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P R E F A C EP R E F A C E

The evolution of the present text in successive editions is based on experience
teaching the introductory differential equations course with an emphasis on

conceptual ideas and the use of applications and projects to involve students in ac-
tive problem-solving experiences. Technical computing environments like Maple,
Mathematica, and MATLAB are widely available and are now used extensively by
practicing engineers and scientists. This change in professional practice motivates
a shift from the traditional concentration on manual symbolic methods to coverage
also of qualitative and computer-based methods that employ numerical computation
and graphical visualization to develop greater conceptual understanding. A bonus of
this more comprehensive approach is accessibility to a wider range of more realistic
applications of differential equations.

Principal Features of This Revision

While the successful features of preceding editions have been retained, the exposi-
tion has been significantly enhanced in every chapter and in most individual sections
of the text. Both new graphics and new text have been inserted where needed for
improved student understanding of key concepts. However, the solid class-tested
chapter and section structure of the book is unchanged, so class notes and syllabi
will not require revision for use of this new edition. The following examples of this
revision illustrate the way the local structure of the text has been augmented and
polished for this edition.

Chapter 1: New Figures 1.3.9 and 1.3.10 showing direction fields that illus-
trate failure of existence and uniqueness of solutions (page 24); new Problems
34 and 35 showing that small changes in initial conditions can make big dif-
ferences in results, but big changes in initial conditions may sometimes make
only small differences in results (page 30); new Remarks 1 and 2 clarifying the
concept of implicit solutions (page 35); new Remark clarifying the meaning
of homogeneity for first-order equations (page 62).

Chapter 2: Additional details inserted in the derivation of the rocket propul-
sion equation (page 110), and new Problem 5 inserted to investigate the
liftoff pause of a rocket on the launch pad sometimes observed before blastoff
(page 112).

Chapter 3: New explanation of signs and directions of internal forces in
mass-spring systems (page 148); new introduction of differential operators
and clarification of the algebra of polynomial operators (page 175); new intro-
duction and illustration of polar exponential forms of complex numbers (page
181); fuller explanation of method of undetermined coefficients in Examples

ix
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x Preface

1 and 3 (page 199); new Remarks 1 and 2 introducing “shooting” terminol-
ogy, and new Figures 3.8.1 and 3.8.2 illustrating why some endpoint value
problems have infinitely many solutions, while others have no solutions at all
(page 233); new Figures 3.8.4 and 3.8.5 illustrating different types of eigen-
functions (pages 235-236).

Chapter 4: New discussion with new Figures 4.3.11 and 4.3.12 clarifying
the difference between rotating and non-rotating coordinate systems in moon-
earth orbit problems (page 278).

Chapter 5: New Problems 20–23 for student exploration of three-railway-
car systems with different initial velocity conditions (page 329); new Remark
illustrating the relation between matrix exponential methods and the gener-
alized eigenvalue methods discussed previously (page 356); new exposition
inserted at end of section to explain the connection between matrix variation
of parameters here and (scalar) variation of parameters for second-order equa-
tions discussed previously in Chapter 3 (page 368).

Chapter 6: New remarks on phase plane portraits, autonomous systems, and
critical points (page 373–374); new introduction of linearized systems (page
386); new 3-dimensional Figures 6.5.18 and 6.5.20 illustrating Lorenz and
Rössler trajectories (page 439–440).

Chapter 7: New discussion clarifying functions of exponential order and ex-
istence of Laplace transforms (page 448); new Remark discussing the me-
chanics of partial-fraction decomposition (page 455); new much-expanded
discussion of the proof of the Laplace-transform existence theorem and its
extension to include the jump discontinuities that play an important role in
many practical applications (page 461–462).

Computing Features

The following features highlight the flavor of computing technology that distin-
guishes much of our exposition.

• Almost 550 computer-generated figures show students vivid pictures of di-
rection fields, solution curves, and phase plane portraits that bring symbolic
solutions of differential equations to life.

• Over 30 application modules follow key sections throughout the text. Most of
these applications outline ”technology neutral” investigations illustrating the
use of technical computing systems and seek to actively engage students in
the application of new technology.

• A fresh numerical emphasis that is afforded by the early introduction of nu-
merical solution techniques in Chapter 2 (on mathematical models and nu-
merical methods). Here and in Chapter 4, where numerical techniques for
systems are treated, a concrete and tangible flavor is achieved by the inclu-
sion of numerical algorithms presented in parallel fashion for systems ranging
from graphing calculators to MATLAB.
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Preface xi

Modeling Features

Mathematical modeling is a goal and constant motivation for the study of differen-
tial equations. To sample the range of applications in this text, take a look at the
following questions:

• What explains the commonly observed time lag between indoor and outdoor
daily temperature oscillations? (Section 1.5)

• What makes the difference between doomsday and extinction in alligator pop-
ulations? (Section 2.1)

• How do a unicycle and a two-axle car react differently to road bumps? (Sec-
tions 3.7 and 5.3)

• How can you predict the time of next perihelion passage of a newly observed
comet? (Section 4.3)

• Why might an earthquake demolish one building and leave standing the one
next door? (Section 5.3)

• What determines whether two species will live harmoniously together, or
whether competition will result in the extinction of one of them and the sur-
vival of the other? (Section 6.3)

• Why and when does non-linearity lead to chaos in biological and mechanical
systems? (Section 6.5)

• If a mass on a spring is periodically struck with a hammer, how does the
behavior of the mass depend on the frequency of the hammer blows? (Section
7.6)

Organization and Content

We have reshaped the usual approach and sequence of topics to accommodate new
technology and new perspectives. For instance:

• After a precis of first-order equations in Chapter 1 (though with the coverage
of certain traditional symbolic methods streamlined a bit), Chapter 2 offers an
early introduction to mathematical modeling, stability and qualitative proper-
ties of differential equations, and numerical methods—a combination of topics
that frequently are dispersed later in an introductory course.

• Chapters 4 and 5 provide a flexible treatment of linear systems. Motivated
by current trends in science and engineering education and practice, Chap-
ter 4 offers an early, intuitive introduction to first-order systems, models, and
numerical approximation techniques. Chapter 5 begins with a self-contained
treatment of the linear algebra that is needed, and then presents the eigenvalue
approach to linear systems. It includes a wide range of applications (ranging
from railway cars to earthquakes) of all the various cases of the eigenvalue
method. Section 5.5 includes a fairly extensive treatment of matrix exponen-
tials, which are exploited in Section 5.6 on nonhomogeneous linear systems.

• Chapter 6 on nonlinear systems and phenomena ranges from phase plane anal-
ysis to ecological and mechanical systems to a concluding section on chaos
and bifurcation in dynamical systems. Section 6.5 presents an elementary in-
troduction to such contemporary topics as period-doubling in biological and
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xii Preface

mechanical systems, the pitchfork diagram, and the Lorenz strange attractor
(all illustrated with vivid computer graphics).

• Laplace transform methods (Chapter 7) follow the material on linear and non-
linear systems, but can be covered at any earlier point (after Chapter 3) the
instructor desires.

This book includes enough material appropriately arranged for different
courses varying in length from a single term to two quarters. The longer version,
Differential Equations and Boundary Value Problems: Computing and Model-
ing (0-13-156107-3), contains additional chapters on power series methods, Fourier
series methods, and partial differential equations (separation of variables and bound-
ary value problems).

Applications and Solutions Manuals

The answer section has been expanded considerably to increase its value as a learn-
ing aid. It now includes the answers to most odd-numbered problems plus a good
many even-numbered ones. The 605-page Instructor’s Solutions Manual (0-13-
156109-X) accompanying this book provides worked-out solutions for most of the
problems in the book, and the 345-page Student Solutions Manual (0-13-156110-
3) contains solutions for most of the odd-numbered problems.

The approximately 45 application modules in the text contain additional prob-
lem and project material designed largely to engage students in the exploration and
application of computational technology. These investigations are expanded con-
siderably in the 335-page Applications Manual (0-13-600679-5) that accompanies
the text and supplements it with additional and sometimes more challenging inves-
tigations. Each section in this manual has parallel subsections Using Maple, Using
Mathematica, and Using MATLAB that detail the applicable methods and tech-
niques of each system, and will afford student users an opportunity to compare the
merits and styles of different computational systems.
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11 First-Order
Differential Equations

1.1 Differential Equations and Mathematical Models

The laws of the universe are written in the language of mathematics. Algebra
is sufficient to solve many static problems, but the most interesting natural

phenomena involve change and are described by equations that relate changing
quantities.

