

• Objective
– To recover from burst loss when 

network is not congested

• Basic idea
– Retransmit lost bursts at source 

nodes
– Stop retransmission when 

Tr > Delay Constraint (δ)

Retransmission 
Delay



vvokkarane@umassd.edu

Analysis for Burst Retransmission

Objective
– Analyze the average burst loss probability in the network

Basic idea
– No retransmission for bursts blocked by retransmission buffers
– P = PbPc + (1 – Pb) (Pc) R+1

Edge Node

Retransmission 
Buffer

OBS Network

Buffer Blocking Probability Pb

Burst Contention Probability 
Pc

Burst Loss Probability P

Retransmission 

Burst Loss

(1 – Pb)
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Simulation Assumptions

• No. of wavelengths on each link is 4 
• Transmission rate on a wavelength is 10 Gb/s
• Burst arrival is Poisson 
• Traffic are uniformly distributed 
• Average burst length are 100µs
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Burst Loss Probability



vvokkarane@umassd.edu

Analysis and Simulation Results for 
Burst Loss Probability
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Average Burst Delay
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Buffer Capacity at Edge Nodes
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Performance of TCP Versions

Throughput Num. of Timeouts
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Burst Retransmission

• Pros
– Reduce burst loss probability
– Correctly indicate network congestion 
– Significantly improve TCP sending rate

• Cons
– Additional electronic buffers at edge nodes
– Longer delay for retransmitted bursts
– Higher burst contention probability
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Proactive Loss Recovery: Forward Redundancy (FR)

• Some or all the original packets of a burst are copied 
and sent in the forward direction from source to 
destination

• Receiver can recover from selective packet loss in the 
forward direction

Policies
• Partial (< 100%) or Complete (>= 100%) FR

• Serial or Parallel FR
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Serial Forward Redundancy (SFR)

SFR: redundant packets are placed at the tail of the original burst
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Simulation Assumptions
• No. of wavelengths on each link:  8 
• Transmission rate: 10 Gbps per wavelength
• Burst arrivals: Poisson 
• Packet size: 1250 byte [10 Kb] 
• Fixed burst length: 100 packets [1Mb] 
• Traffic: uniformly distributed 
• Switching time = 10 μs

NSF Network
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Packet Loss Performance
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Packet Loss Probability
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End-to-End Packet Delay
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Packet Loss Probability
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Analytical Loss Model Results
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TCP Throughput
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Conclusion

• OBS Network
– Promising optical core data-transport paradigm
– Suited for delay-sensitive applications 

• Loss Minimization and Loss Recovery Mechanisms
– Evaluated several new mechanisms
– Proposed mechanisms significantly improves the reliability

• Future Work
– Develop Dynamic mechanisms
– Impact on newer high-speed TCP versions
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Thank You

http://www.cis.umassd.edu/~vvokkarane/


