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Abstract—In this paper we present the static many-
cast routing and wavelength assignment (MA-RWA)
problem along with heuristics and an integer linear
program (ILP) to solve it. Manycast is a point-to-
multipoint communication paradigm with applica-
tions in e-Science, Grid, and cloud computing. A
manycast request specifies a candidate set of destina-
tions, of which a subset must be reached. To solve MA-
RWA, a light-tree must be assigned to each manycast
request in a static set such that the number of wave-
lengths required is minimized. We present two heu-
ristics, the shortest path heuristic (SPT) and the
lambda path heuristic (LPH), a tabu search meta-
heuristic (TS), and an ILP formulation. We show that
TS provides results close to the optimal solution
(from the ILP) for small networks. We then show that
TS provides a 10% improvement over LPH and a 30%–
40% improvement over SPT for various realistic net-
works.

Index Terms—Manycast; Multicast; Heuristics; ILP;
Tabu search; WDM; Wavelength routing; RWA.

I. INTRODUCTION

O ptical wavelength-routed WDM [1] networks will
be an important technology to provide high band-

width and services to the next-generation Internet
and applications. In WDM networks, each fiber is par-
titioned into a number of wavelengths that can each
transmit data simultaneously. This allows each fiber
to provide data transmission rates of terabits per sec-
ond. An optical WDM network consists of fibers con-
nected by switches, or optical cross connects (OXCs).
In wavelength-routed optical networks, when a con-
nection request arrives at the network, a resource res-
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rvation process must find a route over the physical
opology and also assign a free wavelength to the in-
oming request before data transmission begins. This
s known as the routing and wavelength assignment
RWA) problem [2]. The combination of a route and
avelength is known as a lightpath [3]. In single-hop
r all-optical WDM networks, the signal is transmit-
ed all-optically from the source node to the destina-
ion node. In the absence of wavelength converters
which are expensive), a lightpath in an all-optical

DM network must use the same wavelength on each
ink along the end-to-end path. This is known as the
avelength continuity constraint.

Three traffic models are usually used to describe re-
uests over wavelength-routed networks: static, incre-
ental, and dynamic [4]. A static traffic model gives

ll the traffic demands between source and destina-
ions ahead of time. A traffic demand matrix is given
nd the goal is typically to find RWA for all the de-
ands, such that it minimizes the overall cost (e.g.,

sing the least number of transmitters/receivers). The
onnections are assumed to be held for long periods of
ime. Traffic demands are incremental if, in addition
o the static demands, there are new demands arriv-
ng over time. Dynamic traffic requests arrive accord-
ng to some stochastic process and they are also re-
eased after some finite amount of time. When
ynamic traffic is considered, the number of transmit-
ers and receivers is fixed and the goal is to minimize
equest blocking. A request is said to be blocked if
here are not enough resources available to route it.

Traditionally, communication in a network is uni-
ast, where a single source sends data to a single des-
ination. In this work, we consider a communication
aradigm called manycast [5–7]. Given a network, G
�V ,E�, a unicast connection request can be defined
s a two-tuple, �s ,d�, where s�V is the source node
nd d�V is the destination. We can define a manycast
equest as a three-tuple, �s ,Dc ,k�, where s�V is the
ource, Dc�V is the candidate destination set, and k
2010 Optical Society of America
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� �Dc� is the number of nodes necessary to reach out of
Dc. This means that the source node will send data,
simultaneously, to some subset of size k of the candi-
date destination set. This is a generalization of the
multicast communication paradigm. In multicast, we
are given a source node and a set of destinations
D�V. In the multicast problem, the source communi-
cates with all of D, simultaneously. Given our defini-
tion of manycast, if we have k= �Dc�, then the many-
cast request becomes a multicast request. Since we
can define multicast as a specific instance of many-
cast, we consider manycast a generalization of multi-
cast. It is not, however, a replacement for multicast.
We will motivate the use of manycast shortly.

Manycast and multicast are related in that they
both require setting up a tree in the network instead
of a path so that the source can communicate with
multiple destinations. A unicast request is supported
by the use of lightpaths, as previously discussed. To
efficiently support manycast or multicast requests,
the network must create light-trees [8]. A light-tree is
a generalization of a lightpath that starts at the
source node of a multicast or manycast request and
reaches all of its destinations all-optically by possibly
branching (splitting the signal) at intermediate nodes.
The problem of finding the optimal route for a light-
tree is equivalent to finding the minimal Steiner tree,
which is known to be NP-complete [9], although effi-
cient approximations exist. In order to support light-
trees, the nodes in an optical network must be able to
split an incoming signal to multiple output ports. This
can be accomplished by using switches based on split-
ter and delivery (SaD) [10,11]. These switches are
known as multicast-capable OXCs (MC-OXCs).
Multicast-capable reconfigurable optical add–drop
multiplexers (ROADMs) may also be used [12]. We
discuss these switches in more detail in Section II.

The key difference between multicast and manycast
is that in multicast, the destinations are specified
ahead of time, whereas in manycast the destinations
must be chosen (based on the state of the network, for
example). In other words, in multicast, there is no
flexibility in choosing which destinations to transmit
data to, whereas in manycast we can choose which
destinations to transmit to out of a larger candidate
set. To solve the multicast problem, we have a single
set of nodes that are used to find the optimal Steiner
tree connecting the source and destination set. In
manycast, we must choose a subset of k nodes; this
means that there are a total of � �Dc�

k � combinations of
nodes to use in the creation of a Steiner tree. Of these
� �Dc�

k � different Steiner trees, one of them has the low-
est cost. The manycast problem, though similar to
multicast, requires a new set of solution techniques.
As we will show later, turning a manycast request into
PY [124021] 004007JOC
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multicast request at the source results in poor per-
ormance.

In this work we will consider the static manycast
outing and wavelength assignment (MA-RWA) prob-
em. In this problem we are given a set of manycast
equests and for each request we must assign a light-
ree. The objective is to minimize the number of wave-
engths required to satisfy all the manycast requests.

anycast is a powerful communication framework
hat is important for next-generation applications
13]. Manycast is particularly useful in cloud/utility
omputing, Grid computing, and e-Science. In all of
he above scenarios, we are typically dealing with
arge amounts of data that must be transferred. In
hese environments, a service provider may host a
umber of servers that provide the same service. For
xample, there may be a number of servers that can
e used simultaneously for distributed data storage
and retrieval). There may be a number of servers that
an process computational tasks in parallel. The client
ill want to use some subset of these available re-

ources to execute the storage or computation task.
he subset may correspond to the lowest cost servers
r servers with the lowest latency. As a specific ex-
mple, consider parallel content distribution for an
-Science scenario. e-Science experiments typically
roduce large amounts of data [14] that may then be
tored at multiple locations for distributed backup or
o that multiple research labs can then process it lo-
ally. We can use manycast to choose some subset of
hese locations (e.g., the lowest-cost storage clusters)
o send this data in parallel along a light-tree set up
y the network. This problem can also be solved using
ulticast instead of manycast, but there are several

