
Source-Ordering for Improved TCP Performance over Load-Balanced Optical
Burst-Switched (OBS) Networks

Bharat Komatireddy and Vinod M. Vokkarane
Department of Computer and Information Science, University of Massachusetts, Dartmouth, MA 02747, USA

E-mail: {g bkomatired,vvokkarane}@umassd.edu

Abstract— Recent advances in optical switching technol-
ogy allows for the creation of networks in which data
bursts are switched optically at each node, offering a
greater degree of flexibility suitable for handling bursty
Internet traffic. TCP-based applications account for a
majority of data traffic in the Internet; thus understanding
and improving the performance of TCP implementa-
tions over OBS networks is critical. Previously, several
articles show that load-balanced routing improves loss-
performance in OBS. In this paper, we identify the
ill-effects of load-balanced OBS on TCP performance
caused due to false time-outs and false fast-retransmit.
We propose source-ordering mechanism that significantly
improves TCP throughput. We evaluate the performance
of the proposed mechanism over different TCP flavors,
such as TCP Tahoe, TCP Reno, TCP SACK, and TCP
Vegas over a load-balanced OBS network.

Keywords: Transmission Control Protocol (TCP) and
Optical Burst Switching (OBS).

I. I NTRODUCTION

Next-generation high-speed optical Internet will be re-
quired to support a broad range of emerging applications
which may not only require significant bandwidth, but
may also have strict requirements with respect to end-
to-end delays and reliability of transmitted data.

In optical burst switching (OBS), data to be transmit-
ted is assembled in to bursts and are switched through
the network all optically [1]. Each burst has an associated
control packet called the burst header packet (BHP) and
the BHP is sent ahead of time in order to configure
the switches along the bursts’ route. In OBS networks,
apart from the data channels, each link has one or more
control channels to transmit BHPs. BHPs carries infor-
mation about the burst such as source, destination, burst
duration, and offset time. Offset time is the time at which
the burst and BHP are separated at the source and the
subsequent intermediate nodes. The offset time allows
for the BHP to be processed at each intermediate node
before the data burst arrives. As the BHP travels from
source to destination, it is processed at each intermediate
node in order to configure the optical switches accord-
ingly. Then the data burst cuts through the optical layer

avoiding any further delays. Bandwidth is reserved only
for the duration of the burst, this reservation technique
is called just-enough-time (JET) [2].

The primary issue in the OBS core network is con-
tention resolution, since the core does not have any
buffers. Contention occurs when two or more bursts
contend for the same output port at the same time.
There are several contention resolution techniques, such
as optical buffering [3], wavelength conversion [4], [5],
and deflection routing [6]. These contention resolution
techniques are reactive in nature, that try to resolve the
contention when it occurs. These contention resolution
techniques attempt to minimize the loss based on the lo-
cal information at the node. An alternative to contention
resolution is to avoid contention before it happens.

There is a tremendous need to support reliable
connection-oriented end-to-end transport service for sup-
porting new applications, such as the Grid systems. In
the recent years, transmission control protocol (TCP)-
based applications, such as Web (HTTP), Email (SMTP),
peer-to-peer file sharing [7], [8], and grid computing [9],
account for a majority of data traffic in the Internet;
thus understanding and improving the performance of
TCP implementations over OBS networks is critical.
The important TCP flavors are TCP Tahoe [10], TCP
Reno [11], [12], [13], TCP SACK [14], and TCP Vegas
[15], [16], [17]. The fundamental assumption of all these
TCP flavors is that the underlying medium is electronic
in nature, and that the packets experience queueing
(buffering) delays during congestion in the electronic
IP routers along the path of the TCP flow. Over the
years, TCP has undergone significant changes in terms
of developing new congestion control mechanisms and
handling issues concerning the need for high-bandwidth
at the presence of long end-to-end delays between the
senders and the receivers [18].

