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Abstract

TCP-over-OBS is a promising transport paradigm to support next-generation-Internet. Load-balanced OBS improves loss-
performance. We identify the ill-effects of load-balancing on TCP-performance due to false-time-outs and false-triple-duplicates.
We propose source-ordering to improve TCP-throughput by three-four times.
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I. INTRODUCTION

In optical burst switching (OBS), data to be transmitted is assembled in to bursts and are switched through the network all
optically. Each burst has an associated control packet called the burst header packet (BHP) and the BHP is sent ahead of time
in order to configure the switches along the bursts’ route. In OBS networks, apart from the data channels, each link has one or
more control channels to transmit BHPs. BHPs carries information about the burst such as source, destination, burst duration,
and offset time. Offset time is the time at which the burst and BHP are separated at the source and the subsequent intermediate
nodes. The offset time allows for the BHP to be processed at each intermediate node before the data burst arrives. As the
BHP travels from source to destination, it is processed at each intermediate node in order to configure the optical switches
accordingly. Then the data burst cuts through the optical layer avoiding any further delays. Bandwidth is reserved only for the
duration of the burst, this reservation technique is called just-enough-time (JET) [1].

The primary issue in the OBS core network is contention resolution, since the core does not have any buffers. Contention
occurs when two or more bursts contend for the same output port at the same time. There are several contention resolution
techniques, such as optical buffering, wavelength conversion, and deflection routing []. These contention resolution techniques
are reactive techniques that try to resolve the contention when it occurs. These contention resolution techniques attempt to
minimize the loss based on the local information at the node. An alternative to contention resolution is to avoid contention
before it happens. In contention avoidance technique, the contentions can be avoided by source policing or by routing the
traffic in such a way that the congestion in the network is minimized. In this paper, we adopt dynamic congestion-based
load-balanced routing techniques to avoid contentions in the OBS network [2].

Many TCP-based applications, such as Web (HTTP), Email (SMTP), peer-to-peer file sharing, and grid computing, account
for majority of data traffic in the Internet; thus understanding and improving the performance of TCP implementations over
OBS networks is critical. TCP flavors primarily differ in their implementation of congestion-control mechanisms and their
handling of high-bandwidth-delay flows. TCP Reno is one of the widely deployed TCP versions in the Internet. TCP Reno
was primarily developed using the fundamental assumption that the underlying medium is electronic in nature, and the packets
experience queueing delay during the congestion in the IP routers along the TCP flow. TCP Reno employs packet loss-based
congestion-control using timeout (TO) and triple duplicate (TD) based mechanisms.

In this paper, we analyze the performance of TCP Reno over a load-balanced optical burst-switched network. The remainder
of the paper is organized as follows. Section II provides background information on congestion-based load-balanced routing in
OBS networks. Section III discusses the issue of supporting TCP over an independently load-balanced OBS network. Section IV
discusses the simulations results and Section V concludes the paper.

II. LOAD-BALANCED ROUTING IN OBS
Contention avoidance by balancing the load in the network involves two stages, route calculation and route selection.

Route calculation can be implemented in a static or a dynamic manner. In static route calculation one or more routes are
pre-calculated based on a static metric such as physical-distance or number of hops. In dynamic route calculation routes
are computed periodically based on certain dynamic traffic information such as link congestion or number of contentions. In
the route selection stage, one of the routes which are calculated (either statically or dynamically) is selected in a static or
a dynamic manner for the burst transmission. In static route selection, a fixed fraction of traffic is sent on all the alternate
paths. In dynamic route selection, routes are selected based on certain dynamic feedback information. The dynamic feedback
information is the congestion on the link and the congestion information is communicated back to the source periodically for
every interval τ using either interlink-state broadcasts or probe packets.