isadvantages. Instead of using manycast, where the
etwork would choose the subset of destinations for
s, we can use multicast by choosing k destinations at
he source. The first disadvantage is from a user per-
pective. The nodes selected at the source may be
eavily loaded or may provide a slower transfer rate
han other nodes in the candidate set. If some/all of
he preselected nodes are not available, then the re-
uest may be blocked, even though there are other
odes available from the candidate set. From the net-
ork operator perspective, manycast would allow the
etwork to optimize its resources, for example, by load
alancing. Manycast allows the freedom to choose dif-
erent nodes depending on the state of the network,
eading to better performance for user applications
nd better utilization for the network. Another option
o providing a manycast service is to provide many-
ast at the application layer supported by unicast at
he optical layer. The disadvantage to application-
ayer manycast is that using unicast to support point-
o-multipoint communication at the optical layer
astes resources. The authors in [15] show the benefit
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of supporting multicast directly at the optical layer in-
stead of higher layers (IP in this case). Supporting
multicast at the optical layer can significantly reduce
the number of wavelengths required. These results
are applicable to manycast as well, and likely even
more so because the choice of nodes will also impact
the solution. The higher layers may select nodes from
the candidate set that result in suboptimal lightpaths
at the optical layer. Supporting manycast at the opti-
cal layer allows the network to set up a light tree to
the “best” nodes according to the network state, which
minimizes the number of wavelengths required. There
is much work that investigates multicast at the opti-
cal layer (e.g., [16–24]) because of the efficiency and
lower resource utilization; likewise it is most cost-
effective to support manycast at the optical layer.

This is the first paper, to our knowledge, that inves-
tigates manycast over wavelength-routed networks.
Manycast is also known as quorumcast or the
k-Steiner problem. It was proposed in [5,6]. Since
then, a number of quorumcast routing algorithms
have been proposed [5,25–27]. Finding a minimum-
cost tree for a manycast request is NP-hard [28].
Manycast is also related to the k-MST problem [28] in
that a �-approximation algorithm for k-MST leads to a
2�-approximation algorithm for manycast. These
works focus on finding minimum-cost trees for an in-
dividual “request.” In this work we have a set of static
requests and we must also perform routing and wave-
length assignment.

Manycast has also been proposed over optical burst-
switched (OBS) networks [7,29–31]. The main chal-
lenge for manycast over OBS is providing reliability
despite random contentions. These works focus on dy-
namic traffic and distributed routing algorithms or
unicast routing algorithms to provide reliable many-
cast for OBS. These approaches typically do not set up
a route tree for each request nor do they consider
wavelength assignment (they assume full wavelength
conversion is available). The authors in [32] propose
an ILP (used as a basis for our ILP) and several heu-
ristics for solving multiresource manycast in mesh
networks. In manycast we may consider that each
node provides a single resource, so to reach k re-
sources we must reach k nodes. Multiresource many-
cast generalizes manycast by allowing nodes to pro-
vide more than a single resource. This work does not
consider static requests or wavelength assignment.
Recently, an anycast RWA algorithm was proposed for
wavelength-routed networks [33]. Anycast is a specific
instance of manycast where k=1�m.

An example of static manycast routing and wave-
length can be seen in Fig. 1. The table on the right in
the figure shows the static manycast request set. For
each request, we must find a light-tree from the
source to any two of the three destinations in the can-
PY [124021] 004007JOC
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idate set, Dc. The (optimal) RWA is shown over the
ix-node network on the left. The source of each re-
uest reaches exactly two of the destinations in the
andidate set Dc. For example, consider request 2. It is
ourced at node 4, uses link 4–3, then splits the signal
t node 3, reaching nodes 1 and 5. Both of these nodes
re in its candidate set and since k=2, this light-tree
atisfies the manycast request. In this example, only a
ingle wavelength is required to route all three re-
uests over the network. We discussed the wavelength
ontinuity constraint that specifies that a light-tree
ust use the same wavelength on all links. The wave-

ength clash constraint specifies that any given wave-
ength can be used at most once on each link. If two of
he requests shared a link, then they would have to
se two different wavelengths, but since no requests
verlap on any given link, they can each use the same
avelength.

The contributions of this paper are the introduction
f manycast RWA for wavelength-routed optical net-
orks, an ILP formulation of the problem, and three
euristics to solve it. The paper is organized as fol-

ows. Section II presents the formal definition of the
A-RWA problem, and Section III presents our ILP

ormulation. We discuss our heuristics in Section IV.
ur solution techniques are evaluated in Section V,
nd Section VI concludes the paper.

II. PROBLEM DEFINITION

Given a network, G= �V ,E�, a manycast request is
efined as R= �s ,Dc ,k�, where s�V is the source,
c�V− �s� is the candidate destination set, and k
�Dc� is the number of nodes necessary to reach out of
c. We must find a light-tree (combination of a route

ree and lightpath) that starts at node s and reaches
t least k nodes out of Dc. We assume that each many-
ast request requires one wavelength and it can use
nly one wavelength (i.e., a source node cannot trans-
it separate wavelengths to reach different destina-

ions, it must use only a single wavelength to reach all
estinations). The static MA-RWA problem can be de-
ned as follows.

1 3 5

2 4 6

Request 1 Request 2 Request 3

Request s Dc k
1 1 {4,5,6} 2
2 4 {1,5,6} 2
3 5 {1,2,6} 2

ig. 1. (Color online) Static manycast RWA example. The requests
re given in the table on the right. This RWA requires only a single
avelength.
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Definition MA-RWA�G ,M�: Given a network G
= �V ,E� and a set of manycast requests, M
= �R1 ,R2 , . . . ,Rn�, the solution must assign a route tree
and a wavelength to each request, Ri, in such a way
that the number of wavelengths required is mini-
mized while satisfying the wavelength continuity and
wavelength clash constraints. Note, we are minimiz-
ing the network-wide wavelength count, not the maxi-
mum number of wavelengths on any link.

The MA-RWA problem can be computed offline be-
cause we are given the set of requests ahead of time.
This is in contrast to the dynamic RWA problem where
computations occur online as each individual request
arrives.

A. Network Assumptions

We consider all-optical networks without wave-
length converters, which implies that once the signal
enters the network, it must use the same wavelength
on all links (wavelength continuity constraint). We
also assume that a wavelength can be used at most
once in either direction on any link (wavelength clash
constraint). We assume all nodes in the network are
able to split an incoming signal to any number of out-
put ports. As discussed previously, these types of
switches are known as multicast-capable optical cross
connects. We show the switch architecture of the MC-
OXCs we use in Fig. 2. The splitter-and-delivery com-
ponents of the MC-OXC are shown in Fig. 3, proposed
in [10]. The SaD switch consists of N power splitters,
N2 2�1 optical gates that are used to reduce
crosstalk, and N2 2�1 photonic switches as shown in
Fig. 3. These SaD switches allow an incoming signal
to be split to any number of output ports.

SaD

SaD

SaD

λ

λ

λ

1

2

n

Tx Rx

Fig. 2. MC-OXC based on splitter-and-delivery architecture.
PY [124021] 004007JOC
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While we assume MC-OXCs in this paper, our algo-
ithms are not limited to optical cross connects.
OADMs are expected to play an integral role in all-
ptical networks. Our algorithms work with either
ype of switching node. The feasibility of multicast-
apable ROADMs (MC-ROADMs) was recently inves-
igated in [12]. We refer the reader to this paper for
etails about the MC-ROADM architecture.

We do not consider physical-layer impairments in
his work. In all-optical WDM systems noise accumu-
ates from physical-layer impairments such as
rosstalk, amplified spontaneous emission (ASE)
oise, and nonlinear impairments such as four-wave
ixing, cross-phase modulation, stimulated Brillouin

cattering, and stimulated Raman scattering. To
ounter this, impairment-aware routing can be used
o ensure that the signal-to-noise ratio is at acceptable
evels when the signal reaches the destination. There
as recently been significant work in impairment-
ware routing [34]. While it is important to incorpo-
ate physical-layer impairments, especially since we
plit the optical signal, the primary objective of this
aper is to define the static manycast RWA problem
nd to provide initial solutions. We therefore consider
mpairment-aware routing out of the scope of this
ork. We will discuss our future work in this area in
ection VI.