TCP flavors primarily differ in their implementation
of congestion control mechanisms. TCP and its various
flavors can be classified into three categories based
on congestion control mechanisms, they are loss-based,
delay-based, and rate-based. TCP Tahoe, TCP Reno and
TCP SACK are loss-based congestion-control techniques

that use packet losses to estimate the available band-
width in networks. TCP Tahoe is one of the first and
simplest loss-based congestion control versions. TCP
Reno and TCP SACK are widely deployed TCP versions
in the Internet. TCP Reno and TCP SACK employs
loss-based congestion-control usingtime-out (TO) and
fast-retransmit (FR) based mechanisms [19]; while TCP
Tahoe employs onlytimeout (TO) based congestion
control.

On the other hand, delay-based TCP flavors, such as
TCP Vegas [16], use delay measurements to estimate
available bandwidth in the network. The queueing delay
measured in TCP can provide information about the
degree of network congestion, which will make TCP
implementation easier to stabilize a network with a
target fairness and high utilization. The performance of
TCP Vegas has been evaluated in [16], [20]. The paper
suggests that TCP Vegas achieves30% to 70% higher
throughput than TCP Reno by reducing the number of
packet retransmissions.

Recently, a third kind of TCP congestion control
mechanism, rate-based congestion control has been pro-
posed. A rate-based eXplicit Control Protocol (XCP)
has been proposed in [21], where available network
bandwidth is estimated based on the explicit feedbacks
from routers in the networks. In [22], Rate Control
Protocol (RCP) is proposed, which is similar to XCP
except that the router assigns a single rate to all flows
that pass through it.

Due to the bufferless nature of OBS core network and
the one-way based signaling scheme, the OBS network
will suffer from random burst losses even at low traffic
loads. One problem that arises when TCP traffic traverses
over OBS networks is that the random burst loss may be
falsely interpreted as network congestion by the TCP
layer. For example, if a burst that contains all of the
segments of a TCP sending window is dropped due to
contention at a low traffic load, then the TCP sender
times out, leading to false congestion detection. This
false congestion detection is referred to as afalse time-
out (FTO) [23]. When the TCP sender detects this (false)
congestion, it will trigger theslow start congestion con-
trol mechanism, which will result in the TCP throughput
being reduced. Another example is when a random burst
loss triggers TCP fast retransmission for the case in
which segments in a TCP sending window are assembled
into multiple bursts. The burst loss will be interpreted as
light network congestion and will trigger one or more
TCP-layer fast retransmissions. Recently, few works
have evaluated TCP throughput over a OBS network
[24], [25], [26]. However, these works assume a constant
random burst loss probability in the OBS network, and

do not take into account TCP false congestion detection.
Load-balanced routing is an approach to implement

contention avoidance in OBS [27]. Load-balanced rout-
ing involves two stages,route calculation and route
selection. Both route calculation and route selection can
be implemented in a static or a dynamic manner. In this
paper, we adopt the a load-balanced routing technique
with static route-calculation and dynamic route-selection
as proposed in [27]. At everyτ seconds, all the ingress
OBS node dynamically selects the least-congested path
(among the two static link-disjoint minimum-hop paths)
to all their destination nodes using the cumulative
congestion-information of all the link along the two pre-
calculated paths. A link is said to be congested, if offered
load on Link (i, j), Li,j ≥ Pmax, where Pmax is the
maximum load threshold on a link. Letτs andτd be the
duration of successful burst arrivals and dropped burst
arrivals during the intervalτ , respectively. The offered
load on each of the node’s outgoing link is expressed as
the duration of all arriving bursts over the intervalτ , is
given by,Li,j = τs+τd

τ
.

In this paper, we propose asource ordering mecha-
nism to minimize the number offalse time-outs (FTOs)
and false fast retransmit (FFR). FTOs and FFRs are
essentially false congestion indicators at the OBS-layer
that are perceived as true TOs or FRs by the TCP-
layer. In source ordering, we aim to neutralize the
negative impact of the delay-differential between multi-
ple transmission paths in the OBS network on higher-
layer TCP performance. The remainder of the paper
is organized as follows. Section II discusses the issue
of supporting TCP over an independently load-balanced
OBS network. Section III describes the proposedsource
ordering mechanism in order to improve TCP per-
formance over an OBS network. provides background
information on congestion-based load-balanced routing
in OBS networks. Section IV discusses the simulations
results and Section V concludes the paper.

