Faraday law

Thursday, September 15, 2016 8:44

Foreday discovered that $\mathcal{E} = -k \frac{dP}{dt}$ where $\mathcal{E} = \oint \vec{E} \cdot d\vec{l}$ is $\vec{E} \cdot d\vec{l}$ and $\vec{P} = \int \vec{B} \cdot d\vec{l}$ is magnetic flow $\vec{E} = -k \frac{d}{dt} \int \vec{B} \cdot d\vec{l}$ In the many have

 $\frac{d}{dt} = \frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla}$ $\vec{\nabla} \times (\vec{v} \times \vec{B}) = \vec{v} (\vec{v} \cdot \vec{B}) - (\vec{v} \cdot \vec{V}) \vec{B} = -(\vec{v} \cdot \vec{V}) \vec{B}$

 $\frac{\partial \vec{B}}{\partial t} = \frac{\partial \vec{B}}{\partial t} - \vec{\nabla} \times (\vec{v} \times \vec{B})$ $\frac{\partial \vec{E}}{\partial t} = -k \int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{n}$ $\frac{\partial \vec{E}}{\partial t} = -k \int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{n}$

where $\vec{E} = \vec{E}_1 - k \vec{V} \times \vec{B} = 3$ in mory from $\vec{E}_1 = \vec{E}_1 + k \vec{V} \times \vec{B}$

 $\int \nabla x \vec{E} \cdot d\vec{n} = -k \int \partial \vec{B} \cdot d\vec{n}$ $\nabla x \vec{E} = -k \int \partial \vec{b} \cdot d\vec{n}$ $\nabla x \vec{E} = -k \int \partial \vec{b} \cdot d\vec{n}$ To higher our the value of the constant k, consider the moning allorge

rest from d the charge: $F = q\vec{E} = kq \vec{V} \times \vec{B}$ Poly. From $\vec{F} = q \cdot V \times \vec{B}$ $\vec{V} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} ; \vec{E}' = \vec{E}_L + \vec{V} \times \vec{B}$ $\vec{V} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} ; \vec{E}' = \vec{E}_L + \vec{V} \times \vec{B}$

Magnetic energy

Thursday, September 15, 2016

dW = - I. E = I dP

Che loop:
$$SW = ISP = Jj. SBidn = Ij. SA$$

$$= Jj. (Ix SA) \cdot Jn = Ij. SA = Ij. SA$$

$$= SW = Jd^{3}r(J.SA) \leftarrow whole volume$$
Arrundy Quear relationship between J and J

$$S(J-A) = SJ. A + J. JA = 2J. SA$$

$$= W = IJJ. JA JA$$

Alternatively,
$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{A} \cdot (\overline{\nabla} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{A} \cdot (\overline{A} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{A} \cdot (\overline{A} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{A} \cdot (\overline{A} \times \overline{B})$$

$$\overline{\nabla} \cdot (\overline{A} \times \overline{B}) = \overline{A} \cdot (\overline{A} \times \overline{B})$$

For linear moterials, $EW = \frac{1}{2} \int E(H \cdot B) d^3r$ $W = \frac{1}{2} \int H \cdot B d^3r$