Splitter Gate 2 x 1 Switch

Inputs

1

2

1 2 3 N
Outputs

N

S

S

Fig. 3. An N�N SaD switch.
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B. Complexity

Routing and wavelength assignment problems to
minimize the number of wavelengths are equivalent
to the graph coloring problem and are therefore NP-
hard [35]. It has also been shown recently that some
types of RWA problems cannot be approximated
within a constant factor [36] unless P=NP. Because of
the complexity of the problem, we will focus on heu-
ristic approaches to find suboptimal solutions.

III. ILP FORMULATION

We first formulate an ILP for static MA-RWA to find
the optimal solution. The ILP is not practical for large
networks, so we introduce heuristics in the following
section. We can still use the ILP for smaller networks
to compare the results of our heuristics to the optimal
solutions. The objective is to minimize the number of
wavelengths used. Note that this is different from
minimizing the maximum number of wavelengths on
any link. We use i , j to denote links, m to denote the
mth manycast request, and w to denote wavelengths.
The ILP will solve for the following variables:

• yi,j
m,w: 1 if wavelength w is used on link �i , j� for

manycast request m, 0 otherwise.
• Ui

m: order node i was added to the tree for many-
cast request m. This prevents loops.

• maxIndex: the largest wavelength index in use.
• Cm,w: 1 if wavelength w is used by request m, 0

otherwise.

Objective Function:

minimize: maxIndex

Subject to:

maxIndex � Cm,w � w ∀ m,w, �1�

�
m

yi,j
m,w + yj,i

m,w � 1 ∀ i,j,w, �2�

�
i

�
j�Dmc

�
w

yi,j
m,w � km ∀ m, �3�

�
j

�
w

ysm,j
m,w � 1 ∀ m, �4�

�
j

�
w

yj,sm

m,w = 0 ∀ m, �5�

�
j

�
w

yj,i
m,w � 1 ∀ m,i � sm, �6�

�
j

yi,j
m,w − �V��

j
yj,i

m,w � 0 ∀ m,w,i � sm, �7�
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�
j

yj,i
m,w − �

j
yi,j

m,w � 0 ∀ m,w,i � Dmc, �8�

Ui
m − Uj

m + �V�yi,j
m,w � �V� − 1 ∀ m,w,i,j, �9�

�
w

Cm,w = 1 ∀ m, �10�

yi,j
m,w + yj,i

m,w � Cm,w ∀ m,w,i,j�j � i�. �11�

We will now describe each of the constraints. When
e refer to wavelengths in the following explanation,
e are referring to wavelengths on the light-tree that

s constructed. For example, when we say that there
ay be no outgoing wavelengths at a node, we mean

hat when the light-tree is created, that particular
ode on the tree cannot have any outgoing wave-

engths that are part of the tree. Constraint (1) is used
o keep track of the maximum wavelength index used.
onstraint (2) is used to enforce the wavelength clash
onstraint. Constraints (3)–(9) are used to build each
oute tree. Constraint (3) specifies that at least k des-
inations must be reached for each request. Con-
traint (4) specifies that there must be at least one
utgoing wavelength at the source, and constraint (5)
pecifies that there can be no incoming wavelengths to
he source. Constraint (6) specifies that all nodes (ex-
ept the source) can have at most one incoming wave-
ength, while constraint (7) specifies that a node can
ave outgoing wavelengths only if it has incoming
avelengths. Constraint (8) specifies that nodes not in

he candidate destination set that have an incoming
avelength must have at least one outgoing wave-

ength. Constraint (9) is used to prevent formation of
outing loops. Constraints (10) and (11) are used to en-
orce the wavelength continuity constraint by ensur-
ng each tree uses exactly one wavelength and all
inks on the tree use that wavelength.

lgorithm 1 Shortest Path Heuristic for Static MA-RWA

: sort_desc�M�
: for all m in M do
: D=kShortest�Dmc�
: T= �V� ,E�� s.t. V�= �sm�, E�=�

: path=min�SP�sm ,u�� u�D
: Update�T ,path�
: copy=1
: while copy�k do
: path=min�SP�u1 ,u2�� u1�V�, u2�D−V�
0: Update�T ,path�
1: copy=copy+1
2: end while
3: T .cost=�i,j�E�ci,j

4: FirstFit�G ,T�
5: end for
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IV. HEURISTICS

In this section we discuss two simple heuristics for
solving static MA-RWA. We then discuss a tabu search
meta-heuristic with longer run times but better re-
sults. Due to the complexity of the ILP, it is only fea-
sible to solve the ILP formulation for small problem
instances. We introduce the heuristics so that large
instances of the problem can be solved. These heuris-
tics provide suboptimal solutions but reasonable run
times for realistic problem instances.

Typical solution techniques for routing and wave-
length assignments either consider both problems,
routing and assigning wavelengths, jointly or inde-
pendently. In this work, our heuristics solve the prob-
lem jointly.

A. Shortest Path Heuristic (SPT)

The simplest manycast heuristic is called the short-
est path heuristic, SPT, shown in Algorithm 1. When
discussing the manycast request tuple for some re-
quest i, we denote it as �si ,Dic ,ki�. First, the request
set is sorted in decreasing size of ki for request i. For
each individual request, in sorted order, SPT chooses
k out of Dc that are closest to the source according to
the shortest paths. It then uses the minimum path
heuristic (MPH) [37] to create a Steiner tree to these
destinations. Once the tree is created, the wavelength
is assigned using the first-fit policy [4], which assigns
the lowest available wavelength index to the tree. SPT
essentially treats the request as a multicast request
since it only considers the closest k nodes instead of
all possible nodes.

Line 3 finds the k closest nodes in Dc for request m
and stores them in D. The remainder of the for loop is
essentially the MPH heuristic. It creates a Steiner
tree by building it incrementally. The function SP on
line 5 finds the shortest path between two nodes. The
heuristic starts by selecting the node in D that has the
shortest path from s. It uses this path as the start of
the tree. It then looks for the next node in D with the
minimum-cost shortest path from any node on the
partially built tree and adds that node to the tree us-
ing the shortest path. It continues adding nodes in
this manner until k nodes are part of the tree. The
function Update on line 6 in the pseudocode is used to
add edges and nodes on the shortest path to the route
tree T.

1) Complexity: Assuming shortest paths are precom-
puted in O��V�3�, the SPT heuristic runs in O�kV�Dmc��
for each request. The k is from the loop and the V
�Dmc is the time to scan for the minimum-value
shortest path based on the nodes currently in the tree
(maximum of V−1) and remaining nodes (maximum
of �D �). The �D � term is dependent on each request.
PY [124021] 004007JOC
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ifferent requests will have different request sizes. To
et an upper bound when considering the whole set,
e will replace �Dmc� with V. The heuristic is run once

or �M� requests, so the total run time is O��M�kV2�.