II. TCP OVER LOAD-BALANCED OBS

Loss-based TCP congestion-control mechanisms gen-
erally include slow start, congestion avoidance, fast
retransmission, and fast recovery.

In TCP Tahoe, a TCP segment loss is detected by a
time-out (TO). A TO loss is detected by aretransmission
time-out (RTO), when an acknowledgment for a segment
is not received within a certain period of time. TCP
interprets a TO loss as a loss due to network congestion;
hence, the TCP sender retransmits the lost segment and
enters into aslow start phase.

In TCP Reno, if a TCP segment is lost, there are
two types of loss indications:time-out (TO) and fast

retransmit (FR). TCP Reno interprets a TO loss as a loss
due to heavy network congestion; hence, the TCP sender
retransmits the lost segment and enters into aslow start
phase. A fast retransmission is triggered when a TCP
sender receives three duplicate ACKs, which indicates
that a packet is lost due to light network congestion;
hence, the TCP sender enters intofast retransmission
and fast recovery without waiting for RTO.

In TCP Reno, after receiving triple duplicate ACKs,
the source retransmits one lost segment, reduces the size
of congestion window by half, and enters into afast re-
covery phase. During the fast recovery phase, the source
increases the congestion window by one segment for
each duplicate ACK that it receives. After receiving half
a window of duplicate ACKs, the congestion window
size will be the same as the window size prior to the fast
retransmit phase. Thus, the source can send a new packet
for each additional duplicate ACK that it receives. The
source exits fast recovery upon the receipt of the ACK
that acknowledges the retransmitted lost segment, and
enters into acongestion avoidance phase. TCP Reno is
suitable for single segment loss in the sending window,
but does not handle multiple losses well.

TCP SACK was proposed as an enhancement to TCP
Reno. TCP Reno uses an acknowledgement number field
that contains a cumulative acknowledgement, indicating
the TCP receiver has received all the data up to the
indicated byte. Aselective acknowledgement option al-
lows receivers to additionally report non-sequential data
they have received. In the load-balanced routing protocol
packets can be reached out-of-order because of the delay
difference between the primary path and secondary path.
TCP SACK should perform better than TCP Reno over
a load-balanced OBS due to selective acknowledgement.

In the absence of TCP SACK, TCP Reno has per-
formance problems when multiple packets are dropped
from one window of data. These problems result from
the need to await retransmission timer expiration before
re-initiating the data flow. TCP SACK is based on a
conservative extension of the TCP Reno congestion-
control algorithms with the addition of selective ac-
knowledgements and selective retransmission. With TCP
SACK a sender has a better idea of exactly which
packets have been successfully delivered. Given such
information a sender can avoid unnecessary delays and
retransmissions, resulting in improved throughput.

All the above loss-based approach may causefalse
time out (FTO) and false fast retransmit (FFR) in an
OBS network when there is no serious congestion in
the network. FTO is caused because of random burst
contention instead of IP router buffer overflow. While
FFR is caused because of the out-of-order arrival of TCP

segments at the destination due to the delay-differential
between the primary and the alternate paths of a load-
balanced OBS network.

TCP Vegas is a delay-based congestion-control mech-
anism. TCP Vegas adopts a more sophisticated band-
width estimation scheme. It uses the difference be-
tween expected and actual flows rates to estimate the
available bandwidth in the network [28]. TCP Vegas
retransmission mechanisms use a fine-grained timer for
loss detection, and treats the receipt of certain ACKs
as a trigger to check for time-outs. Whenever a loss is
detected via a triple-duplicate ACK, Vegas reduces the
window by a quarter instead of half.

TCP Vegas extends the TCP Reno’s retransmission
mechanism as follows [15]: First, TCP Vegas records
the system clock each time a segment is sent. When
an ACK arrives the sender reads the clock again and
calculates the RTT for the relevant segment. The sender
uses this accurate RTT estimate to decide to retransmit
in the following two situations:

1. When a duplicate ACK is received, sender checks
to see if the difference between the current time and
thetimestamp recorded for the relevant segment is
greater than the timeout value. If it is, then TCP
Vegas retransmits the segment without having to
wait for three duplicate ACKs. In many cases, losses
are either so great or the window so small that the
sender will never receive three duplicate ACKs, and
therefore, Reno would have to rely on the coarse-
grain timeout mentioned above.

