Laplace equation in cylindrical coordinates;
(3.1) $\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial V}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} V}{\partial \rho^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0$

Use reparation of variables 1

$$
\begin{aligned}
& \text { (32) } \quad V=R(g) \cdot P(\rho) \cdot Z(z) \\
& \Rightarrow \frac{\Phi \cdot Z}{\rho} R^{\prime}+\Phi \cdot z \cdot R^{\prime \prime}+\frac{R \cdot Z \Phi^{\prime \prime}}{\rho^{2}}+\Phi \cdot R Z^{\prime \prime}=0 \\
& \frac{R^{\prime \prime}}{R}+\frac{R^{\prime}}{\rho R}+\frac{1}{\rho^{2}}\left(\frac{\Phi^{\prime \prime}}{\varphi}\right)+\left(\frac{z^{\prime \prime}}{z}\right)=0 \\
& \rho \Rightarrow P^{4}=-m^{2} \varphi \Rightarrow Q_{m} \alpha e^{\text {tim } \rho} \text { or } \sin (m \varphi) \\
& \Rightarrow z^{\prime \prime}=k^{2} z \Rightarrow Z_{k} \propto e^{ \pm k z} \text { or } c h(k z) \\
& \text { (3.3) } \Rightarrow R^{\prime \prime}+\frac{R^{\prime}}{\rho}+\left(k^{2}-\frac{m^{2}}{\rho^{2}}\right) R=0
\end{aligned}
$$

introducing $x=k \rho$, obtain:

$$
\begin{aligned}
& \frac{d^{2} R}{d x^{2}}+\frac{1}{x} \frac{d R}{d x}+\left(1-\frac{m^{2}}{x^{2}}\right) R=0 \\
& \Rightarrow R_{m_{k}}=J_{m}(\mathrm{kS})\left(Y_{m}(\mathrm{ks}), H_{m}^{ \pm}(\mathrm{ks}) \text { alp poole }\right)
\end{aligned}
$$

where $Y_{m} \equiv N_{m}(x)=\frac{J_{m}(x) \cos m \pi-I_{-m}(x)}{\sin m \pi}$

$$
H_{m}^{ \pm} \equiv H_{m}^{(1,2)}(x)=J_{m}(x) \pm i Y_{m}(x)
$$

Propertics of Bescek functions
Geverativy hunction
(3.4)
(3.4.0) ${ }^{\hbar}{ }^{n} \frac{1}{2}\left(J_{n-1}(x)-J_{n+1}^{(x)}\right)=J_{n}^{\prime}(x)$

$$
\begin{aligned}
& g(x, t)=e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}=\sum_{n} J_{n}(x) t^{n} \\
& \frac{\partial g}{\partial x}=\frac{1}{2}\left(t-\frac{1}{t}\right) g(x, t)=\sum_{n} \frac{J_{n}}{2} t^{n+1}-\sum_{n} J_{n} \frac{t^{n-1}}{2}=\sum_{n} J_{n}^{1} t^{n}
\end{aligned}
$$

$$
\frac{\partial g}{\partial t}=\frac{x}{2}\left(1+\frac{1}{t^{2}}\right) g(x, t)=\sum_{n} \frac{x}{2}\left(J_{n} t^{n}+J_{n} t^{n-2}\right)=\sum_{n} n J_{n} t^{n-1}
$$

$(3.45)^{e^{n-1} \rightarrow} \frac{x}{2}\left(J_{n-1}(x)+J_{n+1}(x)\right)=n J_{n}(x)$
Note: it is posible to sfort inth recurrence relation \& derite Bessel eq. (homeverk)
Eq. (33) don be written in the seff-adjaint tam:

$$
\left[\downarrow \underset{\sim}{\sim} \downarrow u=\frac{\partial}{\partial x}\left(p(x) \frac{\partial u}{\partial x}\right)+q u=\lambda \omega(x) u\right.
$$