Because the derivative dx/dt = f ′(t) of the function f is the rate at which
the quantity x = f (t) is changing with respect to the independent variable t , it
is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of
its derivatives is called a differential equation.

Example 1 The differential equation
dx

dt
= x2 + t2

involves both the unknown function x(t) and its first derivative x ′(t) = dx/dt . The
differential equation

d2 y

dx2
+ 3

dy

dx
+ 7y = 0

involves the unknown function y of the independent variable x and the first two
derivatives y′ and y′′ of y.

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately—the appropriate solution of that
equation.

3. To interpret the solution that is found.

1
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2 Chapter 1 First-Order Differential Equations

In algebra, we typically seek the unknown numbers that satisfy an equation
such as x3 +7x2 −11x +41 = 0. By contrast, in solving a differential equation, we
are challenged to find the unknown functions y = y(x) for which an identity such
as y′(x) = 2xy(x)—that is, the differential equation

dy

dx
= 2xy

—holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.

Example 2 If C is a constant and
y(x) = Cex2

, (1)

then
dy

dx
= C

(
2xex2

)
= (2x)

(
Cex2

)
= 2xy.

Thus every function y(x) of the form in Eq. (1) satisfies—and thus is a solution
of—the differential equation

dy

dx
= 2xy (2)

for all x . In particular, Eq. (1) defines an infinite family of different solutions of
this differential equation, one for each choice of the arbitrary constant C . By the
method of separation of variables (Section 1.4) it can be shown that every solution
of the differential equation in (2) is of the form in Eq. (1).

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and
principles into differential equations. In each of these examples the independent
variable is time t , but we will see numerous examples in which some quantity other
than time is the independent variable.

Example 3 Newton’s law of cooling may be stated in this way: The time rate of change (the
rate of change with respect to time t) of the temperature T (t) of a body is propor-
tional to the difference between T and the temperature A of the surrounding medium
(Fig. 1.1.1). That is,

dT

dt
= −k(T − A), (3)

where k is a positive constant. Observe that if T > A, then dT/dt < 0, so the
temperature is a decreasing function of t and the body is cooling. But if T < A,
then dT/dt > 0, so that T is increasing.

Thus the physical law is translated into a differential equation. If we are given
the values of k and A, we should be able to find an explicit formula for T (t), and
then—with the aid of this formula—we can predict the future temperature of the
body.

Temperature T

Temperature A

FIGURE 1.1.1. Newton’s law of
cooling, Eq. (3), describes the
cooling of a hot rock in water.

Example 4 Torricelli’s law implies that the time rate of change of the volume V of water in a
draining tank (Fig. 1.1.2) is proportional to the square root of the depth y of water
in the tank:

dV

dt
= −k

√
y, (4)
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1.1 Differential Equations and Mathematical Models 3

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional
area A, then V = Ay, so dV/dt = A · (dy/dt). In this case Eq. (4) takes the form

dy

dt
= −h

√
y, (5)

where h = k/A is a constant.

Example 5 The time rate of change of a population P(t) with constant birth and death rates is,
in many simple cases, proportional to the size of the population. That is,

dP

dt
= k P, (6)

where k is the constant of proportionality.

Let us discuss Example 5 further. Note first that each function of the form

P(t) = Cekt (7)

is a solution of the differential equation

dP

dt
= k P

in (6). We verify this assertion as follows:

yVolume V

FIGURE 1.1.2. Torricelli’s law
of draining, Eq. (4), describes the
draining of a water tank.

P ′(t) = Ckekt = k
(
Cekt

) = k P(t)

for all real numbers t . Because substitution of each function of the form given in
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation
dP/dt = k P has infinitely many different solutions of the form P(t) = Cekt , one for
each choice of the “arbitrary” constant C . This is typical of differential equations.
It is also fortunate, because it may allow us to use additional information to select
from among all these solutions a particular one that fits the situation under study.

Example 6 Suppose that P(t) = Cekt is the population of a colony of bacteria at time t , that
the population at time t = 0 (hours, h) was 1000, and that the population doubled
after 1 h. This additional information about P(t) yields the following equations:

1000 = P(0) = Ce0 = C,

2000 = P(1) = Cek .

It follows that C = 1000 and that ek = 2, so k = ln 2 ≈ 0.693147. With this value
of k the differential equation in (6) is

dP

dt
= (ln 2)P ≈ (0.693147)P.

Substitution of k = ln 2 and C = 1000 in Eq. (7) yields the particular solution

P(t) = 1000e(ln 2)t = 1000(eln 2)t = 1000 · 2t (because eln 2 = 2)

that satisfies the given conditions. We can use this particular solution to predict
future populations of the bacteria colony. For instance, the predicted number of
bacteria in the population after one and a half hours (when t = 1.5) is

P(1.5) = 1000 · 23/2 ≈ 2828.
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4 Chapter 1 First-Order Differential Equations

The condition P(0) = 1000 in Example 6 is called an initial condition be-
cause we frequently write differential equations for which t = 0 is the “starting
time.” Figure 1.1.3 shows several different graphs of the form P(t) = Cekt with
k = ln 2. The graphs of all the infinitely many solutions of dP/dt = k P in fact fill
the entire two-dimensional plane, and no two intersect. Moreover, the selection of
any one point P0 on the P-axis amounts to a determination of P(0). Because ex-
actly one solution passes through each such point, we see in this case that an initial
condition P(0) = P0 determines a unique solution agreeing with the given data.

0 1 2 3

t

0P

−2

−1

−4

−2

−6

−8

2

4

6

8
C = 12 C = 6 C = 3

C = −6

C = 1
2

C = −1
2

C = 1

C = −1

C = −3C = −12

FIGURE 1.1.3. Graphs of
P(t) = Cekt with k = ln 2.

Mathematical Models

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial
process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the
construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.
3. The interpretation of the mathematical results in the context of the original

real-world situation—for example, answering the question originally posed.

Real-world
situation

Mathematical
model

Mathematical
results

Mathematical
analysis

Formulation Interpretation

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the
population at some future time. A mathematical model consists of a list of vari-
ables (P and t) that describe the given situation, together with one or more equations
relating these variables (dP/dt = k P , P(0) = P0) that are known or are assumed to
hold. The mathematical analysis consists of solving these equations (here, for P as
a function of t). Finally, we apply these mathematical results to attempt to answer
the original real-world question.

As an example of this process, think of first formulating the mathematical
model consisting of the equations dP/dt = k P , P(0) = 1000, describing the bac-
teria population of Example 6. Then our mathematical analysis there consisted of
solving for the solution function P(t) = 1000e(ln 2)t = 1000 · 2t as our mathemat-
ical result. For an interpretation in terms of our real-world situation—the actual
bacteria population—we substituted t = 1.5 to obtain the predicted population of
P(1.5) ≈ 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is
growing under ideal conditions of unlimited space and food supply, our prediction
may be quite accurate, in which case we conclude that the mathematical model is
quite adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential
equation accurately fits the actual population we’re studying. For instance, for no
choice of the constants C and k does the solution P(t) = Cekt in Eq. (7) accurately
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1.1 Differential Equations and Mathematical Models 5

describe the actual growth of the human population of the world over the past few
centuries. We must conclude that the differential equation dP/dt = k P is inad-
equate for modeling the world population—which in recent decades has “leveled
off” as compared with the steeply climbing graphs in the upper half (P > 0) of
Fig. 1.1.3. With sufficient insight, we might formulate a new mathematical model
including a perhaps more complicated differential equation, one that that takes into
account such factors as a limited food supply and the effect of increased population
on birth and death rates. With the formulation of this new mathematical model, we
may attempt to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise
manner. If we can solve the new differential equation, we get new solution func-
tions to compare with the real-world population. Indeed, a successful population
analysis may require refining the mathematical model still further as it is repeatedly
measured against real-world experience.

But in Example 6 we simply ignored any complicating factors that might af-
fect our bacteria population. This made the mathematical analysis quite simple,
perhaps unrealistically so. A satisfactory mathematical model is subject to two con-
tradictory requirements: It must be sufficiently detailed to represent the real-world
situation with relative accuracy, yet it must be sufficiently simple to make the math-
ematical analysis practical. If the model is so detailed that it fully represents the
physical situation, then the mathematical analysis may be too difficult to carry out.
If the model is too simple, the results may be so inaccurate as to be useless. Thus
there is an inevitable tradeoff between what is physically realistic and what is math-
ematically possible. The construction of a model that adequately bridges this gap
between realism and feasibility is therefore the most crucial and delicate step in
the process. Ways must be found to simplify the model mathematically without
sacrificing essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of
this introductory section is devoted to simple examples and to standard terminology
used in discussing differential equations and their solutions.