. Lambda Path Heuristic (LPH)

We will now describe our next heuristic, the LPH
euristic. It begins in the same way as SPT, by sorting
he static request set according to k of each request.
ith the requests sorted, LPH processes each request

ndividually. To satisfy each individual request, we
se a modified version of the improved path heuristic

IMP) [5] for quorumcast. We modify it to include
avelength assignment, an additional constraint to
inimize wavelengths required, load balancing, and

o also iterate over more Steiner trees. The heuristic is
hown in Algorithm 2. Before describing how it works,
e will define the functions that it uses. First, the SP

unction finds the shortest path between the two
odes specified as parameters. The Update function
dds a path (edges and links) to the specified tree T.
he increasesWL function determines whether assign-

ng a wavelength to a tree, using first-fit, would re-
uire an increase in the wavelength count given the
avelengths currently used for the previous requests.
astly, the updateWeights function is used for load
alancing. It updates the weight of each link accord-
ng to �+ �1−���c /cmax, where c is the current num-
er of wavelengths on the link, cmax is the number of
avelengths on the most congested link, and 0��
1. Depending on the value of �, this helps achieve a

egree of load balancing in the network.

To satisfy a manycast request, there are � �Dc�
k � pos-

ible combinations of nodes that can be used to create
teiner trees. This heuristic works by creating just

Dc� Steiner trees, where each tree is created using the
ame MPH heuristic used by SPT. �Dc� Steiner trees
re created by forcing selection of the first node in line
when building the tree. During the first iteration,

he shortest-path node is selected, in the next itera-
ion the next shortest-path node is selected, and so on.
electing a different start node each time makes it

ikely that a different tree will be created each itera-
ion. Each time a node is selected to be the initial node
t is added to D. An iteration terminates when D=Dc.
his ensures that all nodes in Dc are in at least one
teiner tree and that multiple trees are generated.
he goal of this is to find a good Steiner tree without
aving to try all � �Dc�

k � combinations of nodes. After the
eneration of each tree, line 17 checks to see whether
ssigning a wavelength according to first-fit would re-
ult in an increase in wavelength count required.
nce the trees have been generated, the heuristic

hooses the minimum-cost tree that requires no in-
rease in wavelength count using first-fit wavelength
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Algorithm 2 Lambda Path Heuristic for Static MA-RWA

1: sort_desc�M�
2: for all m in M do
3: D= � �
4: allTrees= list� �
5: while Dmc−D�� do
6: T= �V� ,E�� s.t. V�= �sm�, E�=�

7: path=min�SP�sm ,u�� u�Dmc−D
8: Update�T ,path�
9: D= � �u�
10: copy=1
11: while copy�k do
12: path=min�SP�u1 ,u2�� u1�V�, u2�Dmc−V�
13: Update�T ,path�
14: copy=copy+1
15: end while
16: T .cost=�i,j�E�ci,j

17: T .newWL= increasesWL�G ,T�
18: allTrees .append�T�
19: end while
20: T=min�allTrees�
21: FirstFit�G ,T�
22: updateWeights�� ,1−��
23: end for

assignment. If there is no such tree, just the
minimum-cost tree is chosen. The cost is defined as the
tree with the least number of links. The reasoning
behind this cost function is that using smaller trees
will leave more resources for future requests. After the
tree is assigned the wavelength, the costs of the links
are updated.

The main difference between SPT and LPH is that
LPH considers multiple Steiner trees by including dif-
ferent nodes while SPT makes a single decision on
which nodes to include.

1) Example: We will now provide an example of the
LPH heuristic for a single manycast request. The re-
quest and network (NSFnet) are given in Fig. 4(a).
The request, (0, {2,4,13}, 2), means that node 0 is the
source; nodes 2, 4, and 13 are the candidate destina-
tions; and two out of the three destinations must be
reached. LPH will iterate three times ��Dc��, each time
choosing a different starting node to form a tree. On
the first iteration, node 2 is chosen since it is the
shortest path distance from 0 �0→2�. Node 4 is added
by concatenating �2→1→3→4� to the tree. This re-
sults in the tree seen in Fig. 4(b), which covers nodes 2
and 4. In the next iteration, node 4 is chosen to start
the tree �0→1→3→4�. A new branch can then be
added to create a tree reaching node 2 �1→2�, as seen
in Fig. 4(c). Last, node 13 is chosen first with path
�0→7→8→13�. The tree can then be modified to
branch at node 7, reaching node 4 �7→6→4�, as seen
in Fig. 4(d). The iterations are now complete since ev-
ery node in D has been used as a starting node. The
PY [124021] 004007JOC
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euristic is now able to choose the best tree. It will
hoose the lowest-cost tree that does not require an in-
rement in the number of wavelengths used in the
etwork. If this is not available, the lowest-cost tree
ill be chosen. The same heuristic is run for all re-
uests.

) Complexity: The heuristic runs in O�kV�Dmc�2
�V�3� time for each individual request. The reasoning

s similar to the SPT heuristic except now there is an
dditional outer loop that runs Dmc times, hence the
quared term. In addition to this, the link weights are
odified at the end when the tree is selected, so the

hortest paths must be recomputed. The heuristic is
un once for each of the �M� requests for a total run
ime of O��M�kV3�. Again we use V as an upper bound
or �Dmc�, as in SPT.

. Tabu Search (TS)

We now discuss our tabu search meta-heuristic.
abu search is often used for combinatorial optimiza-
ion problems [38]. It explores the solution space for a
umber of iterations or until some other stopping cri-
erion is met. An initial solution is first generated ei-
her randomly or by using another heuristic. Given
he current solution, a neighborhood set of solutions is
enerated by performing simple moves from the cur-
ent solution. The best solution from the neighborhood
s then chosen as the current solution and the process
ontinues. To avoid getting trapped in local minima, a
abu list is maintained. The tabu list records moves
hat were used to generate selected solutions. These
oves cannot be performed again as long as they are

n the list. Tabu search meta-heuristics also use di-
ersification and intensification steps. Diversification
s typically used when the best solution has not im-
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proved after a number of iterations. Diversification
usually generates a new solution elsewhere in the
search space and the tabu search restarts there. In-
tensification can be used to perform a more thorough
search of the neighborhood of a good solution that has
been found. Details of tabu search can be found in
[38]. There is no proof of convergence to an optimal so-
lution, but tabu search often works quite well in prac-
tice. Tabu search has been used to solve routing and
wavelength assignment problems; see [39–41], among
others.

The tabu search heuristic that we propose uses
LPH. We will refer to our tabu search heuristic as TS.
Given a set of manycast requests, LPH orders them
and then iterates over the set assigning a route tree
and wavelength to each request in order. The ordering
of requests has a significant impact on the solution.
There must exist some optimal ordering that requires
the least number of wavelengths required. TS at-
tempts to find this optimal ordering by searching dif-
ferent permutations of orderings.

Instead of defining the requests as a set, for pur-
poses of TS we will define it as a sequence, since or-
dering is important. Given a sequence, LPH is used to
assign route trees and wavelengths to each request in
the order specified by the sequence. This ordering of
requests and their route tree and wavelength assign-
ments constitutes a solution. The cost of a solution is
defined by the number of wavelengths required to sat-
isfy all the requests. The objective is to find a solution
that requires the minimum number of wavelengths.

We will describe TS by describing each of the indi-
vidual parts: the initial solution, the neighborhood
set, tabu list, diversification strategies, and intensifi-
cation strategies.

Initial Solution: the initial solution is the sequence
obtained by ordering the manycast request set accord-
ing to the largest ki value first (largest request first).
Given this sequence, LPH is used to assign routes and
wavelengths.