Since eigen huncrias of self-adjoint perctors ore orkhonol,
(3.5)

$$
\left.\int_{0}^{a} \rho J_{m}\left(\frac{\alpha_{m m} \rho}{a}\right) J_{m}\left(\frac{\alpha_{m l} \rho}{a}\right) d \rho=\delta_{n l} \frac{a^{2}}{2}\left[J_{m+1}\left(\alpha_{m l}\right)\right]^{2}\right]
$$ ehure $\alpha_{m l}$ is $l$-thezooo o $J_{m}$

Boundary value problems in cylindrical coordinates

Boundary - value problems in Cylindrical cord. (example)
Cousfder a problem shown in
$V=\sum_{m, k}\left(a_{m} \cos m \rho+b_{m} \sin m \rho\right) J_{m}(t g)$ ginhkz

$$
\text { BC } J_{m}(k R)=0 \Rightarrow k R=\alpha_{m n}
$$

(3.) $=$

$$
\sum_{m}\left(a_{m l} \cos m \rho \rho+b_{m l}^{\sin m \varphi}\right) \frac{R^{2}}{2} J_{m+1}^{2}\left(\alpha_{m l}\right) \sinh \frac{\alpha_{m l} L}{R}=\tilde{V}_{m e}(\varphi)
$$

where $\tilde{V}_{m e}=\int^{R} V(\rho, \ell) \rho J_{m}\left(\alpha_{m e} \frac{\rho}{Q}\right) d \rho$

$$
a_{m e} \frac{R^{2}}{2} J_{m+1}^{2}\left(\alpha_{m e}\right) \sinh \frac{\alpha_{m l} L}{R}=V_{m e}^{c}
$$

$$
\begin{aligned}
& V=\sum_{m, n}\left(Q_{m m} \cos m \rho+b_{m n} \sin m \rho\right) J_{m}\left(\left.\frac{\alpha_{m n}}{\left.R^{\prime} \rho\right)} \min _{R^{2}}^{R_{m}}\right|_{x} \sum_{V=0} \varphi\right. \\
& V_{k}(z=R)=\sum_{m, n}\left(a_{m n} \cos m \rho+b_{m n} \operatorname{tin} n\right) J_{m}\left(\frac{\alpha_{m n}}{R} s\right) \sinh \frac{\alpha_{m n} L}{R}=V_{0}(\xi,-l) \\
& * \int_{0}^{2} J_{n m}\left(\alpha_{m \ell} \frac{\rho}{R}\right) \rho \Rightarrow
\end{aligned}
$$

( $) 2^{\sim m l} 2^{v m+1(n m l)} \quad R=v_{m l}$
(3.)

uhere $V_{m e}^{c, s}=\frac{1}{\pi} \int_{0}^{2 \pi} d \rho \sin _{m}^{\cos }(m) \int_{0}^{R} V(\rho, \rho) \rho J_{m}\left(\alpha_{m e} \frac{\rho}{R}\right) d s$

Laplace equation in spherical coordinates

Laplace equation in spherical coordinates:

$$
(3.3)] \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r V)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \varphi^{2}}=0
$$

Once gain, use separation of variabless:

$$
\begin{aligned}
& V=R(r) \cdot \Phi(\varphi) \cdot \theta(\theta) \\
& \left(3 . x_{2}\right) \frac{\Phi \theta}{r} \frac{d^{2}}{d r^{2}}(r R)+\frac{R \varphi}{r^{2} \sin \theta} \frac{d}{d \theta}\left(\operatorname{rin} \theta \frac{d \theta}{d \theta}\right)+\frac{R \theta}{r^{2} \sin ^{2} \theta} \frac{d^{2} P}{d \varphi^{2}}=0 \\
& \Rightarrow P_{m}^{\prime \prime}=-m^{2} \Psi_{m}
\end{aligned}
$$

(3.80) now becomes:

$$
(3 . \theta b) \frac{1}{r R} \frac{d^{2}}{d r^{2}}(r R)+\frac{1}{r^{2}}[\underbrace{\left[\theta \frac{1}{d \theta} \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)-\frac{m^{2}}{\sin ^{2} \theta}\right]}_{-l(l+1)}=0
$$