2. When a non-duplicate ACK is received, if it is
the first or second one after a retransmission, TCP
Vegas again checks to see if the time interval since
the segment was sent is larger than the timeout
value. If it is, then TCP Vegas retransmits the
segment. This will catch any other segment that
may have been lost previous to the retransmission
without having to wait for a duplicate ACK.

Static load-balanced routing techniques uses two path
to transmit data between each source-destination pair, a
primary path and an alternate path. The alternate being
longer than and link-disjoint from the primary. In such
a scenario, the bursts transmitted on the alternate path
incurs longer delay compared to the bursts transmitted
on the primary path. The path delay-differential (δ)
encountered may cause out-of-order reception of TCP
segments (IP packets) at the destination, resulting in
FTOs and FFRs.

Consider the following illustration scenario to better
understand the issue of FTOs and FFRs due to load-
balanced routing in OBS networks. In Fig. 1(a), Burst B1
consisting of three segments [S1,S2,S3] is transmitted

(a)

S7
S8
S9

S1
S2
S3

A2,A3,A4

A8,A9,A10

B1

B2

B3

B4

S4
S5
S6

A5,A6,A7

S1
S2
S3

S4
S5
S6

S7
S8
S9

S10
S11
S12

(b)

S7
S8
S9

S1
S2
S3

A2,A3,A4

A4,A4,A4

Delayed Burst

B1

B2

B3

B2 on longer path

Triple Duplicates

S4
S5
S6FFR

S1
S2
S3

S4
S5
S6

S7
S8
S9

Reduce window size
Retransmit B2 (c)

S7
S8
S9

S1
S2
S3

A2,A3,A4

A5,A6,A7

Delayed Burst

B1

B2

B3

S1
S2
S3

S4
S5
S6

S7
S8
S9

S4
S5
S6

A8,A9,A10

d e lta
Source Ordering

Fig. 1. (c) TCP-over-OBS with fixed-routing, (b) FFR in TCP over load-balanced OBS, and (c) source-ordering to minimize
FFR (and FTO) in TCP over load-balanced OBS.

and the corresponding acknowledgements [A2,A3,A4]
are received. Assuming that the flow is in slow-start
phase, congestion window doubles and the sender can
possibly send at least six packets. Burst B2 consisting
of segments [S4,S5,S6] is sent followed by Burst B3 con-
sisting of segments [S7,S8,S9] and so on. In Fig. 1(b),
load-balanced routing in the OBS-layer may result in
Burst B2 and Burst B3 being transmitted on two different
paths, say B2 on secondary path and B3 on the primary
shortest path. The Burst B2 [S4,S5,S6] gets delayed due
to longer alternate path, Burst B3 [S7,S8,S9] reaches
destination before Burst B2 since Burst B3 contains three
out-of-order segments [S7,S8,S9], the receiver will send
three duplicate ACKs [A4,A4,A4]. This results in FFRs
at the TCP sender. Note that if the path delay-differential
is significant, TCP sender may experience FTOs.

III. SOURCEORDERING

In order to neutralize the negative impact of the
path delay-differential caused by load-balanced routing
in OBS, we proposesource ordering. In OBS, all the
ingress edge nodes implement source routing to transmit
burst to the corresponding destinations. In source order-
ing, the ingress edge node pre-calculates the path delay-
differential between the primary minimum-hop path and
the alternate link-disjoint second minimum-hop path,
δ =| P1 − P2 |, whereP1 is the end-to-end delay on
the primary path andP2 is the end-to-end delay on the
alternate path.