Neighborhood Set: to obtain the neighborhood set,
we define the move operation that creates a neighbor
given the current solution. The move operation simply
swaps two requests, i and j, where i� j, in the se-
quence. If we performed all valid moves the neighbor-
hood set size would be �M�� ��M�−1� /2. Note, the move
�i , j� is the same as �j , i�. For large request sets, this
neighborhood size is too large, so we perform a
smaller number of random moves to generate the
neighborhood. The number of moves we perform is
proportionate to the actual neighborhood size. For ex-
ample, we can specify that the neighborhood size be,
say 6%, of the full neighborhood size. This generates
random moves (without duplication) until a neighbor-
hood size 6% of the full size is created. Once the neigh-
PY [124021] 004007JOC
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orhood is generated, the least-cost neighbor is se-
ected as the new current solution, subject to the tabu
ist.

Tabu List: The tabu list maintains a list of recently
erformed moves, where a move is the two indices, i
nd j, that were swapped. Note that �i , j�= �j , i�. A
ove cannot be chosen to create a new solution if it is

lready on the tabu list unless it meets an aspiration
riterion. In this case, if the tabu move would result in
solution better than the current best solution, it is

llowed. Items are kept on the tabu list for a specified
umber of iterations known as the tabu tenure. Once
n item’s tenure is up, it is removed from the list.

Diversification: This is typically used to explore
ther areas in the solution space. We use diversifica-
ion if the solution has not improved after a number of
terations. Our diversification step randomly per-

utes the sequence of requests and removes all en-
ries from the current tabu list.

Intensification: Instead of only recording the best
nd current solutions, TS records the top five solu-
ions seen so far. These are then used for intensifica-
ion while the TS is running. If there is no improve-
ent after a number of iterations, diversification is

sed to generate a new solution. If, after a number of
iversifications, we still have not improved our best
olution, intensification is performed. During intensi-
cation, the entire neighborhood set is analyzed in-
tead of just a random portion of it. When intensifica-
ion is to be performed, the best solution is selected
rom the list of the top five. If this solution has already
een “intensified,” then the next solution is used, and
o on. The intensification is also a depth-first search
rocess. If a better solution is found upon intensifica-
ion, that new solution is used for another intensifica-
ion. Once no better solution is found, TS continues as
ormal with the best solution that was generated. If
he list of best solutions contains multiple solutions
ith equal scores that have already been searched by

ntensification, only one is kept in the list and the re-
aining are discarded. Because they all have equal

cores, we arbitrarily choose to keep the one with the
owest index in the list. This allows new solutions to
e added to the list to be searched by the intensifica-
ion process later.

We show the general flow of the algorithm in Fig. 5.
he inputs to the algorithm are the number of itera-

ions (controlling the first branch in the flow chart),
he fraction of the neighborhood size to explore, the
abu tenure, the number of iterations before diversifi-
ations (controlling the “Diversify?” branch), and the
umber of diversifications before intensification (con-
rolling the “Intensify?” branch). The blocks that gen-
rate partial or full neighborhoods use LPH after each
ove to generate the solution to add to the neighbor-
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hood set. The blocks in the flow chart correspond to
the steps we described above.

1) Justifications: The idea behind TS is for the diver-
sification and normal iterations to find solutions that
can be added to the list of best solutions. The list of
best solutions may contain solutions from different ar-
eas of the search space due to diversification. The in-
tensification step can then perform a depth-first
search or a local search in those areas to improve the
solution’s score. This is the reason for using a list of
the top five solutions instead of just the top solution.
The list stores the best solutions from different areas
of the search space that can be used during
intensification.

In addition to the tabu search method described
above, we tried another tabu search meta-heuristic
that did not perform as well. The other tabu search
started by generating k alternate trees for each many-
cast request. The tabu search would then search the
solution space of different combinations of trees and
used the largest-first graph coloring heuristic to as-
sign wavelengths. The tabu search using the LPH
heuristic performed better because it is more flexible.
Using LPH allows load balancing in the network. It
also allows selection of each tree to take into account
the previously assigned wavelengths.

2) Example: We will describe an example of our move
operation to generate a neighborhood set. Consider an
initial set of manycast requests, M= �R1 ,R2 ,R3 ,R4�,
where Ri= �si ,Dic ,ki�. The requests are first sorted in
descending order according to ki. Note, this is equiva-
lent to sorting according to Dic because, as we discuss
later, we set ki= �Dic /2�. Let the sorted sequence now
be M�= �R2 ,R1 ,R4 ,R3�. Given this sequence, the LPH
heuristic is run on the requests in order to generate a
solution.

During the first iteration, some percentage of the
neighborhood would be explored. The entire neighbor-
hood consists of all possible combinations generated
by swapping two elements. In this simple example, we
can generate six solutions by swapping: �R1 ,R2�,
�R1 ,R3�, �R1 ,R4�, �R2 ,R3�, �R2 ,R4�, and �R3 ,R4�. With
large �M� values, this is too large, so instead a series of
random moves are generated. Let us assume that a
50% neighborhood size was specified. This may result
in the moves �R1 ,R4�, �R2 ,R3�, and �R2 ,R4� being ran-
domly generated. With these moves, the neighborhood
set becomes ��R4 ,R2 ,R3 ,R1� , �R1 ,R3 ,R2 ,R4� , �R1 ,R4 ,
R3 ,R2��. Given this set, LPH is run on each sequence
and the best one is chosen as the sequence to use in
the next iteration (subject to the tabu list).

3) Complexity: In this subsection we discuss the com-
plexity of TS in terms of the complexity of generating
neighborhood solutions. The number of neighbors cre-

ated during each iteration directly impacts the run
PY [124021] 004007JOC
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ime, since for each neighbor, LPH must be run. The
PH algorithm, runs in O��M��k�V�3�� for each indi-
idual request. If the entire neighborhood space is
earched each iteration, there are O��M�2� neighbors
enerated, which would result in a run time of
��M�3� �k�V�3�� for each iteration. For large �M�, this

s clearly not efficient, so we randomly generate small
ractions of the full neighborhood set to keep the
eighborhood space O��M��. Each iteration, therefore,
akes O��M�2� �k�V�3��. TS is run for a number of itera-
ions. We will see later in the paper that TS is signifi-
antly slower than LPH and SPT, but the results from
S are close to optimal results provided by the ILP

with much smaller run times than the ILP).

V. EVALUATION

We will evaluate the heuristics in two steps. First,
e will compare the heuristics’ results to the optimal

Sort
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More
iterations?

Generate
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neighborhood

Apply/update
tabu list

New best
solution?

Diversify?

Intensify?
Generate random
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Clear tabu list
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for top solution

Generate full
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Permutation of static set
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Yes
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Set of neighborhood solutions
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Fig. 5. Tabu search meta-heuristic flow chart.
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results provided by the ILP formulation. Because of
the complexity of the ILP this is only possible for
small request sizes. In addition to comparing the re-
sults with the ILP, we will also compare run times.

Next, we will compare only the heuristics on more
realistic networks with larger request sizes. We ran
extensive simulations on the AT&T network, the NSF
network, the Italian WDM network, and a 24-node
mesh network shown in Fig. 6. We use the link dis-
tances for calculating the average tree delay, but rout-
ing is done based on hop count.