$\Rightarrow$ Angrelor Part
(3.Q) $\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \theta}{d \theta}\right)+\left[l(l+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] \theta_{m l}=0$

Rutroducly $\Sigma=\cos \theta$
(3, 有) $\frac{d}{d \xi}\left[\left(1-\xi^{2}\right) \frac{d \theta}{d \xi}\right]+\left[l(l+1)-\frac{m^{2}}{1-\xi^{2}}\right] \theta=0$

$$
\begin{aligned}
& \theta_{m e}(x)=P_{e}^{m}(x) \text { or } Q_{e}^{m}(x) \leftarrow \underset{\text { associated }}{\text { Legendre henction }} \\
& \theta_{m e}=P_{e}^{m}(\cos \theta)
\end{aligned}
$$

Angelor part: splericol harmanies:
(3.9) $Y_{\operatorname{lm}}(\theta, \varphi) \propto P_{l}^{m}(\cos \theta) e^{i m \varphi}$

More information on Legendre Lunctions Stort with $m=0$ (realized in azsmuticallysymmetric casel
Eq. (3.9) beeones:
$(3.10)\left[\left.\frac{d}{d x}\left[\left(1-e^{2}\right) \frac{d P_{l}(x)}{d x}\right]+l(l+1) P_{l}(x)=0 \right\rvert\, \leftarrow\right.$ legendre eq,
Once, again, we hav self-adjoived operator

$$
(3.11) \Rightarrow \int_{-1}^{1} P_{l}(x) P_{m}(x) d x=\frac{2 \delta_{m l}}{2 l+1}
$$

Solutians t Logendre equ can be represented as senies:

$$
\begin{aligned}
& P_{l}(x)=\sum_{n} a_{n} x^{n+k} \\
& P_{l}^{\prime}(x)=\sum_{n}(n+k) a_{n} x^{n+k-1} \\
& P_{l}^{\prime \prime}(x)=\sum_{n}(n+k)(n+k-1) a_{n} x^{n+k-2}
\end{aligned}
$$

$$
\begin{aligned}
& (3.10) \Rightarrow P_{l}^{\prime \prime}-x^{2} P_{e}^{\prime \prime}-2 x P_{e}^{\prime}+\ell(l+1) P_{e}=0 \\
& (3.12) \Rightarrow\left\{\begin{array}{l}
\sum_{n}(n+k)(n+k-1) a_{n} x^{n+k-2}+ \\
\sum[(n+k)(n+k+1) \\
\sum_{-(n+k)(k-1)-2(n+1)}^{(n+(l+1)}+\ell\left(\ell x^{n+k}=0\right.
\end{array}\right.
\end{aligned}
$$

for senles solution to exist, for $n=0$ :
(3.13) indicial equ $k(k-1)=0 \Rightarrow k=0$ or $k=1$ )
for every other $n:$ (lookij for $\alpha x^{n+k}$ ):

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{l}
(n+k+2)(n+k+1) a_{n+2}+[l(l+1)-(n+k)(n+k+1)] a_{n}=0 \\
a_{n+2}=\frac{(n+k)(n+k+1)-l(l+1)}{(n+k+2)(n+k+1)} a_{n}
\end{array} \begin{array}{l}
\text { recursence } \\
\text { relation }
\end{array}\right. \\
& n=0,2,4, \ldots
\end{aligned}
$$

$k=0$ : senies temminates for even $\left.Q_{Q} n=l\left[P_{e} k\right)\right]$ intinite senies for odde $\left.L Q_{e}(x)\right]$
$k=1$ : series termiwates for odd $\ell \varrho n=l-1[P e(x)]$ intinite serces for even $l\left[Q_{l}(x)\right]$
$\Rightarrow \mathrm{Pe}_{\mathrm{l}}(x)$ is a polynomid of order $l$
(3.14) Rodrigues formula: $P_{e}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}$