We observe that every time the ingress node performs
a path-switch from the longer alternate path to the shorter
primary path, some of the bursts transmitted on the
primary path may overtake the previously transmitted
bursts on the longer alternate path before reaching the

destination. Every time we perform a long-to-short path-
switch, this scenario is quite common especially when
the δ value is large. This differential in path-delay can
result in FFRs and possibly FTOs (refer Fig. 1(b)). In
source ordering, every time a long-to-short path-switch
occurs, we electronically buffer the bursts forδ seconds
before we start transmitting on the shorter path.

In Fig. 1(c), every time a long-to-short path-switch
occurs we delay the burst for the amount of time equiv-
alent to the path delay-differential of the two paths, using
electronic buffering at the ingress OBS node. Note that
the ingress node is aware of the path delay-differential
since OBS implements source-routing.

IV. SIMULATION RESULTS

1 6

5

4

3

2

10
 m

s

10 ms

10 m
s

10
 m

s

10 ms

10 ms
14 m

s

14 m
s

Fig. 2. Network Topology.

We develop a NS-2 simulation to evaluate the per-
formance of TCP Tahoe, TCP Reno, TCP SACK, and
TCP Vegas over load-balanced OBS. The simulation
network used is a 6-node OBS network depicted in
Fig. 2. Every fiber link has four data channels op-
erating at a transmission rate of 1 Gb/s. Timer-based
burst assembly algorithm [29], [30] is adopted, with a

timer value of 20 ms. The OBS network implements
JET-based signaling with LAUC-VF channel scheduling
algorithm [31]. The offset time is 50µs and the per-
node burst header processing time is 5µs. We set up
100 TCP flows from Node 1 to Node 6 using 100 FTP
sources generating packets with an average size of 2
KB. Load-balanced routing is implemented in the OBS-
layer with interval,τ = 1 ms and congestion threshold,
ρmax = 0.5 [27]. We can observe from the network
topology (refer Fig. 2) that the primary shortest-hop path
is P1(N1 − N2 − N4 − N6) and the secondary link-
disjoint path isP2(N1 − N3 − N5 − N6). In order
to simulate impact of path delay-differential between
primary and secondary paths on TCP performance, we
vary propagational delay of LinkL3,5 from 10 ms to 110
ms to generateδ values ranging from 0 ms to 100 ms.
In order to compare TCP performance with and without
load-balanced OBS routing, we plot for TCP over OBS
without load-balanced routing (referred asbaseline). In
addition to TCP traffic from Node N1 to Node N6, all the
other nodes have a 2 Mb/s constant-bit-rate UDP traffic
between them. We evaluate the following performance
metrics for the different TCP version:

• On-line TCP throughput (in bytes/second): number
of bytes received per second at the TCP sink.

• Cumulative average TCP throughput (in
bytes/second): cumulative average of number
of bytes received per second at the TCP sink.

• Congestion window size (in bytes): value of conges-
tion window in bytes at the end of every second.

A. TCP Tahoe over Load-Balanced OBS

Figure 3(a) plots on-line TCP Tahoe throughput for
all the 100 TCP flows from N1 to N6 over a simulation
period of 50 seconds. In the graph, we can observe
that on-line throughput whenδ = 0 is significantly
higher than on-line throughput whenδ = 100. On-line
throughput whenδ = 0 is similar to that ofbaseline

(without load-balanced OBS), this is due to the fact
that TCP Tahoe uses time-outs as the only packet loss
indicator. A slight out-ordering of TCP segments at the
receiver does not trigger fast retransmission.

Figure 3(b) plots cumulative average TCP throughput
for all the 100 TCP flows from N1 to N6 over a simula-
tion period of 50 seconds. In the graph, we can observe
that average throughput whenδ = 0 is significantly
higher than the average throughput whenδ = 100. At
certain points on the graph, average throughput when
δ = 0 is higher than thebaseline case. In TCP Tahoe as
retransmission is done only when the time-out occurs,
there is no issue of FFRs. In summary, there is marginal

benefit to implement load-balanced OBS (even with
source ordering) versus implementing OBS without load-
balanced routing for TCP Tahoe-based flows. We have
also observed that the TCP throughput further drops with
increase indelta values.

