92.236.203 Eng. Diff Eqn's Sp 08 – Test 3

Name:

1. (20 points) Solve the following initial value problem

$$y'' - 5y' + 4y = x, y(0) = 6, y'(0) = 2$$

The char poly. $r^2 - 5r + 4 = 0$ has r = 4, 1 as roots, so $y_c = c_1 e^{4x} + c_2 e^x$ is the soln to the homogeneous DE. A particular soln to the nonhomogeneous DE is $y_p = (1/4)x + 5/16$, so $y = c_1 e^{4x} + c_2 e^x + (1/4)x + 5/16$ is the general sol'n. The IC's give the two eqns $c_1 + c_2 + 5/16 = 6$ and $4c_1 + c_2 + 1/4 = 2$. Solving, we get the IVP has $y = (-21/16)e^{4x} + 7e^x + (1/4)x + 5/16$

2. (20 points) Solve the following system of equations

$$\frac{dx}{dt} - x - y = e^{-t}$$
$$\frac{dy}{dt} + y + x = e^{t}$$
$$x(0) = -1, y(0) = 1$$

The DE x satisfies is $D^2x = e^t$. Integrating twice we get $x(t) = e^t + c_1t + c_2$, and substituting into eqn 1 we get $y = -e^{-t} + c_1 - c_2 - c_1t$. The IC's give $c_1 = 0, c_2 = -2$. So, $y = -e^{-t} + 2, x = e^t - 2$.

3. (20 points) Solve the following initial-value problem:

$$y^{(3)} - 2y'' + y' = 1 + xe^x; y(0) = y'(0) = 0, y''(0) = 1$$

r = 0 and r = 1 (mult. 2) are the three roots of the char eqn. so $y_c = c_1 + c_2e^x + c_3xe^x$. Note: You cannot solve for the initial conditions with this y_c . y_c does not satisfy the nonhomogeneous DE. You must first find y_p , then set $y = y_c + y_p$, the general soln of the nonhomogeneous DE, before you use the initial conditions to find the coeffs c_1, c_2, c_3 . This $y_p = Ax + x^2(B+Cx)e^x$ avoids repeating any term in y_c . Substituting into the DE we get $y_p^{(3)} - 2y_p'' + y_p' = A + (2B + 6C)e^x + 6Cxe^x = 1 + xe^x$, and so comparing coeffs, A = 1, B = -1/3, C = 1/6. Thus the general solution is $y = c_1 + c_2e^x + c_3xe^x + (-x^2/2 + x^3/6)e^x$. We get the following system

$$c_{1}+c_{2} = y(0) = 0$$

$$c_{2}+c_{3}+1 = y'(0) = 0$$

$$c_{2}+2c_{3}-1 = y''(0) = 1$$

which has $c_1 = 4, c_2 = -4, c_3 = 3$. Thus the solution is $y = 4 - 4e^x + 3xe^x + (-x^2/2 + x^3/6)e^x$

4. (20 points) The differential equation

$$u'' + 3u' + 9u = 5\cos\omega t$$

describes a forced spring system with damping.

Name:

- (a) Find the steady-state solution (in terms of ω).
- (b) Determine the amplitude of the steady state solution.
- (c) Determine the amplitude of the steady state solution when $\omega = 2$ $u_p = A\cos(\omega t) + B\sin(\omega t)$ where

$$\begin{array}{rl} (9-\omega^2)A & +3\omega B & =5\\ -3\omega A & +(9-\omega^2)B & =0 \end{array}$$

gives $A = \frac{5(9-\omega^2)}{(9-\omega^2)^2+9\omega^2}$ and $B = \frac{15\omega}{(9-\omega^2)^2+9\omega^2}$, so $u_p = \frac{5}{(9-\omega^2)^2+9\omega^2}[(9-\omega^2)\cos\omega t + 3\omega\sin\omega t]$. This has amplitude $C(\omega) = \frac{5}{\sqrt{(9-\omega^2)^2+9\omega^2}}$. $C(2) = 5/\sqrt{61}$.

5. (20 points) An LRC circuit with L = 1, R = 2, C = 1/3 with a battery providing an electromotive force of $(1/2) \sin 2t$ volts has current I(t) which satisfies the differential equation:

$$\frac{d^2I}{dt^2} + 2\frac{dI}{dt} + 3I(t) = \cos 2t$$

(a) Determine a particular solution to this DE.

Substituting $I_p = A \cos 2t + B \sin 2t$ into the DE gives $I''_p + 2I'_p + 3I_p = (-A + 4B) \cos 2t + (-4A - B) \sin 2t$, so A = -1/17, B = 4/17. Thus $I_p = (-1/17) \cos 2t + (4/17) \sin 2t$.

(b) Find the amplitude of the steady state solution (to two decimal digits). Since I_c decays to 0 as t gets large, then the steady periodic part will just be I_p . Thus Amplitude = $\sqrt{A^2 + B^2} = \frac{1}{\sqrt{17}} \approx 0.24$ volts to two decimals.