Properties of Legendre polynonials con be dinivet drou geveratty haction:
geveratticy haction:
$(3.15) \quad g(x, t)=\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n} P_{n}(x) t^{4}$
$\frac{\partial g}{\partial x}=\frac{t}{\left(1-2 x t+t^{2}\right)^{3 / 2}}=\frac{t(x, t)}{1-2 x t+t^{2}} \Rightarrow$

$$
\begin{aligned}
& \sum P_{n}(x) t^{n+1}=\left(1-2 x t+t^{2}\right) \sum_{n} P_{n}^{\prime}(x) t^{n} \\
& e t^{n+1} P_{n}(x)=P_{n+1}^{\prime}-2 x P_{n}^{\prime}+P_{n-1}^{\prime}
\end{aligned}
$$

(3.16a) $\quad P_{n+1}^{\prime}(x)+P_{n-1}^{\prime}(x)=P_{n}(x)+2 x P_{w}^{\prime}(x)$

$$
\begin{aligned}
& \frac{\partial g}{\partial f}=\frac{(x-t) g(x, t)}{1-2 x t+t^{2}} \Rightarrow \\
& \sum_{n} x P_{n}(x) t^{n}-\sum_{n} P_{n}(x) t^{n+1}= \\
& \quad \sum \operatorname{n}_{n} P_{n}(x) t^{n-1}-2 \sum_{n} \sum_{n} P_{n} t^{n}+\sum_{n} P_{n}(x) t^{n+1}
\end{aligned}
$$

อ $t^{n}: \times P_{n}-P_{n-1}=(n+1) P_{n+1}-2 \times n P_{n}+(n-1) P_{n-1}$
$(3.16 b)(n+1) P_{n+1}(x)+n P_{n-1}(x)=(2 n+1) \times P_{n}(x)$
Associated Lagendre Function:

$$
\text { (3.17) }\left\{\begin{array}{l}
P_{l}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{l}(x) \\
P_{l}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{m / 2} \frac{d^{e+m}}{d x^{e+m}}\left(x^{2}-1\right)^{l}
\end{array}\right.
$$

Note that Eq. (3.qQ) rapresents pelf-adjoint operetor with respect io $l \Rightarrow p^{m}$ are orhogonols
(3.18)

$$
\int_{-1}^{1} P_{e}^{m}(x) P_{n}^{m}(x) d x=\frac{2}{2 e+1} \frac{(l+m)!}{(l-m)!} \delta_{e n}
$$

Sphercol harmanics:
(3.19) $\quad Y_{R m}(\theta, \varphi)=\sqrt{\frac{2 \ell+1}{4 \pi}} \frac{(l-m)!}{(l+m)!} P_{e}^{m}(\cos \theta) e^{i m \rho}$
$(3.20)$ Note that $\sum_{e=0}^{\infty} \sum_{m=-l}^{l} Y_{l m}^{+}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l m}^{Y_{2}}(\theta, \varphi)=\delta\left(\varphi-\varphi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right)$

Radial part of Laplace equ:
$(3,2 l) \frac{1}{r} \frac{d^{2}}{d r^{2}}(r R)-\frac{l(l+1)}{r^{2}} R=0$

$$
\begin{aligned}
& R_{l}=r^{\alpha} \\
& r(\alpha+1) \alpha r^{\alpha-1}-l(l+1) r^{\alpha}=0 \Rightarrow \\
& \alpha(\alpha+1)-l(l+1)=0 \\
& \alpha^{2}+\alpha-l(l+1)=0
\end{aligned}
$$

(3.22) $\alpha=\frac{-1 \pm \sqrt{1+4 l^{2}+4 l}}{2}=\frac{-1 \pm(2 l+1)}{2}=\left\{\begin{array}{l}l \\ -l-1\end{array}\right.$

