1. (20 points) Solve the following initial value problem

$$
y^{\prime \prime}-5 y^{\prime}+4 y=x, y(0)=6, y^{\prime}(0)=2
$$

The char poly. $r^{2}-5 r+4=0$ has $r=4,1$ as roots, so $y_{c}=c_{1} e^{4 x}+c_{2} e^{x}$ is the soln to the homogeneous DE. A particular soln to the nonhomogeneous $D E$ is $y_{p}=$ $(1 / 4) x+5 / 16$, so $y=c_{1} e^{4 x}+c_{2} e^{x}+(1 / 4) x+5 / 16$ is the general sol'n. The IC's give the two eqns $c_{1}+c_{2}+5 / 16=6$ and $4 c_{1}+c_{2}+1 / 4=2$. Solving, we get the IVP has $y=(-21 / 16) e^{4 x}+7 e^{x}+(1 / 4) x+5 / 16$
2. (20 points) Solve the following system of equations

$$
\begin{gathered}
\frac{d x}{d t}-x-y=e^{-t} \\
\frac{d y}{d t}+y+x=e^{t} \\
x(0)=-1, y(0)=1
\end{gathered}
$$

The $D E x$ satisfies is $D^{2} x=e^{t}$. Integrating twice we get $x(t)=e^{t}+c_{1} t+c_{2}$, and substituting into eqn 1 we get $y=-e^{-t}+c_{1}-c_{2}-c_{1} t$. The IC's give $c_{1}=0, c_{2}=-2$. So, $y=-e^{-t}+2, x=e^{t}-2$.
3. (20 points) Solve the following initial-value problem:

$$
y^{(3)}-2 y^{\prime \prime}+y^{\prime}=1+x e^{x} ; y(0)=y^{\prime}(0)=0, y^{\prime \prime}(0)=1
$$

$r=0$ and $r=1$ (mult. 2) are the three roots of the char eqn. so $y_{c}=c_{1}+c_{2} e^{x}+c_{3} x e^{x}$. Note: You cannot solve for the initial conditions with this y_{c}. y_{c} does not satisfy the nonhomogeneous DE. You must first find y_{p}, then set $y=y_{c}+y_{p}$, the general soln of the nonhomogeneous DE, before you use the initial conditions to find the coeffs c_{1}, c_{2}, c_{3}. This $y_{p}=A x+x^{2}(B+C x) e^{x}$ avoids repeating any term in y_{c}. Substituting into the DE we get $y_{p}^{(3)}-2 y_{p}^{\prime \prime}+y_{p}^{\prime}=A+(2 B+6 C) e^{x}+$ $6 C x e^{x}=1+x e^{x}$, and so comparing coeffs, $A=1, B=-1 / 3, C=1 / 6$. Thus the general solution is $y=c_{1}+c_{2} e^{x}+c_{3} x e^{x}+\left(-x^{2} / 2+x^{3} / 6\right) e^{x}$. We get the following system

$$
\begin{array}{ccc}
c_{1}+ & c_{2} & =y(0)=0 \\
c_{2}+ & c_{3}+1 & =y^{\prime}(0)=0 \\
c_{2}+ & 2 c_{3}-1 & =y^{\prime \prime}(0)=1
\end{array}
$$

which has $c_{1}=4, c_{2}=-4, c_{3}=3$. Thus the solution is $y=4-4 e^{x}+3 x e^{x}+\left(-x^{2} / 2+\right.$ $\left.x^{3} / 6\right) e^{x}$
4. (20 points) The differential equation

$$
u^{\prime \prime}+3 u^{\prime}+9 u=5 \cos \omega t
$$

describes a forced spring system with damping.
(a) Find the steady-state solution (in terms of ω).
(b) Determine the amplitude of the steady state solution.
(c) Determine the amplitude of the steady state solution when $\omega=2$

$$
u_{p}=A \cos (\omega t)+B \sin (\omega t) \text { where }
$$

$$
\begin{aligned}
& \left(9-\omega^{2}\right) A \quad+3 \omega B=5 \\
& -3 \omega A+\left(9-\omega^{2}\right) B=0
\end{aligned}
$$

gives $A=\frac{5\left(9-\omega^{2}\right)}{\left(9-\omega^{2}\right)^{2}+9 \omega^{2}}$ and $B=\frac{15 \omega}{\left(9-\omega^{2}\right)^{2}+9 \omega^{2}}$, so $u_{p}=\frac{5}{\left(9-\omega^{2}\right)^{2}+9 \omega^{2}}\left[\left(9-\omega^{2}\right) \cos \omega t+\right.$ $3 \omega \sin \omega t]$. This has amplitude $C(\omega)=\frac{5}{\sqrt{\left(9-\omega^{2}\right)^{2}+9 \omega^{2}}} . C(2)=5 / \sqrt{61}$.
5. (20 points) An LRC circuit with $L=1, R=2, C=1 / 3$ with a battery providing an electromotive force of $(1 / 2) \sin 2 t$ volts has current $I(t)$ which satisfies the differential equation:

$$
\frac{d^{2} I}{d t^{2}}+2 \frac{d I}{d t}+3 I(t)=\cos 2 t
$$

(a) Determine a particular solution to this DE.

Substituting $I_{p}=A \cos 2 t+B \sin 2 t$ into the DE gives $I_{p}^{\prime \prime}+2 I_{p}^{\prime}+3 I_{p}=(-A+$ $4 B) \cos 2 t+(-4 A-B) \sin 2 t$, so $A=-1 / 17, B=4 / 17$. Thus $I_{p}=(-1 / 17) \cos 2 t+$ $(4 / 17) \sin 2 t$.
(b) Find the amplitude of the steady state solution (to two decimal digits).

Since I_{c} decays to 0 as t gets large, then the steady periodic part will just be I_{p}. Thus Amplitude $=\sqrt{A^{2}+B^{2}}=\frac{1}{\sqrt{17}} \approx 0.24$ volts to two decimals.