Examples and Terminology

Example 7 If C is a constant and y(x) = 1/(C − x), then

dy

dx
= 1

(C − x)2
= y2

if x �= C . Thus

y(x) = 1

C − x
(8)

defines a solution of the differential equation

dy

dx
= y2 (9)

on any interval of real numbers not containing the point x = C . Actually, Eq. (8)
defines a one-parameter family of solutions of dy/dx = y2, one for each value of
the arbitrary constant or “parameter” C . With C = 1 we get the particular solution

y(x) = 1

1 − x

that satisfies the initial condition y(0) = 1. As indicated in Fig. 1.1.5, this solution
is continuous on the interval (−∞, 1) but has a vertical asymptote at x = 1.
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6 Chapter 1 First-Order Differential Equations

Example 8 Verify that the function y(x) = 2x1/2 − x1/2 ln x satisfies the differential equation

4x2 y′′ + y = 0 (10)

for all x > 0.

Solution First we compute the derivatives

y′(x) = − 1
2 x−1/2 ln x and y′′(x) = 1

4 x−3/2 ln x − 1
2 x−3/2.

Then substitution into Eq. (10) yields

4x2 y′′ + y = 4x2
(

1
4 x−3/2 ln x − 1

2 x−3/2
) + 2x1/2 − x1/2 ln x = 0

if x is positive, so the differential equation is satisfied for all x > 0.

The fact that we can write a differential equation is not enough to guarantee
that it has a solution. For example, it is clear that the differential equation

(y′)2 + y2 = −1 (11)

has no (real-valued) solution, because the sum of nonnegative numbers cannot be
negative. For a variation on this theme, note that the equation

(y′)2 + y2 = 0 (12)

obviously has only the (real-valued) solution y(x) ≡ 0. In our previous examples
any differential equation having at least one solution indeed had infinitely many.

The order of a differential equation is the order of the highest derivative that
appears in it. The differential equation of Example 8 is of second order, those in
Examples 2 through 7 are first-order equations, and

y(4) + x2 y(3) + x5 y = sin x

is a fourth-order equation. The most general form of an nth-order differential
equation with independent variable x and unknown function or dependent variable
y = y(x) is

F
(
x, y, y′, y′′, . . . , y(n)

) = 0, (13)

where F is a specific real-valued function of n + 2 variables.
Our use of the word solution has been until now somewhat informal. To be

precise, we say that the continuous function u = u(x) is a solution of the differential
equation in (13) on the interval I provided that the derivatives u′, u′′, . . . , u(n) exist
on I and

F
(
x, u, u′, u′′, . . . , u(n)

) = 0

for all x in I . For the sake of brevity, we may say that u = u(x) satisfies the
differential equation in (13) on I .

Remark: Recall from elementary calculus that a differentiable function on
an open interval is necessarily continuous there. This is why only a continuous
function can qualify as a (differentiable) solution of a differential equation on an
interval.
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1.1 Differential Equations and Mathematical Models 7

Continued

Example 7 Figure 1.1.5 shows the two “connected” branches of the graph y = 1/(1 − x). The
left-hand branch is the graph of a (continuous) solution of the differential equation
y′ = y2 that is defined on the interval (−∞, 1). The right-hand branch is the graph
of a different solution of the differential equation that is defined (and continuous)
on the different interval (1, ∞). So the single formula y(x) = 1/(1 − x) actually
defines two different solutions (with different domains of definition) of the same
differential equation y′ = y2.

Example 9 If A and B are constants and

y(x) = A cos 3x + B sin 3x, (14)

then two successive differentiations yield

y′(x) = −3A sin 3x + 3B cos 3x,

y′′(x) = −9A cos 3x − 9B sin 3x = −9y(x)

for all x . Consequently, Eq. (14) defines what it is natural to call a two-parameter
family of solutions of the second-order differential equation

y′′ + 9y = 0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such
solutions.

Although the differential equations in (11) and (12) are exceptions to the gen-

0 5

0

5

(0, 1)

x

y

−5
−5

y = 1/(1 − x)

x = 1

FIGURE 1.1.5. The solution of
y′ = y2 defined by
y(x) = 1/(1 − x).

eral rule, we will see that an nth-order differential equation ordinarily has an n-
parameter family of solutions—one involving n different arbitrary constants or pa-

0 3

0

5

x

y

−5
−3

y1

y2

y3

FIGURE 1.1.6. The three
solutions y1(x) = 3 cos 3x ,
y2(x) = 2 sin 3x , and
y3(x) = −3 cos 3x + 2 sin 3x of
the differential equation
y′′ + 9y = 0.

rameters.
In both Eqs. (11) and (12), the appearance of y′ as an implicitly defined func-

tion causes complications. For this reason, we will ordinarily assume that any dif-
ferential equation under study can be solved explicitly for the highest derivative that
appears; that is, that the equation can be written in the so-called normal form

y(n) = G
(
x, y, y′, y′′, . . . , y(n−1)

)
, (16)

where G is a real-valued function of n + 1 variables. In addition, we will always
seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differ-
ential equations, meaning that the unknown function (dependent variable) depends
on only a single independent variable. If the dependent variable is a function of
two or more independent variables, then partial derivatives are likely to be involved;
if they are, the equation is called a partial differential equation. For example, the
temperature u = u(x, t) of a long thin uniform rod at the point x at time t satisfies
(under appropriate simple conditions) the partial differential equation

∂u

∂t
= k

∂2u

∂x2
,

where k is a constant (called the thermal diffusivity of the rod). In Chapters 1
through 8 we will be concerned only with ordinary differential equations and will
refer to them simply as differential equations.

In this chapter we concentrate on first-order differential equations of the form

dy

dx
= f (x, y). (17)
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8 Chapter 1 First-Order Differential Equations

We also will sample the wide range of applications of such equations. A typical
mathematical model of an applied situation will be an initial value problem, con-
sisting of a differential equation of the form in (17) together with an initial condi-
tion y(x0) = y0. Note that we call y(x0) = y0 an initial condition whether or not
x0 = 0. To solve the initial value problem

dy

dx
= f (x, y), y(x0) = y0 (18)➤

means to find a differentiable function y = y(x) that satisfies both conditions in
Eq. (18) on some interval containing x0.

Example 10 Given the solution y(x) = 1/(C − x) of the differential equation dy/dx = y2

discussed in Example 7, solve the initial value problem

dy

dx
= y2, y(1) = 2.

Solution We need only find a value of C so that the solution y(x) = 1/(C − x) satisfies the
initial condition y(1) = 2. Substitution of the values x = 1 and y = 2 in the given
solution yields

2 = y(1) = 1

C − 1
,

so 2C − 2 = 1, and hence C = 3
2 . With this value of C we obtain the desired

(1, 2)

(2, −2)

0 5

0

5

x

y

−5
−5

y = 2/(3 − 2x)

x = 3/2

FIGURE 1.1.7. The solutions of
y′ = y2 defined by
y(x) = 2/(3 − 2x).

solution

y(x) = 1
3
2 − x

= 2

3 − 2x
.

Figure 1.1.7 shows the two branches of the graph y = 2/(3 − 2x). The left-hand
branch is the graph on (−∞, 3

2 ) of the solution of the given initial value problem
y′ = y2, y(1) = 2. The right-hand branch passes through the point (2, −2) and is
therefore the graph on ( 3

2 , ∞) of the solution of the different initial value problem
y′ = y2, y(2) = −2.

The central question of greatest immediate interest to us is this: If we are given
a differential equation known to have a solution satisfying a given initial condition,
how do we actually find or compute that solution? And, once found, what can
we do with it? We will see that a relatively few simple techniques—separation
of variables (Section 1.4), solution of linear equations (Section 1.5), elementary
substitution methods (Section 1.6)—are enough to enable us to solve a variety of
first-order equations having impressive applications.

1.1 Problems

In Problems 1 through 12, verify by substitution that each
given function is a solution of the given differential equation.
Throughout these problems, primes denote derivatives with re-
spect to x.