Boundary value problems in spherical coordinates

Boudary-value prollens in sphenical cord.
General solution:

$$
(3,23) V(r, \theta, \varphi)=\sum_{\ell, m}\left\lfloor\alpha_{l m} r^{l}+\beta_{\ell m} \frac{1}{r^{l+1}}\right] Y_{l m}(\theta, \varphi)
$$

where sets $\vec{\alpha}, \vec{\beta}$ need to be determined
Axially-fymmetric problens:

$$
\left(3,23_{a}\right) V(r, \theta)=\sum_{l}\left[Q_{l} \Gamma^{l}+\frac{b_{l}}{\Gamma^{l+1}}\right] P_{l}(\cos \theta)
$$

Example: Find potential intld/funtite the sphere where potentid is dikes $e \pm V$
The potential iuride the sphere:

$$
\int_{-1} V(r, \theta)=\sum_{l} a_{l} r^{l} p_{l}(\cos \theta)
$$


(3.24) The poturtiol outride the spheres

$$
V(r, \theta)=\sum \frac{b e}{r^{e+1}} \operatorname{Pe}(\cos \theta)
$$

In both corps:

$$
V(R, \theta)=I \alpha_{l} P_{l}(\cos \theta)= \pm V_{0}
$$

where $\alpha_{-}=\rho p^{l}$ or be
-where $\alpha_{l}=\theta_{l} R^{l}$ or $\frac{b_{e}}{R^{l+1}}$
$T_{B}$ find the coeffieients $\alpha_{l}$ :

$$
\begin{aligned}
& \sum \alpha_{e} P_{l}(\cos \theta)= \pm V_{0} \quad\left\{\begin{array}{l}
\theta_{0} P_{n}(\cos \theta) d(\cos \theta)
\end{array}\right. \\
& \alpha_{n} \frac{2}{2 n+1}=\int_{-1}^{1} \pm V_{0} P_{n}(x) d x=-\int_{-1}^{10} V_{0} P_{n}(x) d x \\
& \quad+\int_{0}^{1} V_{0} P_{n}(x) d x=-\int_{01}^{-1} V_{0} P_{n}(-x) d x+\int_{0}^{1} V_{0} P_{n}(x) d x \\
& =\left\{\begin{array}{l}
n-\operatorname{odd} \Rightarrow 2 \int_{0}^{1} V_{0} P_{n}(x) d x \\
n=\text { even } \Rightarrow 2
\end{array}\right.
\end{aligned}
$$

(3.25) for oddn: $\alpha_{n}=(2 n+1) V_{0} \int_{0}^{1} P_{n}(x) d x$

Field in a contcol hole:
Angacor purt of haplace egn

$$
\begin{aligned}
& \frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d P_{\nu}(x)}{d x}\right]+v(\nu+1) P_{\nu}(x)=0 \\
& V(r, \theta)=\sum_{\nu} \alpha_{\nu} r^{\nu} P_{\nu}(\cos \theta)
\end{aligned}
$$

(3.26) where $V$ are chosen such os $P_{V}\left(\cos \theta_{0}\right)=0$ for small radil:

$$
\text { Cu(nn), }-V_{n} \cdot(\ln \infty), \quad \text { " " " }
$$

NW Gornevi TEMI
$(3.27)\left\{V(r, \theta) \simeq \alpha_{V} r^{V} p_{V}(\csc \theta)\right.$ where $\nu$ is the suallegt

$$
E_{r}=-\frac{\partial V}{\partial r} ; E_{\varphi}=-\frac{1}{r} \frac{\partial V}{\partial \varphi} ; \sigma(r)=-\left.\frac{1}{4 I I} E_{0}\right|_{\theta_{0}}
$$

Green function expansion

Green function expansion!
$\left.(3.28) \left\lvert\, \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-e}^{e} \frac{1}{2 l+1} \frac{r_{e}^{e}}{r_{>}^{e+1}} Y^{\ell t}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l n}(\theta, \varphi)\right.\right]$
where $r_{<,} r_{>}$are smaller (larger of $r_{,} r^{\prime}$ geverolizots on to "outside" problem is apo straighttornots