In this paper, we employed static route-calculation with dynamic route-selection. We first calculate two link-disjoint shortest-
hop paths for every source-destination pair. After every interval τ , we dynamically select the least-congested of the two paths
and transmit the burst on that path. In order to implement this technique, each core node has to maintain a node information
table, Lnode, that stores the offered load on each of the node’s outgoing link. Let τ s and τd be the duration of successful burst
arrivals and dropped burst arrivals during the interval τ , respectively. The offered load on each of the node’s outgoing link is
expressed as the duration of all arriving bursts over the interval τ , is given by, L i,j = τs+τd

τ . Each OBS edge node has to
maintain a network load information table, Lnet, that stores the information about the offered load of all links in the network.
A link is congested, if Li,j ≥ Pmax, where Pmax is the maximum load threshold on a link. At every τ seconds, all the ingress
OBS node dynamically selects the least-congested path (among the two static paths) to all their destination nodes using the
congestion-information of all the link along the two pre-calculated paths.
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III. TCP RENO OVER LOAD-BALANCED OBS
TCP congestion-control mechanisms include slow start, congestion avoidance, fast retransmission, and fast recovery. If a

TCP segment is lost, there are two types of loss indications: Time Out (TO) and Triple Duplicates (TD). A TO loss is detected
by a Retransmission Time Out (RTO), when an acknowledgment for a segment is not received within a certain period of time.
TCP interprets a TO loss as a loss due to heavy network congestion; hence, the TCP sender retransmits the lost segment and
enters into a slow start phase. A TD loss is detected when a TCP sender receives three duplicate ACKs, which indicates that a
packet is lost due to light network congestion; hence, the TCP sender enters into fast retransmission and fast recovery without
waiting for RTO.

In TCP Reno, after a TD loss is detected, the source retransmits one lost segment, reduces the size of congestion window
by half, and enters into a fast recovery phase. During the fast recovery phase, the source increases the congestion window
by one segment for each duplicate ACK that it receives. After receiving half a window of duplicate ACKs, the congestion
window size will be the same as the window size prior to the TD detection. Thus, the source can send a new packet for each
additional duplicate ACK that it receives. The source exits fast recovery upon the receipt of the ACK that acknowledges the
retransmitted lost segment, and enters into a congestion avoidance phase. TCP Reno is suitable for single segment loss in the
sending window, but does not handle multiple losses well.

TCP Reno [3] is a loss-based TCP versions that use packet-loss events to estimate the available bandwidth in network. TCP
Reno sender react to a burst drop by duplicate ACKs. TCP implementations performs slow start on TO and TO indicates
congestion in an IP network. This loss-based approach may cause False Time Out (FTO) [4] and False Triple Duplicate (FTD)
in an OBS network when there is no serious congestion in the network. The FTO is caused because of random burst contention
instead of IP router buffer overflow. While FTD is caused because of the out-of-order arrival of TCP segments at the destination
due to the delay-differential between the primary and the alternate paths.
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Fig. 1. (c) TCP over OBS with fixed routing (b) FTD in TCP-over-OBS with load-balanced routing. (c) Source ordering to minimize FTD
(and FTO) in TCP-over-OBS with load-balanced routing.

In load-balanced routing has a primary path and an alternate path. The alternate being link-disjoint from the primary, usually
has a longer delay. In such a scenario, the bursts transmitted on the alternate path incurs longer delay compared to the bursts
transmitted on the primary path. The path delay-differential (δ) encountered may cause out-of-order reception of TCP segments
(IP packets) at the destination, resulting in FTOs and FTDs.

Consider the following illustration scenario to better understand the issue of FTOs and FTDs due to load-balanced routing
in OBS networks. In Fig. 1(a), Burst B1 consisting of three segments [S1,S2,S3] is transmitted and the corresponding
acknowledgements [A2,A3,A4] are received. Assuming that the flow is in slow-start phase, congestion window doubles and
the sender can possibly send at least six packets. Burst B2 consisting of segments [S4,S5,S6] is sent followed by Burst B3
consisting of segments [S7,S8,S9] and so on. In Fig. 1(b), load-balanced routing in the OBS-layer may result in Burst B2
and Burst B3 being transmitted on two different paths, say B2 on secondary path and B3 on the primary shortest path. The
Burst B2 [S4,S5,S6] gets delayed due to longer alternate path, Burst B3 [S7,S8,S9] reaches destination before Burst B2 since
Burst B3 contains three out-of-order segments [S7,S8,S9], the receiver will send three duplicate ACKs [A4,A4,A4]. This
results in FTDs at the TCP sender. Note that if the path delay-differential (δ) between the primary and the secondary paths is
significant, the TCP sender may experience FTOs. In Fig. 1(c), we resolve this issue by implementing source ordering at the
OBS ingress edge node. We delay the burst for the amount of time equivalent to the path delay-differential of the two routes,
using electronic buffering at the ingress OBS edge node. Note that the ingress node is aware of the path delay-differential
since OBS predominantly implements source-routing.