1. y′ = 3x2; y = x3 + 7
2. y′ + 2y = 0; y = 3e−2x

3. y′′ + 4y = 0; y1 = cos 2x , y2 = sin 2x
4. y′′ = 9y; y1 = e3x , y2 = e−3x

5. y′ = y + 2e−x ; y = ex − e−x

6. y′′ + 4y′ + 4y = 0; y1 = e−2x , y2 = xe−2x

7. y′′ − 2y′ + 2y = 0; y1 = ex cos x , y2 = ex sin x

8. y′′+y = 3 cos 2x , y1 = cos x−cos 2x , y2 = sin x−cos 2x

9. y′ + 2xy2 = 0; y = 1

1 + x2

10. x2 y′′ + xy′ − y = ln x ; y1 = x − ln x , y2 = 1

x
− ln x
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1.1 Differential Equations and Mathematical Models 9

11. x2 y′′ + 5xy′ + 4y = 0; y1 = 1

x2
, y2 = ln x

x2

12. x2 y′′ − xy′ + 2y = 0; y1 = x cos(ln x), y2 = x sin(ln x)

In Problems 13 through 16, substitute y = er x into the given
differential equation to determine all values of the constant r
for which y = er x is a solution of the equation.

13. 3y′ = 2y 14. 4y′′ = y
15. y′′ + y′ − 2y = 0 16. 3y′′ + 3y′ − 4y = 0

In Problems 17 through 26, first verify that y(x) satisfies the
given differential equation. Then determine a value of the con-
stant C so that y(x) satisfies the given initial condition. Use a
computer or graphing calculator (if desired) to sketch several
typical solutions of the given differential equation, and high-
light the one that satisfies the given initial condition.

17. y′ + y = 0; y(x) = Ce−x , y(0) = 2
18. y′ = 2y; y(x) = Ce2x , y(0) = 3
19. y′ = y + 1; y(x) = Cex − 1, y(0) = 5
20. y′ = x − y; y(x) = Ce−x + x − 1, y(0) = 10

21. y′ + 3x2 y = 0; y(x) = Ce−x3
, y(0) = 7

22. ey y′ = 1; y(x) = ln(x + C), y(0) = 0

23. x
dy

dx
+ 3y = 2x5; y(x) = 1

4 x5 + Cx−3, y(2) = 1

24. xy′ − 3y = x3; y(x) = x3(C + ln x), y(1) = 17
25. y′ = 3x2(y2 + 1); y(x) = tan(x3 + C), y(0) = 1
26. y′ + y tan x = cos x ; y(x) = (x + C) cos x , y(π) = 0

In Problems 27 through 31, a function y = g(x) is described
by some geometric property of its graph. Write a differential
equation of the form dy/dx = f (x, y) having the function g
as its solution (or as one of its solutions).

27. The slope of the graph of g at the point (x, y) is the sum
of x and y.

28. The line tangent to the graph of g at the point (x, y) inter-
sects the x-axis at the point (x/2, 0).

29. Every straight line normal to the graph of g passes through
the point (0, 1). Can you guess what the graph of such a
function g might look like?

30. The graph of g is normal to every curve of the form
y = x2 + k (k is a constant) where they meet.

31. The line tangent to the graph of g at (x, y) passes through
the point (−y, x).

In Problems 32 through 36, write—in the manner of Eqs. (3)
through (6) of this section—a differential equation that is a
mathematical model of the situation described.

32. The time rate of change of a population P is proportional
to the square root of P .

33. The time rate of change of the velocity v of a coasting
motorboat is proportional to the square of v.

34. The acceleration dv/dt of a Lamborghini is proportional
to the difference between 250 km/h and the velocity of the
car.

35. In a city having a fixed population of P persons, the time
rate of change of the number N of those persons who have
heard a certain rumor is proportional to the number of
those who have not yet heard the rumor.

36. In a city with a fixed population of P persons, the time rate
of change of the number N of those persons infected with
a certain contagious disease is proportional to the product
of the number who have the disease and the number who
do not.

In Problems 37 through 42, determine by inspection at least
one solution of the given differential equation. That is, use
your knowledge of derivatives to make an intelligent guess.
Then test your hypothesis.

37. y′′ = 0 38. y′ = y
39. xy′ + y = 3x2 40. (y′)2 + y2 = 1
41. y′ + y = ex 42. y′′ + y = 0
43. (a) If k is a constant, show that a general (one-parameter)

solution of the differential equation

dx

dt
= kx2

is given by x(t) = 1/(C −kt), where C is an arbitrary
constant.

(b) Determine by inspection a solution of the initial value
problem x ′ = kx2, x(0) = 0.

44. (a) Continuing Problem 43, assume that k is positive, and
then sketch graphs of solutions of x ′ = kx2 with sev-
eral typical positive values of x(0).

(b) How would these solutions differ if the constant k
were negative?

45. Suppose a population P of rodents satisfies the differen-
tial equation dP/dt = k P2. Initially, there are P(0) = 2
rodents, and their number is increasing at the rate of
dP/dt = 1 rodent per month when there are P = 10 ro-
dents. How long will it take for this population to grow
to a hundred rodents? To a thousand? What’s happening
here?

46. Suppose the velocity v of a motorboat coasting in water
satisfies the differential equation dv/dt = kv2. The initial
speed of the motorboat is v(0) = 10 meters per second
(m/s), and v is decreasing at the rate of 1 m/s2 when v = 5
m/s. How long does it take for the velocity of the boat to
decrease to 1 m/s? To 1

10 m/s? When does the boat come
to a stop?

47. In Example 7 we saw that y(x) = 1/(C − x) defines a
one-parameter family of solutions of the differential equa-
tion dy/dx = y2. (a) Determine a value of C so that
y(10) = 10. (b) Is there a value of C such that y(0) = 0?
Can you nevertheless find by inspection a solution of
dy/dx = y2 such that y(0) = 0? (c) Figure 1.1.8 shows
typical graphs of solutions of the form y(x) = 1/(C − x).
Does it appear that these solution curves fill the entire xy-
plane? Can you conclude that, given any point (a, b) in
the plane, the differential equation dy/dx = y2 has ex-
actly one solution y(x) satisfying the condition y(a) = b?
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10 Chapter 1 First-Order Differential Equations

0 2 31

x

0y

−1

−2 −1

−2

−3
−3

1

2

3
C = −2 C = 0 C = 1 C = 3

C = 4

C = − 4

C = 2

C = 2C = −3 C = −2 C = −1 C = 0 C = 1

C = −1

FIGURE 1.1.8. Graphs of solutions of the
equation dy/dx = y2.
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−2 −1− 4 −3−5
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40
20
0

− 100
− 80
− 60
− 40
− 20

FIGURE 1.1.9. The graph y = Cx4 for
various values of C .

48. (a) Show that y(x) = Cx4 defines a one-parameter fam-
ily of differentiable solutions of the differential equation
xy′ = 4y (Fig. 1.1.9). (b) Show that

y(x) =
{

−x4 if x < 0,

x4 if x � 0

defines a differentiable solution of xy′ = 4y for all x , but
is not of the form y(x) = Cx4. (c) Given any two real
numbers a and b, explain why—in contrast to the situa-
tion in part (c) of Problem 47—there exist infinitely many
differentiable solutions of xy′ = 4y that all satisfy the
condition y(a) = b.

1.2 Integrals as General and Particular Solutions

The first-order equation dy/dx = f (x, y) takes an especially simple form if the
right-hand-side function f does not actually involve the dependent variable y, so

dy

dx
= f (x). (1)➤

In this special case we need only integrate both sides of Eq. (1) to obtain

y(x) =
∫

f (x) dx + C. (2)➤

This is a general solution of Eq. (1), meaning that it involves an arbitrary constant
C , and for every choice of C it is a solution of the differential equation in (1). If
G(x) is a particular antiderivative of f —that is, if G ′(x) ≡ f (x)—then

y(x) = G(x) + C. (3)

The graphs of any two such solutions y1(x) = G(x) + C1 and y2(x) =
G(x)+C2 on the same interval I are “parallel” in the sense illustrated by Figs. 1.2.1
and 1.2.2. There we see that the constant C is geometrically the vertical distance
between the two curves y(x) = G(x) and y(x) = G(x) + C .

To satisfy an initial condition y(x0) = y0, we need only substitute x = x0 and
y = y0 into Eq. (3) to obtain y0 = G(x0) + C , so that C = y0 − G(x0). With this
choice of C , we obtain the particular solution of Eq. (1) satisfying the initial value
problem

dy

dx
= f (x), y(x0) = y0.➤
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1.2 Integrals as General and Particular Solutions 11
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FIGURE 1.2.1. Graphs of
y = 1

4 x2 + C for various values of C .
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FIGURE 1.2.2. Graphs of
y = sin x + C for various values of C .