B. TCP Reno over Load-Balanced OBS

Figure 4(a) plots on-line throughput for all the 100
TCP flows from N1 to N6 over a simulation period of
50 seconds. We can observe from the graph that on-
line throughput when the propagational delay of both
the primary and secondary paths are identical (δ = 0)
is significantly higher than the online throughput of the
network, where the delay difference is equal to 100
(δ = 100). This difference in performance is due to the
fact that TCP Reno uses both triple-duplicates and time-
outs as packet loss indicators. TCP performance with a
δ = 100 will results in several FTOs and FFRs leading to
lower throughput. We can also observe TCP throughput
over load-balanced OBS (whenδ=0) outperforms the
baseline scenario (without load-balancing).

Figure 4(b) plots the cumulative average throughput
for all the 100 TCP flows from N1 to N6 over a
simulation period of 50 seconds. We again observe that
δ = 0 has higher average throughput thanδ = 100 and
baseline. This is because of the FTOs and FFRs that we
have explained before.

Figure 4(c) plots the congestion window size versus
simulation time for a single flow (Flow 1) out of the
100 TCP flows from N1 to N6 over a simulation period
of 50 seconds. We can observe from the graph that the
congestion window size larger and grows faster forδ = 0
compared toδ = 100 andbaseline.

Fig 4(d) supports our claim by plotting number the
cumulative FRs versus time for the different scenarios.
We observe that there are no FRs for the case ofδ =
0 ms. The number of FRs graph and congestion window
graph justify the reason for decrease in throughput
when difference in delay between the primary path and
secondary path is greater.

C. TCP SACK over Load-Balanced OBS

Figure 5(a) plots on-line throughput for all the flows
(100) from N1 to N6 over a simulation period of
50 seconds for all the TCP traffic. In the graph, we
can observe that throughput is higher whenδ = 0
compared to whenδ = 100 due to FTOs and FFRs as
explained before. We can also observe TCP throughput
over load-balanced OBS (whenδ=0) outperforms the
baseline scenario (without load-balancing). Fig. 5(b)
plots the cumulative average throughput for all 100 TCP

(a) (b)
Fig. 3. TCP Tahoe: (a) On-line TCP throughput vs. simulation time. (b) Cumulative average throughput vs. simulation time.

(a)

(b)

(c)

(d)
 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 F

R
s

Time (in sec)

delta=0
delta=100

baseline

delta=200

Fig. 4. TCP Reno: (a) On-line TCP throughput vs. simulation time. (b) Cumulative average TCP throughput vs. simulation time. (c)
Congestion window size vs. simulation time. (d) Number of cumulative fast-retransmits (FRs) vs. simulation time.

(a)

(b)

(c)

Fig. 5. TCP SACK: (a) On-line TCP throughput vs simulation
time. (b) Average TCP throughput vs simulation time. (c) Congestion
window size versus simulation time.

flows from N1 to N6 over a simulation period of 50
seconds. We again observe thatδ = 0 has higher average
throughput thanδ = 100 andbaseline due to FTOs and
FFRs.

Figure 5(c) plots the congestion window size versus
simulation time for a single flow (Flow 1) out of the
100 TCP flows from N1 to N6 over a simulation period
of 50 seconds. We can observe from the graph that the
congestion window size larger and grows faster forδ = 0
compared toδ = 100 andbaseline. We can also observe
that throughput of TCP SACK is better than both TCP
Tahoe (Fig 3) and TCP Reno (Fig 4).

D. TCP Vegas over Load-Balanced OBS

As mentioned before, when a duplicate ACK is re-
ceived, sender checks to see if the difference between
the current time and thetimestamp recorded for the
relevant segment is greater than the timeout value. If so,
TCP Vegas retransmits the segment without having to
wait for three duplicate ACKs. Due to this enhancement
a pair of routes with delay-differential in a load-balanced
OBS can cause more harm to TCP Vegas flows then TCP
Reno/SACK flows due to out-of-order delivery of packet.
Figure 6(a) plots on-line throughput for all the 100 TCP
Vegas flows fromN1 to N6 over a simulation period of
50 seconds. In the graph, we can observe that throughput
is higher whenδ = 0 compared to whenδ = 100 due
to FTOs and FFRs as explained before. We can also
observe TCP throughput over load-balanced OBS (when
δ=0) outperforms thebaseline scenario (without load-
balancing).