IV. SIMULATION RESULTS
In order to evaluate the proposed mechanism, we have obtained performance results using ns-2, using the 6-node OBS

network depicted in Fig. 2(a). The following are the network assumptions: Every fiber link has four data channels operating
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at the transmission rate of 1 Gb/s. The time-based burst assembly algorithm is adopted, with a timer value of 20 ms. The
OBS network implement JET with LAUC-VF. The offset time is 50 μs and the per-node burst header processing time is 5 μs.
We have set up 100 TCP Reno flows from Node 1 to Node 6 using 100 FTP sources (with infinite data) generating packets
of average size being 2 KB. Load-balanced routing is implemented in the OBS-layer with interval, τ = 1 ms and congestion
threshold, pmax = 0.1. We can observe for the network topology that the primary shortest-hop path is P 1(N1−N2−N4−N6)
and the alternate link-disjoint path is P2(N1−N3−N5−N6). In order to simulate the effect of path delay-differential between
the primary and the alternate paths on TCP performance, we vary the delay of Link L 3,5 from 10 ms to 210 ms to generate δ
values ranging from 0 ms to 200 ms. We plot the different performance metrics for three different values of δ (0 ms, 100 ms,
and 200 ms). In order to understand TCP performance with and without load-balanced OBS routing, we also plot for the
default scenario (referred as baseline), wherein the OBS network does not implement load-balanced routing.
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Fig. 2. (a) Simulation network. (b) On-line TCP throughput vs. simulation time for a pure TCP traffic network. (c) On-line TCP throughput
vs. simulation time for a network with 100 TCP flows from N1 to N6 and all other flows running UDP traffic at 2 Mb/s. (d) Number of
cumulative triple duplicates (TDs) vs. simulation time for the same network set up as Fig 2(c).

Figure 2(b) plots the on-line TCP throughput for a single flow (Flow 1 out of 100 flows) from N 1 to N6 over a simulation
period of 100 s for a purely TCP traffic network. We observe that the TCP throughput with source ordering can achieve up
to three times the TCP throughput without source ordering (refer Fig. 2(b) δ = 0 and δ = 200 ms at time = 22 sec) for
the scenarios considered in our simulation. Fig. 2(c) plots the on-line TCP throughput versus simulation time for a network
with 100 TCP flows from N1 to N6 and all other flows running UDP traffic at 2 Mb/s. We again observe that the TCP
throughput with source ordering can achieve up to four times the TCP throughput without source ordering (refer Fig. 2(c)
δ = 0 and δ = 200 ms at time = 47 sec) for the scenarios considered in our simulation. Also the TCP throughput of without
load-balancing baseline and with load-balancing and source-ordering (δ = 0) is similar. We strongly believe that as the path
delay-differential increases, the TCP throughput will continue to drop. Fig 2(d) supports our claim by plotting number the
cumulative TDs versus time for the different scenarios. We observe that there are no TDs for the case of δ = 0 ms.

V. CONCLUSION
In this paper, we have identified the ill-effects of OBS-layer load-balanced routing on higher-layer TCP performance. Through

extensive simulations it is clear that the value of the path delay-differential has a significant impact on the higher-layer TCP
performance. We propose a simple source-ordering approach that maintains the order of the bursts using electronic buffers
at the ingress OBS edge node, so as to minimize the number of false timeouts and false triple duplicates. We observe that
source-ordering can improve the TCP throughput by up to three-four times.
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