We will see that this is the typical pattern for solutions of first-order differential
equations. Ordinarily, we will first find a general solution involving an arbitrary
constant C . We can then attempt to obtain, by appropriate choice of C , a particular
solution satisfying a given initial condition y(x0) = y0.

Remark: As the term is used in the previous paragraph, a general solution
of a first-order differential equation is simply a one-parameter family of solutions.
A natural question is whether a given general solution contains every particular
solution of the differential equation. When this is known to be true, we call it
the general solution of the differential equation. For example, because any two
antiderivatives of the same function f (x) can differ only by a constant, it follows
that every solution of Eq. (1) is of the form in (2). Thus Eq. (2) serves to define the
general solution of (1).

Example 1 Solve the initial value problem

dy

dx
= 2x + 3, y(1) = 2.

Solution Integration of both sides of the differential equation as in Eq. (2) immediately yields
the general solution

−2 0 2 4
x

y

−2

−10
−4

−4

−6

−6

−8

4

2

0

C = −6

C = −4

C = −2

C = 0

C = 2

FIGURE 1.2.3. Solution curves
for the differential equation in
Example 1.

y(x) =
∫

(2x + 3) dx = x2 + 3x + C.

Figure 1.2.3 shows the graph y = x2 + 3x + C for various values of C . The
particular solution we seek corresponds to the curve that passes through the point
(1, 2), thereby satisfying the initial condition

y(1) = (1)2 + 3 · (1) + C = 2.

It follows that C = −2, so the desired particular solution is

y(x) = x2 + 3x − 2.
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12 Chapter 1 First-Order Differential Equations

Second-order equations. The observation that the special first-order equation
dy/dx = f (x) is readily solvable (provided that an antiderivative of f can be found)
extends to second-order differential equations of the special form

d2 y

dx2
= g(x), (4)

in which the function g on the right-hand side involves neither the dependent vari-
able y nor its derivative dy/dx . We simply integrate once to obtain

dy

dx
=

∫
y′′(x) dx =

∫
g(x) dx = G(x) + C1,

where G is an antiderivative of g and C1 is an arbitrary constant. Then another
integration yields

y(x) =
∫

y′(x) dx =
∫

[G(x) + C1] dx =
∫

G(x) dx + C1x + C2,

where C2 is a second arbitrary constant. In effect, the second-order differential
equation in (4) is one that can be solved by solving successively the first-order
equations

dv

dx
= g(x) and

dy

dx
= v(x).

Velocity and Acceleration

Direct integration is sufficient to allow us to solve a number of important problems
concerning the motion of a particle (or mass point) in terms of the forces acting
on it. The motion of a particle along a straight line (the x-axis) is described by its
position function

x = f (t) (5)

giving its x-coordinate at time t . The velocity of the particle is defined to be

v(t) = f ′(t); that is, v = dx

dt
. (6)➤

Its acceleration a(t) is a(t) = v′(t) = x ′′(t); in Leibniz notation,

a = dv

dt
= d2x

dt2
. (7)➤

Equation (6) is sometimes applied either in the indefinite integral form x(t) =∫
v(t) dt or in the definite integral form

x(t) = x(t0) +
∫ t

t0

v(s) ds,

which you should recognize as a statement of the fundamental theorem of calculus
(precisely because dx/dt = v).
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1.2 Integrals as General and Particular Solutions 13

Newton’s second law of motion says that if a force F(t) acts on the particle
and is directed along its line of motion, then

ma(t) = F(t); that is, F = ma, (8)

where m is the mass of the particle. If the force F is known, then the equation
x ′′(t) = F(t)/m can be integrated twice to find the position function x(t) in terms
of two constants of integration. These two arbitrary constants are frequently deter-
mined by the initial position x0 = x(0) and the initial velocity v0 = v(0) of the
particle.

Constant acceleration. For instance, suppose that the force F , and therefore the
acceleration a = F/m, are constant. Then we begin with the equation

dv

dt
= a (a is a constant) (9)

and integrate both sides to obtain

v(t) =
∫

a dt = at + C1.

We know that v = v0 when t = 0, and substitution of this information into the
preceding equation yields the fact that C1 = v0. So

v(t) = dx

dt
= at + v0. (10)

A second integration gives

x(t) =
∫

v(t) dt =
∫

(at + v0) dt = 1
2 at2 + v0t + C2,

and the substitution t = 0, x = x0 gives C2 = x0. Therefore,

x(t) = 1
2 at2 + v0t + x0. (11)

Thus, with Eq. (10) we can find the velocity, and with Eq. (11) the position, of
the particle at any time t in terms of its constant acceleration a, its initial velocity
v0, and its initial position x0.

Example 2 A lunar lander is falling freely toward the surface of the moon at a speed of 450
meters per second (m/s). Its retrorockets, when fired, provide a constant decel-
eration of 2.5 meters per second per second (m/s2) (the gravitational acceleration
produced by the moon is assumed to be included in the given deceleration). At what
height above the lunar surface should the retrorockets be activated to ensure a “soft
touchdown” (v = 0 at impact)?
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14 Chapter 1 First-Order Differential Equations

Solution We denote by x(t) the height of the lunar lander above the surface, as indicated
in Fig. 1.2.4. We let t = 0 denote the time at which the retrorockets should be
fired. Then v0 = −450 (m/s, negative because the height x(t) is decreasing), and

Lunar surface

a v

FIGURE 1.2.4. The lunar lander
of Example 2.

a = +2.5, because an upward thrust increases the velocity v (although it decreases
the speed |v|). Then Eqs. (10) and (11) become

v(t) = 2.5t − 450 (12)

and
x(t) = 1.25t2 − 450t + x0, (13)

where x0 is the height of the lander above the lunar surface at the time t = 0 when
the retrorockets should be activated.

From Eq. (12) we see that v = 0 (soft touchdown) occurs when t = 450/2.5 =
180 s (that is, 3 minutes); then substitution of t = 180, x = 0 into Eq. (13) yields

x0 = 0 − (1.25)(180)2 + 450(180) = 40,500

meters—that is, x0 = 40.5 km ≈ 25 1
6 miles. Thus the retrorockets should be acti-

vated when the lunar lander is 40.5 kilometers above the surface of the moon, and it
will touch down softly on the lunar surface after 3 minutes of decelerating descent.

Physical Units

Numerical work requires units for the measurement of physical quantities such as
distance and time. We sometimes use ad hoc units—such as distance in miles or
kilometers and time in hours—in special situations (such as in a problem involving
an auto trip). However, the foot-pound-second (fps) and meter-kilogram-second
(mks) unit systems are used more generally in scientific and engineering problems.
In fact, fps units are commonly used only in the United States (and a few other
countries), while mks units constitute the standard international system of scientific
units.

fps units mks units

Force

Mass

Distance

Time

g

pound (lb)

slug

foot (ft)

second (s)

32 ft/s2

newton (N)

kilogram (kg)

meter (m)

second (s)

9.8 m/s2

The last line of this table gives values for the gravitational acceleration g at
the surface of the earth. Although these approximate values will suffice for most
examples and problems, more precise values are 9.7805 m/s2 and 32.088 ft/s2 (at
sea level at the equator).

Both systems are compatible with Newton’s second law F = ma. Thus 1 N is
(by definition) the force required to impart an acceleration of 1 m/s2 to a mass of 1
kg. Similarly, 1 slug is (by definition) the mass that experiences an acceleration of
1 ft/s2 under a force of 1 lb. (We will use mks units in all problems requiring mass
units and thus will rarely need slugs to measure mass.)
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1.2 Integrals as General and Particular Solutions 15

Inches and centimeters (as well as miles and kilometers) also are commonly
used in describing distances. For conversions between fps and mks units it helps to
remember that

1 in. = 2.54 cm (exactly) and 1 lb ≈ 4.448 N.

For instance,

1 ft = 12 in. × 2.54
cm

in.
= 30.48 cm,

and it follows that

1 mi = 5280 ft × 30.48
cm

ft
= 160934.4 cm ≈ 1.609 km.

Thus a posted U.S. speed limit of 50 mi/h means that—in international terms—the
legal speed limit is about 50 × 1.609 ≈ 80.45 km/h.

Vertical Motion with Gravitational Acceleration

The weight W of a body is the force exerted on the body by gravity. Substitution
of a = g and F = W in Newton’s second law F = ma gives

W = mg (14)

for the weight W of the mass m at the surface of the earth (where g ≈ 32 ft/s2 ≈ 9.8
m/s2). For instance, a mass of m = 20 kg has a weight of W = (20 kg)(9.8 m/s2) =
196 N. Similarly, a mass m weighing 100 pounds has mks weight

W = (100 lb)(4.448 N/lb) = 444.8 N,

so its mass is

m = W

g
= 444.8 N

9.8 m/s2 ≈ 45.4 kg.