Figure 6(b) plots the cumulative average throughput
for all 100 TCP flows fromN1 to N6 over a simulation
period of 50 seconds. We again observe thatδ = 0 has
higher average throughput thanδ = 100 and baseline

due to FTOs and FFRs.

V. CONCLUSION

In this paper, we have evaluated the performance of
different TCP flavors over a load-balanced OBS. In load-
balanced routing, two routes are first calculated statically
and the least-congested route is selected dynamically for
data transmission. We identify the ill-effects of OBS-
layer load-balanced routing on higher-layer TCP per-
formance. Through extensive simulations it is clear that
the value of the path delay-differential has a significant
impact on the higher-layer TCP performance. We pro-
pose a simple source-ordering approach that maintains
the order of the bursts using electronic buffers at the
ingress OBS edge node, so as to minimize the number
of false time-outs and false fast-retransmit. We observe

(a) (b)
Fig. 6. TCP Vegas: (a) On-line throughput vs. simulation time. (b) Cumulative average throughput vs. simulation time.

that source-ordering can improve the TCP throughput by
up to 400%.

An important area of future work is to implement load-
balanced routing with ReorderingRobust (RR-TCP) [32]
in order to avoid false fast retransmits and false time-
outs. Another area of future work is to implement TCP
over OBS with burst segmentation [33]. Burst segmenta-
tion will increase the probability of a burst reaching the
destination, leading to reduction of false time-outs (and
false fast-retransmits). This can also have a significant
positive impact on the TCP-over-OBS performance.

VI. A CKNOWLEDGEMENTS

This work was supported in part by NSF Grant CNS-
0626798.

REFERENCES

[1] J.P. Jue and V.M. Vokkarane,Optical Burst Switched Networks,
Springer, 2005.

[2] C. Qiao and M. Yoo, “Optical burst switching (OBS) - a
new paradigm for an optical Internet,”Journal of High Speed
Networks, vol. 8, no. 1, pp. 69–84, January 1999.

[3] I. Chlamtac, A. Fumagalli, L. G. Kazovsky, and et al., “CORD:
Contention resolution by delay lines,”IEEE Journal on Selected
Areas in Communications, vol. 14, no. 5, pp. 1014–1029, June
1996.

[4] B. Ramamurthy and B. Mukherjee, “Wavelength conversion
in WDM networking,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 7, pp. 1061–1073, September
1998.

[5] A. Bononi, G. A. Castanon, and O. K. Tonguz, “Analysis
of hot-potato optical networks with wavelength conversion,”
IEEE/OSA Journal of Lightwave Technology, vol. 17, no. 4,
pp. 525–534, April 1999.

[6] S. Yao, B. Mukherjee, S. J. B. Yoo, and S. Dixit, “A uni-
fied study of contention-resolution schemes in optical packet-
switched networks,” inIEEE/OSA Journal of Lightwave Tech-
nology, March 2003.

[7] I. Stoica and et. al., “Chord: A scalable peer-to-peer lookup
protocol for internet applications,” inProceedings of ACM
SIGCOMM, 2001.

[8] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and
J. Zahorjan, “Measurement, modeling, and analysis of a
peer-to-peer file-sharing workload,” inProceeding of ACM
SIGMETRICS, 2003.

[9] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of
the Grid: Enabling scalable virtual organizations,”Intenational
Journal of High Performance Computing Applications, vol. 15,
pp. 200–222, 2004.

[10] K. Fall and S. Floyd, “Simulation-based comparisons of tahoe,
reno and sack tcp,”ACM SIGCOMM Computer Communication
Review, vol. 26, pp. 5–21, July 1996.

[11] V. Jacobson, “Congestion avoidance and control,” inProceed-
ings, ACM SIGCOMM, 1988.

[12] W. Stevens, “TCP slow start, congestion avoidance, fast
retransmit, and fast recovery algorithms,”RFC 2001, 1997.

