## Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks

Dr. Vinod Vokkarane Assistant Professor, Computer and Information Science Co-Director, Advanced Computer Networks Lab University of Massachusetts Dartmouth, USA

#### April 22, 2006

**IEEE Invited Lecture Presentation** 

**Department of Electrical and Computer Engineering** 

Indian Institute of Science (IISc), Bangalore, India



vvokkarane@umassd.edu

## Presentation Outline

- Introduction to Optical Transport Paradigms
- Optical Burst Switching
- Reliable Data Transport in OBS
  - Loss Minimization Mechanisms
  - Loss Recovery Mechanisms
- Conclusion and Future Work

vvokkarane@umassd.edu

## **Applications** Demands



vvokkarane@umassd.edu

Science Department

# **Optical Circuit Switching**

- For each request,
  - Set-up a static circuit (lightpath)
  - Transfer data
  - Release connection
- Pros:
  - Suitable for smooth, longer-term, high-bandwidth applications
- Cons:
  - Long circuit set-up latency
  - Inefficient for short-term bursty applications



vvokkarane@umassd.edu

## Optical Circuit Switching (cont.)



# Optical Packet Switching

- A photonic packet contains a header and the payload
- Packet header is processed all-optically at each node and switched to the next hop

Pros:

- Statistical multiplexing of data
- Suitable for bursty traffic
- Cons:
  - Very fast switching speeds (nanoseconds)
  - Synchronization

vvokkarane@umassd.edu

# **Optical Burst Switching**

- Multiple IP packets assembled into a burst
- An out-of-band control header transmitted ahead of each data burst
- Pros:
  - Statistical multiplexing of data
  - Suitable for bursty traffic
  - Low data-transfer latency
  - Electronic control plane (practically feasible)
  - Optical data plane (high-speed)

vvokkarane@umassd.edu

## Motivation for OBS

| Optical<br>Switching<br>Paradigm | Bandwidth<br>Utilization | Setup<br>Latency | Switching<br>Speed Req. | Proc. / Sync.<br>Overhead | Traffic<br>Adaptively |
|----------------------------------|--------------------------|------------------|-------------------------|---------------------------|-----------------------|
| Optical<br>Circuit<br>Switching  | Low                      | High             | Slow                    | Low                       | Low                   |
| Optical<br>Packet<br>Switching   | High                     | Low              | Fast                    | High                      | High                  |
| Optical<br>Burst<br>Switching    | High                     | Low              | Medium                  | Low                       | High                  |

OBS combines the best of the two while avoiding their shortcomings

U.C.S

vvokkarane@umassd.edu

## Presentation Outline

- · Introduction to Optical Transport Paradigms
- Optical Burst Switching
- Reliable Data Transport in OBS
  Loss Minimization Mechanisms
  Loss Recovery Mechanisms
- · Conclusion and Future Work

Computer and Information Science Department

## Layered Network Model



vvokkarane@umassd.edu

# **OBS** Network Architecture



vvokkarane@umassd.edu

### **OBS** Node Architecture



Adopted from Qiao

vvokkarane@umassd.edu

## Burst Assembly

- Aggregate multiple (IP) packets going to the same destination into a single burst
- Assembly Mechanisms: Timer-based and Threshold-based

- Timer-based assembly:
  - After a fixed timer interval, all the packets in the queue are framed into a single burst
- Threshold-based assembly:
  - After a fixed length threshold is reached, all the packets in the queue are framed into a single burst.

vvokkarane@umassd.edu

## **Burst Assembly**

Aggregate multiple (IP) packets going to the same destination into a single burst



vvokkarane@umassd.edu

# Signaling Technique

- One-way based (un-acknowledged) signaling
- Reservation Mechanism: Based on the start of the reservation
  - Immediate Reservation: Immediately after the control heater
  - Delayed Reservation: At the start of the burst
- Release Mechanism: Based on the release of the reservation
  - Implicit Release: based on burst length information
  - Explicit Release: explicit release control packet used



# Just-Enough-Time (JET) Signaling



- Delayed Reservation and Implicit Release
- Header contains burst length, offset time, source, destination

Offset time necessary for processing of header at intermediate nodes without buffering the data burst

Just-In-Time (JIT): Immediate Reservation and Explicit Release

vvokkarane@umassd.edu

## Data Loss in OBS: Burst Contentions

•Contention occurs when more than one burst attempts to go out of same output port (or wavelength) at the same time

#### Unique to all-optical networks

-Traditional networks employ electronic buffering to resolve contentions

-Lack of optical buffers (cannot store light)

**Original burst** 

**Contending burst** 

#### **Core Switch**

**Drop** Entire Burst

- Drop Policy:
  - One of the bursts will be dropped in its entirety
  - Even though overlap between the bursts may be minimal

vvokkarane@umassd.edu

## TCP over OBS

- Transmission Control Protocol (TCP)
  - Majority Internet applications depend on TCP for reliable data transmission
  - TCP assumes packet loss in the network is due to network congestion
  - TCP congestion avoidance mechanisms will reduce sending rate in the event of a packet loss
  - OBS
    - Random burst loss occurs even when the network is NOT congested
- TCP over OBS
  - TCP falsely reduces sending rate even when the network is NOT congested (False Timeout)
  - Significantly degrade throughput

vvokkarane@umassd.edu

## Presentation Outline

- · Introduction to Optical Transport Paradigms
- · Optical Burst Switching
- Reliable Data Transport in OBS
  - Loss Minimization Mechanisms
  - Loss Recovery Mechanisms
- · Conclusion and Future Work