To discuss vertical motion it is natural to choose the y-axis as the coordinate
system for position, frequently with y = 0 corresponding to “ground level.” If we
choose the upward direction as the positive direction, then the effect of gravity on a
vertically moving body is to decrease its height and also to decrease its velocity v =
dy/dt . Consequently, if we ignore air resistance, then the acceleration a = dv/dt of
the body is given by

dv

dt
= −g. (15)➤

This acceleration equation provides a starting point in many problems involving
vertical motion. Successive integrations (as in Eqs. (10) and (11)) yield the velocity
and height formulas

v(t) = −gt + v0 (16)

and

y(t) = − 1
2 gt2 + v0t + y0. (17)

Here, y0 denotes the initial (t = 0) height of the body and v0 its initial velocity.
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16 Chapter 1 First-Order Differential Equations

Example 3 (a) Suppose that a ball is thrown straight upward from the ground (y0 = 0) with
initial velocity v0 = 96 (ft/s, so we use g = 32 ft/s2 in fps units). Then it reaches
its maximum height when its velocity (Eq. (16)) is zero,

v(t) = −32t + 96 = 0,

and thus when t = 3 s. Hence the maximum height that the ball attains is

y(3) = − 1
2 · 32 · 32 + 96 · 3 + 0 = 144 (ft)

(with the aid of Eq. (17)).
(b) If an arrow is shot straight upward from the ground with initial velocity v0 = 49
(m/s, so we use g = 9.8 m/s2 in mks units), then it returns to the ground when

y(t) = − 1
2 · (9.8)t2 + 49t = (4.9)t (−t + 10) = 0,

and thus after 10 s in the air.

A Swimmer's Problem

Figure 1.2.5 shows a northward-flowing river of width w = 2a. The lines x = ±a

x-axis

y-axis

(a, 0)(−a, 0)

vR

vS

vS

vR

α

FIGURE 1.2.5. A swimmer’s
problem (Example 4).

represent the banks of the river and the y-axis its center. Suppose that the velocity
vR at which the water flows increases as one approaches the center of the river, and
indeed is given in terms of distance x from the center by

vR = v0

(
1 − x2

a2

)
. (18)

You can use Eq. (18) to verify that the water does flow the fastest at the center,
where vR = v0, and that vR = 0 at each riverbank.

Suppose that a swimmer starts at the point (−a, 0) on the west bank and swims
due east (relative to the water) with constant speed vS . As indicated in Fig. 1.2.5, his
velocity vector (relative to the riverbed) has horizontal component vS and vertical
component vR . Hence the swimmer’s direction angle α is given by

tan α = vR

vS
.

Because tan α = dy/dx , substitution using (18) gives the differential equation

dy

dx
= v0

vS

(
1 − x2

a2

)
(19)

for the swimmer’s trajectory y = y(x) as he crosses the river.

Example 4 Suppose that the river is 1 mile wide and that its midstream velocity is v0 = 9 mi/h.
If the swimmer’s velocity is vS = 3 mi/h, then Eq. (19) takes the form

dy

dx
= 3(1 − 4x2).

Integration yields

y(x) =
∫

(3 − 12x2) dx = 3x − 4x3 + C
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1.2 Integrals as General and Particular Solutions 17

for the swimmer’s trajectory. The initial condition y
(− 1

2

) = 0 yields C = 1, so

y(x) = 3x − 4x3 + 1.

Then
y
(

1
2

) = 3
(

1
2

) − 4
(

1
2

)3 + 1 = 2,

so the swimmer drifts 2 miles downstream while he swims 1 mile across the river.

1.2 Problems

In Problems 1 through 10, find a function y = f (x) satisfy-
ing the given differential equation and the prescribed initial
condition.

1.
dy

dx
= 2x + 1; y(0) = 3

2.
dy

dx
= (x − 2)2; y(2) = 1

3.
dy

dx
= √

x ; y(4) = 0

4.
dy

dx
= 1

x2
; y(1) = 5

5.
dy

dx
= 1√

x + 2
; y(2) = −1

6.
dy

dx
= x

√
x2 + 9; y(−4) = 0

7.
dy

dx
= 10

x2 + 1
; y(0) = 0 8.

dy

dx
= cos 2x ; y(0) = 1

9.
dy

dx
= 1√

1 − x2
; y(0) = 0 10.

dy

dx
= xe−x ; y(0) = 1

In Problems 11 through 18, find the position function x(t) of a
moving particle with the given acceleration a(t), initial posi-
tion x0 = x(0), and initial velocity v0 = v(0).

11. a(t) = 50, v0 = 10, x0 = 20

12. a(t) = −20, v0 = −15, x0 = 5

13. a(t) = 3t , v0 = 5, x0 = 0

14. a(t) = 2t + 1, v0 = −7, x0 = 4

15. a(t) = 4(t + 3)2, v0 = −1, x0 = 1

16. a(t) = 1√
t + 4

, v0 = −1, x0 = 1

17. a(t) = 1

(t + 1)3
, v0 = 0, x0 = 0

18. a(t) = 50 sin 5t , v0 = −10, x0 = 8

In Problems 19 through 22, a particle starts at the origin and
travels along the x-axis with the velocity function v(t) whose
graph is shown in Figs. 1.2.6 through 1.2.9. Sketch the graph
of the resulting position function x(t) for 0 � t � 10.

19.

(5, 5)

0 2 4 6 8 10
0

2

4

6

8

10

t
v

FIGURE 1.2.6. Graph of the
velocity function v(t) of Problem 19.

20.

(5, 5)

0 2 4 6 8 10
0

2

4

6

8

10

t

v

FIGURE 1.2.7. Graph of the
velocity function v(t) of Problem 20.

21.

(5, 5)

0 2 4 6 8 10
0

2

4

6
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t

v

FIGURE 1.2.8. Graph of the
velocity function v(t) of Problem 21.
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18 Chapter 1 First-Order Differential Equations

22.

(3, 5) (7, 5)

0 2 4 6 8 10
0

2

4

6

8

10

t

v

FIGURE 1.2.9. Graph of the
velocity function v(t) of Problem 22.

23. What is the maximum height attained by the arrow of part
(b) of Example 3?

24. A ball is dropped from the top of a building 400 ft high.
How long does it take to reach the ground? With what
speed does the ball strike the ground?

25. The brakes of a car are applied when it is moving at 100
km/h and provide a constant deceleration of 10 meters per
second per second (m/s2). How far does the car travel be-
fore coming to a stop?

26. A projectile is fired straight upward with an initial veloc-
ity of 100 m/s from the top of a building 20 m high and
falls to the ground at the base of the building. Find (a) its
maximum height above the ground; (b) when it passes the
top of the building; (c) its total time in the air.

27. A ball is thrown straight downward from the top of a tall
building. The initial speed of the ball is 10 m/s. It strikes
the ground with a speed of 60 m/s. How tall is the build-
ing?

28. A baseball is thrown straight downward with an initial
speed of 40 ft/s from the top of the Washington Monu-
ment (555 ft high). How long does it take to reach the
ground, and with what speed does the baseball strike the
ground?

29. A diesel car gradually speeds up so that for the first 10 s
its acceleration is given by

dv

dt
= (0.12)t2 + (0.6)t (ft/s2).

If the car starts from rest (x0 = 0, v0 = 0), find the dis-
tance it has traveled at the end of the first 10 s and its
velocity at that time.

30. A car traveling at 60 mi/h (88 ft/s) skids 176 ft after its
brakes are suddenly applied. Under the assumption that
the braking system provides constant deceleration, what
is that deceleration? For how long does the skid continue?

31. The skid marks made by an automobile indicated that its
brakes were fully applied for a distance of 75 m before it
came to a stop. The car in question is known to have a con-
stant deceleration of 20 m/s2 under these conditions. How
fast—in km/h—was the car traveling when the brakes
were first applied?

32. Suppose that a car skids 15 m if it is moving at 50 km/h
when the brakes are applied. Assuming that the car has
the same constant deceleration, how far will it skid if it is
moving at 100 km/h when the brakes are applied?

33. On the planet Gzyx, a ball dropped from a height of 20 ft
hits the ground in 2 s. If a ball is dropped from the top of
a 200-ft-tall building on Gzyx, how long will it take to hit
the ground? With what speed will it hit?