A. ILP and Heuristics Comparison

This section compares the results of the heuristics
with the optimal results of the ILP. Given the com-
plexity of the ILP, we can only run it on small net-
works. We use the network shown in Fig. 7. We run
the ILP and heuristics for request set sizes, �M�, of 10,
15, 20, and 25. For each request set size, we ran the
simulations 20 times and plot the average value
(along with the 95% confidence intervals for the num-
ber of wavelengths required). The source of each
manycast request is uniformly distributed. The candi-
date destination size, �Dc�, is either three or four (with
equal probability) and k=2, for all requests. The � pa-
rameter to LPH is 0.8 (best value). We used CPLEX
12.0 to obtain results for the ILP. Both the ILP and
heuristics were run on a machine with a 2.33 GHz
Quad Core Xeon processor and 8 GB of RAM. The pro-
cessor also has Hyper-Threading, so CPLEX was able
to use eight threads while solving the ILP.

The number of wavelengths required by the heuris-
tics and ILP is shown in Fig. 8(a). The figure shows
that TS provides close to optimal results and signifi-
cantly outperforms SPT.

We also plot the average run times of the different
solution approaches in Fig. 8(b). We can observe the
large increase in run times for the ILP as the request
set gets large. Note the log scale of the y-axis. The
LPH and SPT heuristics essentially finish instantly
compared with the others. The run time for the ILP
grows rapidly. With a request set size of 25 requests
over a small 6-node network, the longest run time was
over 30 h for the ILP compared with under 5 min for
TS.

B. Heuristics

We will first present the results obtained for our
heuristics, then go on to discuss how we selected the
input parameters.

In Table I we compare TS, LPH, and SPT. The net-
work characteristics are given in the table where V is
the number of nodes, E is number of links, 	 is aver-
age nodal degree, and 
 is average delay per link (ms).
PY [124021] 004007JOC
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e generate a set of 150 requests. Other request set
izes provide similar patterns of results. The source
ode for each request is uniformly distributed over all
odes in the network. For each request m, the size of
mc is uniformly distributed from 3, . . . ,Dmax (a pa-

ameter representing the maximum candidate desti-

(b)

(a)

(c)

(d)

Fig. 6. Networks used for heuristic evaluation.
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nation size) and km= �Dmc /2�. The destination nodes
are also uniformly distributed across the network for
each request. We ran each heuristic with different
maximum destination set sizes, Dmax, and recorded
the average number of wavelengths required, wa, and
average tree delay, da (ms). The average tree delay is
defined as the average delay from the root to each des-
tination node. The parameters for TS are as follows.
There are 1000 iterations in total, the tabu tenure is
20, the fractional neighborhood search searches 6%,
there are 25 iterations before diversification, and 2 di-
versifications before intensification (when no better
solution has been found for these last two cases). For
both LPH and TS �=0.8 for load balancing. Most of
these parameters were obtained empirically; this is
discussed later in this section. Each data point is the
average of 20 simulation runs. We calculated the con-
fidence intervals but do not include them in the table.
For TS and LPH, the confidence intervals were within
3% of the mean while they were slightly larger for
SPT at around 5%, all with 95% confidence.

The table shows a significant decrease in the num-
ber of wavelengths required (wa columns) between TS
and SPT as well as a significant decrease between TS
and LPH. TS reduces wavelengths required by be-
tween 30% and 40% compared with SPT. The greatest
gains are in the Italian network while NSFnet has the
smallest gains. TS also performed about 10% better
than LPH.

Low delay is a requirement for many next-
generation applications, so the heuristics must not
significantly impact delay. Even though SPT results in
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Fig. 7. Six-node network used for ILP evaluation.
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smaller average tree delay (da columns), the savings
n wavelengths when using TS is significantly larger.
he largest difference in delay between SPT and TS is
round 1 ms. The average tree delays of TS and LPH
ere very similar, and TS was able to reduce wave-

engths required by about 10% compared with LPH.

As expected, as the maximum destination set size
ncreases, the number of wavelengths required also
ncreases. The set size of 150 was chosen for demon-
tration purposes. We evaluated the heuristics on
arying set sizes from 50 to 200 with similar results.
e chose these four networks to represent realistic

cenarios with varying nodal degrees. The networks
epresent backbone or long-haul networks for which a
avelength-routed WDM network is a good candidate.

The relative number of wavelengths required by TS
nd LPH are consistent across networks (e.g., NSFnet
eeds the most, followed by Italy, AT&T, and the 24-
ode network). This is a result of the characteristics of
he networks. Networks with more nodes and higher
odal degrees will require fewer wavelengths because
) the request size is the same, so 150 requests will
equire fewer wavelengths on networks with more
odes than networks with fewer nodes, and 2) a net-
ork with higher nodal degree has a better chance of
nding alternate paths/trees for the requests, there-

ore reducing the maximum number of wavelengths
equired on a link.

We will now discuss how we selected the param-
ters for our heuristics. Two decisions that affect both
S and the LPH heuristic are the choice of � for load
alancing and the choice to use link distance versus
op count for shortest path routing. We found that,
ith the exception of the AT&T network, using hop

ount instead of link distance had a negligible affect
n average tree delay while reducing the number of
avelengths required. For the AT&T network, the de-

ay was in some cases doubled when using hop count
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instead of link distance. This trade-off of delay versus
wavelengths required is something that must be con-
sidered for particular networks, but it seems in most
cases the best choice is to perform shortest-path rout-
ing based on hop count. Shortest path based on hop
count instead of link distance provides better perfor-
mance because a shortest path according to link dis-
tance will likely result in paths with more hops, which
results in more resource usage and therefore fewer
wavelengths being available.

To perform load balancing, we introduce a param-
eter, �, where 0���1, as we discussed earlier when
describing LPH. The load-balancing updates the
weight of each link after a new tree and wavelength
are assigned according to �+ �1−���c /cmax, where c is
the current number of wavelengths on the link and
cmax is the number of wavelengths on the most con-
gested link. A smaller value of � puts more emphasis
on load balancing when computing shortest paths. We
found that if � is set too small, (e.g., 0.2), the load in
the network is evenly distributed over most links, but
this actually increases the number of wavelengths re-
quired. One explanation is that this forces trees to get
larger in size in order to use fewer loaded links, which
makes it harder to find a single wavelength for later
trees. Higher values of � performed the best. As we
mentioned previously, we used �=0.8. This provided
better distribution of load over the network than no
load balancing while also decreasing the number of
wavelengths required.

One disadvantage of using TS is that we must select
a number of different parameters, each having differ-
ent effects on the performance. To find the best com-
bination of input parameters, we tried 81 different
combinations of neighborhood fraction, tenure, diver-
sification iterations, and intensification iterations
over NSFnet with a request set size of 50. The number
of iterations is fixed at 750 and �=0.8. We tried frac-
tions of 6%, 20%, and 50%; tenure values of 10, 20,
and 30; diversification values of 15, 25, and 30; and in-
tensification values of 2, 3, and 4. We chose the pa-
rameter combination with the best cost/run time
trade-off based on the empirical results.

TAB
COMPARISON OF TS, LPH, AND SPT OVER DIFFERENT NETWO

Network V E 	 


Dmax=6

TS LPH SPT

wa da wa da wa da w

AT&T 27 41 3.0 3.4 28.8 11.7 32.5 11.6 43.9 11.2 3
NSFnet 14 21 3.0 4.3 32.9 9.6 36.7 9.4 46.4 8.6 3

Italy 21 36 3.4 0.6 29.4 1.7 33.3 1.7 47.0 1.5 3
24 node 24 43 3.6 3.9 25.5 11.6 28.6 11.4 37.7 10.6 2
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. Discussion

Our performance evaluation has confirmed that
hile manycast and multicast are similar, it is impor-

ant to develop new heuristics for manycast RWA
roblems. Our SPT heuristic essentially treats the
anycast request as a multicast request by fixing the

estination set at the source. Both LPH and TS per-
orm much better than SPT.