vvokkarane@umassd.edu

#### Toward a Reliable OBS



Computer and Information Science Department

## Traditional Contention Resolution

- Optical Buffering (FDLs)
  - Achieved through Fiber Delay Lines
  - Issues: Limited buffer capacity and additional hardware cost
- Wavelength Conversion
  - Converting the wavelength of an incoming channel to another wavelength at the outgoing channel
  - Issues: Additional hardware cost
- Deflection Routing
  - Deflect contending bursts to alternate port
  - Issues: Higher delay and out-of-sequence delivery
  - No additional hardware cost

vvokkarane@umassd.edu

## **Burst Segmentation**

- When contention occurs, only overlapping segments are dropped
- Two Approaches: Head Dropping and Tail Dropping
- Details: Vokkarane and Jue [IEEE ICC 2002, New York]



vvokkarane@umassd.edu

## **Evaluation Criteria**

- Evaluation of proposed policies
  - Average end-to-end packet loss probability
  - Average number of hops (delay)
  - TCP Throughput
- Numerical Analysis
  - Analytical modeling
  - Simulation results

vvokkarane@umassd.edu

## Burst Segmentation: Analytical Loss Model

- Burst Arrivals: Poisson Process
- M/G/1/1 Queueing Model

Burst Length Distribution (After k hops):  $G_{l_k^{sd}}(t) = 1 - (1 - G_{l_{k-1}^{sd}}(t))(e^{-\lambda_{l_k^{sd}}})$   $= 1 - (1 - G_{l_0^{sd}}(t))e^{-\left(\sum_{i=1}^{k}\lambda_{l_i^{sd}}\right)t}.$ 

End-to-End Packet Loss:

$$P_{\rm loss} = \sum_{s} \sum_{d} \frac{\lambda^{sd}}{\lambda} P_{\rm loss}^{sd}.$$

vvokkarane@umassd.edu

## Simulation Network



#### Assumptions

| Burst Arrivals         | Poisson                      |  |  |
|------------------------|------------------------------|--|--|
| Average Burst Length   | 100 µs (exponentially dist.) |  |  |
| Link Transmission Rate | 10 Gb/s                      |  |  |
| Packet Length          | 1500 Bytes                   |  |  |
| Switching Time         | 10 µs                        |  |  |
| Optical Buffering      | NO                           |  |  |
| Wavelength Conversion  | NO                           |  |  |



vvokkarane@umassd.edu

#### Packet Loss Performance



vvokkarane@umassd.edu

#### Average Number of Hops (~Delay)



Computer and Information Science Department

## TCP Throughput



vvokkarane@umassd.edu

#### Toward a Reliable OBS



Computer and Information Science Department

## Reactive Loss Recovery: Burst Retransmission



Computer and Information Science Department

## Analysis for Burst Retransmission

Objective

- Analyze the average burst loss probability in the network

Basic idea

- No retransmission for bursts blocked by retransmission buffers
- $P = P_b P_c + (1 P_b) (P_c) R + 1$



vvokkarane@umassd.edu

## Simulation Assumptions

- No. of wavelengths on each link is 4
- Transmission rate on a wavelength is 10 Gb/s
- Burst arrival is Poisson
- Traffic are uniformly distributed
- Average burst length are 100 µs



Computer and Information Science Department

## Burst Loss Probability



vvokkarane@umassd.edu

#### Analysis and Simulation Results for Burst Loss Probability



vvokkarane@umassd.edu

#### Average Burst Delay



vvokkarane@umassd.edu

#### Buffer Capacity at Edge Nodes



vvokkarane@umassd.edu

#### Performance of TCP Versions



vvokkarane@umassd.edu

## Burst Retransmission

- Pros
  - Reduce burst loss probability
  - Correctly indicate network congestion
  - Significantly improve TCP sending rate
- Cons
  - Additional electronic buffers at edge nodes
  - Longer delay for retransmitted bursts
  - Higher burst contention probability

vvokkarane@umassd.edu

#### Proactive Loss Recovery: Forward Redundancy (FR)

- Some or all the original packets of a burst are copied and sent in the forward direction from source to destination
- Receiver can recover from selective packet loss in the forward direction

#### Policies

- Partial (< 100%) or Complete (>= 100%) FR
- Serial or Parallel FR

vvokkarane@umassd.edu

## Serial Forward Redundancy (SFR)



#### SFR: redundant packets are placed at the tail of the original burst

vvokkarane@umassd.edu

## Simulation Assumptions

- No. of wavelengths on each link: 8
- Transmission rate: 10 Gbps per wavelength
- Burst arrivals: Poisson
- Packet size: 1250 byte [10 Kb]
- Fixed burst length: 100 packets [1Mb]
- Traffic: uniformly distributed
- Switching time = 10 µs



vvokkarane@umassd.edu

## Packet Loss Performance



Computer and Information Science Department

#### Packet Loss Probability



Computer and Information Science Department

### End-to-End Packet Delay



Computer and Information Science Department

#### Packet Loss Probability



Computer and Information Science Department

#### Analytical Loss Model Results



vvokkarane@umassd.edu

## TCP Throughput



Computer and Information Science Department

## Presentation Outline

- · Introduction to Optical Transport Paradigms
- · Optical Burst Switching
- Reliable Data Transport in OBS
  Loss Minimization Mechanisms
  - Loss Recovery Mechanisms
- Conclusion and Future Work

vvokkarane@umassd.edu

## Conclusion

- OBS Network
  - Promising optical core data-transport paradigm
  - Suited for delay-sensitive applications
- Loss Minimization and Loss Recovery Mechanisms
  - Evaluated several new mechanisms
  - Proposed mechanisms significantly improves the reliability
- Future Work
  - Develop Dynamic mechanisms
  - Impact on newer high-speed TCP versions

vvokkarane@umassd.edu



#### http://www.cis.umassd.edu/~vvokkarane/



vvokkarane@umassd.edu