34. A person can throw a ball straight upward from the sur-
face of the earth to a maximum height of 144 ft. How
high could this person throw the ball on the planet Gzyx
of Problem 29?

35. A stone is dropped from rest at an initial height h above
the surface of the earth. Show that the speed with which it
strikes the ground is v = √

2gh.
36. Suppose a woman has enough “spring” in her legs to jump

(on earth) from the ground to a height of 2.25 feet. If
she jumps straight upward with the same initial velocity
on the moon—where the surface gravitational acceleration
is (approximately) 5.3 ft/s2—how high above the surface
will she rise?

37. At noon a car starts from rest at point A and proceeds at
constant acceleration along a straight road toward point
B. If the car reaches B at 12:50 P.M.with a velocity of
60 mi/h, what is the distance from A to B?

38. At noon a car starts from rest at point A and proceeds with
constant acceleration along a straight road toward point C ,
35 miles away. If the constantly accelerated car arrives at
C with a velocity of 60 mi/h, at what time does it arrive
at C?

39. If a = 0.5 mi and v0 = 9 mi/h as in Example 4, what
must the swimmer’s speed vS be in order that he drifts
only 1 mile downstream as he crosses the river?

40. Suppose that a = 0.5 mi, v0 = 9 mi/h, and vS = 3 mi/h
as in Example 4, but that the velocity of the river is given
by the fourth-degree function

vR = v0

(
1 − x4

a4

)

rather than the quadratic function in Eq. (18). Now find
how far downstream the swimmer drifts as he crosses the
river.

41. A bomb is dropped from a helicopter hovering at an alti-
tude of 800 feet above the ground. From the ground di-
rectly beneath the helicopter, a projectile is fired straight
upward toward the bomb, exactly 2 seconds after the
bomb is released. With what initial velocity should the
projectile be fired, in order to hit the bomb at an altitude
of exactly 400 feet?

42. A spacecraft is in free fall toward the surface of the moon
at a speed of 1000 mph (mi/h). Its retrorockets, when
fired, provide a constant deceleration of 20,000 mi/h2. At
what height above the lunar surface should the astronauts
fire the retrorockets to insure a soft touchdown? (As in
Example 2, ignore the moon’s gravitational field.)
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1.3 Slope Fields and Solution Curves 19

43. Arthur Clarke’s The Wind from the Sun (1963) describes
Diana, a spacecraft propelled by the solar wind. Its alu-
minized sail provides it with a constant acceleration of
0.001g = 0.0098 m/s2. Suppose this spacecraft starts
from rest at time t = 0 and simultaneously fires a pro-
jectile (straight ahead in the same direction) that travels at
one-tenth of the speed c = 3 × 108 m/s of light. How long
will it take the spacecraft to catch up with the projectile,

and how far will it have traveled by then?
44. A driver involved in an accident claims he was going only

25 mph. When police tested his car, they found that when
its brakes were applied at 25 mph, the car skidded only
45 feet before coming to a stop. But the driver’s skid
marks at the accident scene measured 210 feet. Assum-
ing the same (constant) deceleration, determine the speed
he was actually traveling just prior to the accident.

1.3 Slope Fields and Solution Curves

Consider a differential equation of the form

dy

dx
= f (x, y) (1)➤

where the right-hand function f (x, y) involves both the independent variable x and
the dependent variable y. We might think of integrating both sides in (1) with re-
spect to x , and hence write y(x) = ∫

f (x, y(x)) dx + C . However, this approach
does not lead to a solution of the differential equation, because the indicated integral
involves the unknown function y(x) itself, and therefore cannot be evaluated explic-
itly. Actually, there exists no straightforward procedure by which a general differen-
tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking
differential equation as y′ = x2 + y2 cannot be expressed in terms of the ordinary
elementary functions studied in calculus textbooks. Nevertheless, the graphical and
numerical methods of this and later sections can be used to construct approximate
solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions

There is a simple geometric way to think about solutions of a given differential
equation y′ = f (x, y). At each point (x, y) of the xy-plane, the value of f (x, y)

determines a slope m = f (x, y). A solution of the differential equation is simply a
differentiable function whose graph y = y(x) has this “correct slope” at each point
(x, y(x)) through which it passes—that is, y′(x) = f (x, y(x)). Thus a solution
curve of the differential equation y′ = f (x, y)—the graph of a solution of the
equation—is simply a curve in the xy-plane whose tangent line at each point (x, y)

has slope m = f (x, y). For instance, Fig. 1.3.1 shows a solution curve of the
differential equation y′ = x − y together with its tangent lines at three typical
points.

This geometric viewpoint suggests a graphical method for constructing ap-
proximate solutions of the differential equation y′ = f (x, y). Through each of a

x

y

(x1, y1)

(x2, y2)

(x3, y3)

FIGURE 1.3.1. A solution curve
for the differential equation
y′ = x − y together with tangent
lines having

• slope m1 = x1 − y1 at the
point (x1, y1);

• slope m2 = x2 − y2 at the
point (x2, y2); and

• slope m3 = x3 − y3 at the
point (x3, y3).

representative collection of points (x, y) in the plane we draw a short line segment
having the proper slope m = f (x, y). All these line segments constitute a slope
field (or a direction field) for the equation y′ = f (x, y).

Example 1 Figures 1.3.2 (a)–(d) show slope fields and solution curves for the differential equa-
tion

dy

dx
= ky (2)

with the values k = 2, 0.5, −1, and −3 of the parameter k in Eq. (2). Note that each
slope field yields important qualitative information about the set of all solutions
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20 Chapter 1 First-Order Differential Equations
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FIGURE 1.3.2(a) Slope field
and solution curves for y′ = 2y.
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FIGURE 1.3.2(b) Slope field
and solution curves for
y′ = (0.5)y.
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FIGURE 1.3.2(c) Slope field
and solution curves for y′ = −y.
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FIGURE 1.3.2(d) Slope field
and solution curves for y′ = −3y.

of the differential equation. For instance, Figs. 1.3.2(a) and (b) suggest that each
solution y(x) approaches ±∞ as x → +∞ if k > 0, whereas Figs. 1.3.2(c) and
(d) suggest that y(x) → 0 as x → +∞ if k < 0. Moreover, although the sign
of k determines the direction of increase or decrease of y(x), its absolute value |k|
appears to determine the rate of change of y(x). All this is apparent from slope
fields like those in Fig. 1.3.2, even without knowing that the general solution of
Eq. (2) is given explicitly by y(x) = Cekx .

A slope field suggests visually the general shapes of solution curves of the
differential equation. Through each point a solution curve should proceed in such
a direction that its tangent line is nearly parallel to the nearby line segments of the
slope field. Starting at any initial point (a, b), we can attempt to sketch freehand an
approximate solution curve that threads its way through the slope field, following
the visible line segments as closely as possible.

Example 2 Construct a slope field for the differential equation y′ = x − y and use it to sketch
an approximate solution curve that passes through the point (−4, 4).

Solution Solution Fig. 1.3.3 shows a table of slopes for the given equation. The numerical
slope m = x − y appears at the intersection of the horizontal x-row and the ver-
tical y-column of the table. If you inspect the pattern of upper-left to lower-right
diagonals in this table, you can see that it was easily and quickly constructed. (Of
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1.3 Slope Fields and Solution Curves 21

x \ y −4 −3 −2 −1 0 1 2 3 4

−4 0 −1 −2 −3 −4 −5 −6 −7 −8

−3 1 0 −1 −2 −3 −4 −5 −6 −7

−2 2 1 0 −1 −2 −3 −4 −5 −6

−1 3 2 1 0 −1 −2 −3 −4 −5

0 4 3 2 1 0 −1 −2 −3 −4

1 5 4 3 2 1 0 −1 −2 −3

2 6 5 4 3 2 1 0 −1 −2

3 7 6 5 4 3 2 1 0 −1

4 8 7 6 5 4 3 2 1 0

FIGURE 1.3.3. Values of the slope y′ = x − y for −4 � x, y � 4.
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0
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y

−5
−5

FIGURE 1.3.4. Slope field for
y′ = x − y corresponding to the
table of slopes in Fig. 1.3.3.
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−5

(−4, 4)

FIGURE 1.3.5. The solution
curve through (−4, 4).

course, a more complicated function f (x, y) on the right-hand side of the differen-
tial equation would necessitate more complicated calculations.) Figure 1.3.4 shows
the corresponding slope field, and Fig. 1.3.5 shows an approximate solution curve
sketched through the point (−4, 4) so as to follow as this slope field as closely as
possible. At each point it appears to proceed in the direction indicated by the nearby
line segments of the slope field.