[13] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling
TCP Reno performance: A simple model and its empirical
validation,” IEEE/ACM Transactions on Networking, vol. 8,
no. 2, April 2000.

[14] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
selective acknowledgement options,”RFC 2018, 1996.

[15] L. Brakmo, S. O’Malley, and L. Peterson, “TCP Vegas:
New techniques for congestion detection and avoidance,” in
Proceedings, SIGCOMM,, August 1994, pp. 24–35.

[16] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global internet,”IEEE Journal on Selected Areas
in Communications, vol. 13, no. 8, pp. 1465–1480, October
1995.

[17] E. Weigle and W.-C. Feng, “A case for TCP Vegas in high-
performance computational grids,” inProceedings, 10th IEEE
International Symposium on High Performance Distributed
Computing (HPDC), August 2001.

[18] W. Feng and P. Tinnakornsrisuphap, “The failure of TCP
in high-performance computational grids,” inProceedings,
Supercomputing Conference, 2000.

[19] V. Jacobson, “Congestion avoidance and control,” inACM
SIGCOMM, 1989.

[20] J. Ahn, P. Danzig, Z. Liu, and L. Yan, “Evaluation of TCP
Vegas: emulation and experiment,”Computer Communication
Review, vol. 25, pp. 185–95, October 1995.

[21] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for
high bandwidth-delay product networks,” inProceedings, ACM
SIGCOMM, 2002.

[22] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKe-
own, “Processor sharing flows in the internet,” inThirteenth

International Workshop on Quality of Service (IWQoS), June
2005.

[23] X. Yu, C. Qiao, and Y. Liu, “TCP implementations and false
time out detection in OBS networks,” inProceedings, IEEE
Infocom, March 2004.

[24] A. Detti and M. Listanti, “Impact of segments aggregation
on TCP Reno flows in optical burst switching networks,” in
Proceedings, IEEE Infocom, 2002.

[25] X. Yu, C. Qiao, Y. Liu, and D. Towsley, “Performance
evaluation of TCP implementations in OBS networks,” in
Technique Report 2003-13, The State University of New York
at Buffalo, 2003.

[26] S. Gowda, R. Shenai, K. Sivalingam, and H. C. Cankaya,
“Performance evaluation of TCP over optical burst-switched
(OBS) WDM networks,” inProceedings, IEEE International
Conference on Communications (ICC), May 2003, vol. 2, pp.
1433–1437.

[27] G.P.V. Thodime, V. M. Vokkarane, and J. P. Jue, “Dy-
namic congestion-based load balanced routing in optical burst-
switched networks,” inProceedings, IEEE Globecom, Decem-
ber 2003, vol. 5, pp. 2694–2698.

[28] J. Mo, R.J. La, V. Anantharam, and J. Walrand, “Analysis
and comparison of tcp reno and vegas,” in Proceedings, IEEE
INFOCOM, 1999.

[29] A. Ge, F Callegati, and L. Tamil, “On optical burst switching
and self-similar traffic,”IEEE Communications Letters, vol. 4,
no. 3, March 2000.

[30] V. M. Vokkarane, K. Haridoss, and J. P. Jue, “Threshold-
based burst assembly policies for QoS support in optical burst-
switched networks,” inProceedings, SPIE OptiComm, July
2002, vol. 4874, pp. 125–136.

[31] Y. Xiong, M. Vanderhoute, and H.C. Cankaya, “Control
architecture in optical burst-switched WDM networks,”IEEE
Journal on Selected Areas in Communications, vol. 18, no. 10,
pp. 1838–1854, October 2000.

[32] M. Zhang, B. Karp, S. Floyd, and L. Peterson, “Rr-tcp: a
reordering-robust tcp with dsack,” in Proceedings, IEEE ICNP,
Nov. 2003, pp. 95–106.

[33] V. M. Vokkarane and J. P. Jue, “Burst segmentation: An
approach for reducing packet loss in optical burst switched
networks,” SPIE Optical Networks Magazine, vol. 4, no. 6,
pp. 81–89, November-December 2003.