While TS improves upon LPH in terms of the solu-
ion cost, TS has significantly higher run times than
PH. LPH run times are typically about a second. TS,
n the other hand, can take over eight hours for a net-
ork like the AT&T network with many nodes. The
S implementation can be optimized to reduce run

ime, but nevertheless there is a large increase in run
ime for a small increase in performance. Since these
omputations occur offline, it may still be reasonable
o allow for the longer run times to gain around a 10%
mprovement in cost. In any case, with realistic size
etworks it is not feasible to get optimal solutions un-

ess significant computing power is available. For ex-
mple, CPLEX did not find a solution after 3 days for
request set size of just 30 on a machine with 4 cores

nd Hyper-Threading.

VI. CONCLUSION

We have introduced the static MA-RWA problem
nd presented three heuristics along with an ILP to
olve the problem. Our tabu search heuristic achieved
etween a 30% and 40% improvement over our sim-
ler shortest-path heuristic and about a 10% improve-
ent over LPH for realistic networks. The TS meta-

euristic also produced results similar to the ILP for
mall networks.

We have several areas of future work for the many-
ast problem over wavelength-routed networks. One
s the dynamic manycast problem. This is especially
pplicable to Grid networks and cloud computing ap-
lications where multiple resources are required
point-to-multipoint) [14,42]. In addition to new algo-

I
TOPOLOGIES FOR A STATIC SET OF 150 MANYCAST REQUESTS

Dmax=8 Dmax=10

S LPH SPT TS LPH SPT

da wa da wa da wa da wa da wa da

11.3 34.5 11.3 47.1 10.8 31.6 11.4 35.8 11.4 47.6 10.7
9.6 39.6 9.5 49.6 8.4 39.3 9.8 43.0 9.6 55.1 8.4
1.8 35.9 1.7 50.8 1.6 33.3 1.8 37.5 1.7 51.5 1.5
11.5 30.5 11.3 40.0 10.3 28.4 11.5 32.2 11.4 42.3 10.2
LE
RK

T

a

0.2
5.8
1.9
6.8
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rithms, we could investigate extensions to our current
and past work. We can use a modified LPH for each
dynamically arriving request or we can also modify
our distributed manycast algorithms from our work
on dynamic manycast over OBS [43]. Multilayer opti-
mization is also an interesting topic for manycast in
the context of Grid networks. The selection of nodes
may be based not only on the network state but also
on the Grid resource utilization.

Another interesting area of future work is surviv-
ability of manycast requests. We can provide surviv-
ability for both link and node failures. We can protect
against link failures through traditional techniques
such as shared path protection, but may also be able
to use the extra �Dc�−k nodes from the candidate set to
either handle a link or a node failure. Switching to a
different node in the candidate set depends on the
type of application.

We are currently working on incorporating physical-
layer impairments into the heuristics (for static MA-
RWA) in order to ensure that the signal can be re-
ceived at the destinations given physical-layer
impairments, such as ASE noise, crosstalk, and power
loss. We have considered impairments in previous
work for manycast over OBS networks [31,44]. In ad-
dition to this, we have done work with QoS in dynamic
manycast over OBS networks, where one of the QoS
parameters is signal quality [7]. This work can be ex-
tended for wavelength-routed networks. As an exten-
sion to the work presented in this paper, we can make
LPH more intelligent when generating sets of route
trees by taking into account the signal quality at the
nodes. We are investigating different techniques, such
as providing quality of transmission (QoT) guarantee,
where we use traditional RWA but do not admit con-
nections with poor signal quality, and QoT awareness,
where the RWA algorithms consider physical impair-
ments directly.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation (NSF) under grant CNS-0626798.
Portions of this paper have appeared in IEEE ANTS
2009 and IEEE ICC 2010.

REFERENCES

[1] G. E. Keiser, “A review of WDM technology and applications,”
Opt. Fiber Technol., vol. 5, no. 1, pp. 3–39, 1999.

[2] R. Ramaswami and K. N. Sivarajan, “Routing and wavelength
assignment in all-optical networks,” IEEE/ACM Trans. Netw.,
vol. 3, no. 5, pp. 489–500, 1995.

[3] I. Chlamatac, A. Ganz, and G. Karmi, “Lightpath communica-
tions: an approach to high bandwidth optical WAN’s,” IEEE/
ACM Trans. Netw., vol. 40, no. 7, pp. 1171–1182, July 1992.

[4] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and
wavelength assignment approaches for wavelength-routed op-
PY [124021] 004007JOC
21] 004007JO
C

tical WDM networks,” Opt. Networks Mag., vol. 1, no. 1, pp.
47–60, Jan. 2000.

[5] S. Y. Cheung and A. Kumar, “Efficient quorumcast routing al-
gorithms,” in Proc. IEEE INFOCOM, 1994, pp. 840–847.

[6] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and
S. S. Ravi, “Spanning trees short or small,” in Proc. ACM-
SIAM Symp. on Discrete Algorithms, 1994, pp. 546–555.

[7] B. G. Bathula and V. M. Vokkarane, “QoS-based manycasting
over optical burst-switched (OBS) networks,” IEEE/ACM
Trans. Netw., vol. 18, no. 1, pp. 271–283, Feb. 2010.

[8] L. H. Sahasrabuddhe and B. Mukherjee, “Light trees: optical
multicasting for improved performance in wavelength-routed
networks,” IEEE Commun. Mag., vol. 37, no. 2, pp. 67–73, Feb.
1999.

[9] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of Computer Computations. Springer, 1972, pp. 85–
103.

[10] W. S. Hu and Q. J. Zeng, “Multicasting optical cross connects
employing splitter-and-delivery switch,” IEEE Photon. Tech-
nol. Lett., vol. 10, pp. 970–972, 1998.

[11] J. Leuthold and C. H. Joyner, “Multimode interference cou-
plers with tunable power splitting ratios,” J. Lightwave Tech-
nol., vol. 19, no. 5, pp. 700–707, May 2001.

[12] H. S. Chung, S. H. Chang, and K. Kim, “Experimental demon-
stration of layer-1 multicast for WDM networks using reconfig-
urable OADM,” Opt. Fiber Technol., vol. 15, no. 5–6, pp. 431–
437, 2009.

[13] R. Jain, “Internet 3.0: ten problems with current Internet ar-
chitecture and solutions for the next generation,” in Proc.
IEEE MILCOMM, 2006, pp. 1–9.

[14] “Large hadron collider (LHC) project,” http://lhc.web.cern.ch/
lhc.

[15] R. Malli, X. Zhang, and C. Qiao, “Benefits of multicasting in
all-optical networks,” in Proc. All-Optical Networking, 1998,
pp. 209–220.

[16] G. Sahin and M. Azizoglu, “Multicast routing and wavelength
assignment in wide-area networks,” Proc. SPIE, vol. 3531, pp.
196–208, 1998.

[17] M. Ali and J. S. Deogun, “Power-efficient design of multicast
wavelength-routed networks,” IEEE J. Sel. Areas Commun.,
vol. 18, no. 10, pp. 1852–1862, Oct. 2000.

[18] J. Bermond, L. Gargano, S. Perennes, A. A. Rescigno, and U.
Vaccaro, “Efficient collective communication in optical net-
works,” Theor. Comput. Sci., vol. 233, no. 1–2, pp. 165–189,
2000.

[19] X. Zhang, J. Y. Wei, and C. Qiao, “Constrained multicast rout-
ing in WDM networks with sparse light splitting,” J. Light-
wave Technol., vol. 18, no. 12, pp. 1917–1927, Dec. 2000.

[20] L. H. Sahasrabuddhe and B. Mukherjee, “Multicast routing al-
gorithms and protocols: a tutorial,” IEEE Network, vol. 14,
no. 1, pp. 90–102, Jan./Feb. 2000.

[21] R. Libeskind-Hadas and R. Melhem, “Multicast routing and
wavelength assignment in multihop optical networks,” IEEE/
ACM Trans. Netw., vol. 10, no. 5, pp. 621–629, 2002.

[22] B. Chen and J. Wang, “Efficient routing and wavelength as-
signment for multicast in WDM networks,” IEEE J. Sel. Areas
Commun., vol. 20, no. 1, pp. 97–109, Jan. 2002.

[23] S. Sankaranarayanan and S. Subramaniam, “Comprehensive
performance modeling and analysis of multicasting in optical
networks,” IEEE J. Sel. Areas Commun., vol. 21, no. 9, pp.
1399–1413, Nov. 2003.

[24] Y. Xin and G. N. Rouskas, “Multicast routing under optical
layer constraints,” in Proc. IEEE INFOCOM, 2004, vol. 4, pp.
2731–2742.

[25] B. Du, J. Gu, D. H. K. Tsang, and W. Wang, “Quorumcast rout-
ing by multispace search,” in Proc. IEEE GLOBECOM, Nov.
1996, vol. 2, pp. 1069–1073.

[26] C. P. Low, “Optimal quorumcast routing,” in Proc. IEEE

http://lhc.web.cern.ch/lhc
http://lhc.web.cern.ch/lhc


PROOF CO

0

l
V
w
C
s
a

440 J. OPT. COMMUN. NETW./VOL. 2, NO. 7 /JULY 2010 N. Charbonneau and V. M. Vokkarane

PROOF COPY [124021] 004007JOC
PRO
O

F CO
PY [124

GLOBECOM, 1998, vol. 5, pp. 3013–3016.
[27] B. Wang and J. Hou, “An efficient QoS routing algorithm for

quorumcast communication,” in Proc. IEEE ICNP, 2001, pp.
110–118.

[28] F. A. Chudak, T. Roughgarden, and D. P. Williamson, “Approxi-
mate k-MSTs and k-Steiner trees via the primal-dual method
and Lagrangean relaxation,” Math. Program., vol. 100, no. 2,
pp. 411–421, 2004.

[29] X. Huang, Q. She, V. M. Vokkarane, and J. P. Jue, “Manycast-
ing over optical burst-switched networks,” in Proc. IEEE ICC,
2007, pp. 2353–2358.

[30] Q. She, X. Huang, N. Kannasoot, Z. Qiong, and J. P. Jue, “Mul-
tiresource manycast over optical burst-switched networks,” in
Proc. IEEE ICCCN, Aug. 2007, pp. 222–227.

[31] B. G. Bathula, V. M. Vokkarane, R. R. C. Bikram, and S. Tala-
bathula, “Impairment-aware manycast algorithms over optical
burst-switched networks,” in Proc. IEEE ICCCN, 2008.

[32] Q. She, N. Kannasoot, J. P. Jue, and Y.-C. Kim, “On finding
minimum cost tree for multi-resource manycast in mesh net-
works,” Opt. Switching Networking, vol. 6, no. 1, pp. 29–36,
Jan. 2009.

[33] D. Din, “A hybrid method for solving ARWA problem on WDM
network,” Comput. Commun., vol. 30, no. 2, pp. 385–395, 2007.

[34] S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. S.
Pareta, and I. Tomkos, “A survey on physical layer impair-
ments aware routing and wavelength assignment algorithms
in optical networks,” Comput. Netw., vol. 53, no. 7, pp. 926–
944, 2009.

[35] J. P. Jue, “Lightpath establishment in wavelength-routed
WDM optical networks,” in Optical Networks: Recent Ad-
vances. Springer, 2001, pp. 99–122.

[36] M. Andrews and L. Zhang, “Complexity of wavelength assign-
ment in optical network optimization,” IEEE/ACM Trans.
Netw., vol. 17, no. 2, pp. 646–657, 2009.

[37] H. Takahashi and A. Matsuyama, “An approximate solution
for the Steiner problem in graphs,” Math. Japonica, vol. 24, no.
6, pp. 573–577, 1980.

[38] F. Glover and M. Laguna, Tabu Search. Kluwer Academic Pub-
lishers, 1997.

[39] J. Kuri, N. Puech, M. Gagnaire, and E. Dotaro, “Routing fore-
seeable lightpath demands using a tabu search meta-
heuristic,” in Proc. IEEE GLOBECOM, 2002, vol. 3, pp. 2803–
2807.
PY [124021] 004007JOC

w

21]

[40] Y. Wang, T.-H. Cheng, and M.-H. Lim, “A tabu search algo-
rithm for static routing and wavelength assignment problem,”
IEEE Commun. Lett., vol. 9, no. 9, pp. 841–843, Sept. 2005.

[41] C. Dzongang, P. Galinier, and S. Pierre, “A tabu search heuris-
tic for the routing and wavelength assignment problem in op-
tical networks,” IEEE Commun. Lett., vol. 9, no. 5, pp. 426–
428, May 2005.

[42] “NP science network requirements,” 2008, http://www.es.net/
pub/esnet-doc/NP-Net-Req-Workshop-2008-Final-Report.pdf.

[43] V. M. Vokkarane and B. G. Bathula, “Manycast service in op-
tical burst/packet switched (OBS/OPS) networks (Invited Pa-
per),” in ICST/ACM GridNets, 2008, pp. 231–242

[44] B. G. Bathula, V. M. Vokkarane, and R. R. C. Bikram,
“Impairment-aware manycasting over optical burst-switched
networks,” in Proc. IEEE ICC, 2008, pp. 5234–5238.

Neal Charbonneau (S’08) received the
B.S. degree in computer science from the
University of Massachusetts, Dartmouth, in
2008. He is currently pursuing his M.S. de-
gree in computer science at the University
of Massachusetts, Dartmouth. His interests
include computer networks and software
design and development.

Vinod M. Vokkarane (S’02-M’04-SM’09)
received the B.E. degree with honors in
computer science and engineering from the
University of Mysore, India, in 1999; the
M.S. degree in computer science from the
University of Texas at Dallas in 2001; and
the Ph.D. degree in computer science from
the University of Texas at Dallas in 2004.
He is a recipient of the Texas Telecommuni-
cation Engineering Consortium Fellowship
2002-03 and the University of Texas at Dal-

as Computer Science Dissertation of the Year Award 2003-04. Dr.
okkarane is the co-author of the book Optical Burst Switched Net-
orks, Springer, 2005. He is currently an Assistant Professor of
omputer and Information Science at the University of Massachu-
etts, Dartmouth. His primary areas of research include design and
nalysis of architectures and protocols for optical and wireless net-
 004007JO

C

orks.

http://www.es.net/pub/esnet-doc/NP-Net-Req-Workshop-2008-Final-Report.pdf
http://www.es.net/pub/esnet-doc/NP-Net-Req-Workshop-2008-Final-Report.pdf