Although a spreadsheet program (for instance) readily constructs a table of
slopes as in Fig. 1.3.3, it can be quite tedious to plot by hand a sufficient number
of slope segments as in Fig. 1.3.4. However, most computer algebra systems in-
clude commands for quick and ready construction of slope fields with as many line
segments as desired; such commands are illustrated in the application material for
this section. The more line segments are constructed, the more accurately solution
curves can be visualized and sketched. Figure 1.3.6 shows a “finer” slope field for
the differential equation y′ = x − y of Example 2, together with typical solution
curves treading through this slope field.

If you look closely at Fig. 1.3.6, you may spot a solution curve that appears
to be a straight line! Indeed, you can verify that the linear function y = x − 1 is
a solution of the equation y′ = x − y, and it appears likely that the other solution
curves approach this straight line as an asymptote as x → +∞. This inference
illustrates the fact that a slope field can suggest tangible information about solutions
that is not at all evident from the differential equation itself. Can you, by tracing the

0 1 2 3 4
x

0

1

2

3

4

y

−1

−2

−3

−4

−4 −3 −2 −1

FIGURE 1.3.6. Slope field and
typical solution curves for
y′ = x − y.
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22 Chapter 1 First-Order Differential Equations

appropriate solution curve in this figure, infer that y(3) ≈ 2 for the solution y(x) of
the initial value problem y′ = x − y, y(−4) = 4?

Applications of Slope fields

The next two examples illustrate the use of slope fields to glean useful information
in physical situations that are modeled by differential equations. Example 3 is based
on the fact that a baseball moving through the air at a moderate speed v (less than
about 300 ft/s) encounters air resistance that is approximately proportional to v. If
the baseball is thrown straight downward from the top of a tall building or from a
hovering helicopter, then it experiences both the downward acceleration of gravity
and an upward acceleration of air resistance. If the y-axis is directed downward,
then the ball’s velocity v = dy/dt and its gravitational acceleration g = 32 ft/s2 are
both positive, while its acceleration due to air resistance is negative. Hence its total
acceleration is of the form

dv

dt
= g − kv. (3)

A typical value of the air resistance proportionality constant might be k = 0.16.

Example 3 Suppose you throw a baseball straight downward from a helicopter hovering at an
altitude of 3000 feet. You wonder whether someone standing on the ground below
could conceivably catch it. In order to estimate the speed with which the ball will
land, you can use your laptop’s computer algebra system to construct a slope field
for the differential equation

dv

dt
= 32 − 0.16v. (4)

The result is shown in Fig. 1.3.7, together with a number of solution curves
corresponding to different values of the initial velocity v(0) with which you might
throw the baseball downward. Note that all these solution curves appear to approach
the horizontal line v = 200 as an asymptote. This implies that—however you
throw it—the baseball should approach the limiting velocity v = 200 ft/s instead

0 5 10 15 20 25
0

100

200

300

400

t

v

FIGURE 1.3.7. Slope field and
typical solution curves for
v′ = 32 − 0.16v.

of accelerating indefinitely (as it would in the absence of any air resistance). The
handy fact that 60 mi/h = 88 ft/s yields

v = 200
ft

s
× 60 mi/h

88 ft/s
≈ 136.36

mi

h
.

Perhaps a catcher accustomed to 100 mi/h fastballs would have some chance of
fielding this speeding ball.

Comment If the ball’s initial velocity is v(0) = 200, then Eq. (4) gives
v′(0) = 32 − (0.16)(200) = 0, so the ball experiences no initial acceleration. Its
velocity therefore remains unchanged, and hence v(t) ≡ 200 is a constant “equilib-
rium solution” of the differential equation. If the initial velocity is greater than 200,
then the initial acceleration given by Eq. (4) is negative, so the ball slows down as it
falls. But if the initial velocity is less than 200, then the initial acceleration given by
(4) is positive, so the ball speeds up as it falls. It therefore seems quite reasonable
that, because of air resistance, the baseball will approach a limiting velocity of 200
ft/s—whatever initial velocity it starts with. You might like to verify that—in the
absence of air resistance—this ball would hit the ground at over 300 mi/h.
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1.3 Slope Fields and Solution Curves 23

In Section 2.1 we will discuss in detail the logistic differential equation

dP

dt
= k P(M − P) (5)

that often is used to model a population P(t) that inhabits an environment with
carrying capacity M . This means that M is the maximum population that this envi-
ronment can sustain on a long-term basis (in terms of the maximum available food,
for instance).

Example 4 If we take k = 0.0004 and M = 150, then the logistic equation in (5) takes the form

dP

dt
= 0.0004P(150 − P) = 0.06P − 0.0004P2. (6)

The positive term 0.06P on the right in (6) corresponds to natural growth at a 6%

0 25 50 75 100
0

50

100

150

200

250

300

t

P

FIGURE 1.3.8. Slope field and
typical solution curves for
P ′ = 0.06P − 0.0004P2.

annual rate (with time t measured in years). The negative term −0.0004P2 repre-
sents the inhibition of growth due to limited resources in the environment.

Figure 1.3.8 shows a slope field for Eq. (6), together with a number of solution
curves corresponding to possible different values of the initial population P(0).
Note that all these solution curves appear to approach the horizontal line P = 150
as an asymptote. This implies that—whatever the initial population—the population
P(t) approaches the limiting population P = 150 as t → ∞.

Comment If the initial population is P(0) = 150, then Eq. (6) gives

P ′(0) = 0.0004(150)(150 − 150) = 0,

so the population experiences no initial (instantaneous) change. It therefore remains
unchanged, and hence P(t) ≡ 150 is a constant “equilibrium solution” of the dif-
ferential equation. If the initial population is greater than 150, then the initial rate of
change given by (6) is negative, so the population immediately begins to decrease.
But if the initial population is less than 150, then the initial rate of change given by
(6) is positive, so the population immediately begins to increase. It therefore seems
quite reasonable to conclude that the population will approach a limiting value of
150—whatever the (positive) initial population.

Existence and Uniqueness of Solutions

Before one spends much time attempting to solve a given differential equation, it
is wise to know that solutions actually exist. We may also want to know whether
there is only one solution of the equation satisfying a given initial condition—that
is, whether its solutions are unique.

Example 5 (a) [Failure of existence] The initial value problem

y′ = 1

x
, y(0) = 0 (7)

has no solution, because no solution y(x) = ∫
(1/x) dx = ln |x | + C of the differ-

ential equation is defined at x = 0. We see this graphically in Fig. 1.3.9, which
shows a direction field and some typical solution curves for the equation y′ = 1/x .
It is apparent that the indicated direction field “forces” all solution curves near the
y-axis to plunge downward so that none can pass through the point (0, 0).
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FIGURE 1.3.9. Direction field
and typical solution curves for
the equation y′ = 1/x .
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y2(x) = 0
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(0, 0)

y1(x) = x2

FIGURE 1.3.10. Direction field and two
different solution curves for the initial value
problem y′ = 2

√
y, y(0) = 0.

(b) [Failure of uniqueness] On the other hand, you can readily verify that the initial
value problem

y′ = 2
√

y, y(0) = 0 (8)

has the two different solutions y1(x) = x2 and y2(x) ≡ 0 (see Problem 27). Figure
1.3.10 shows a direction field and these two different solution curves for the initial
value problem in (8). We see that the curve y1(x) = x2 threads its way through the
indicated direction field, whereas the differential equation y′ = 2

√
y specifies slope

y′ = 0 along the x-axis y2(x) = 0.

Example 5 illustrates the fact that, before we can speak of “the” solution of
an initial value problem, we need to know that it has one and only one solution.
Questions of existence and uniqueness of solutions also bear on the process of
mathematical modeling. Suppose that we are studying a physical system whose be-
havior is completely determined by certain initial conditions, but that our proposed
mathematical model involves a differential equation not having a unique solution
satisfying those conditions. This raises an immediate question as to whether the
mathematical model adequately represents the physical system.

The theorem stated below implies that the initial value problem y′ = f (x, y),
y(a) = b has one and only one solution defined near the point x = a on the x-axis,
provided that both the function f and its partial derivative ∂ f/∂y are continuous
near the point (a, b) in the xy-plane. Methods of proving existence and uniqueness
theorems are discussed in the Appendix.

y

b

R

x a
I

y = y(x)

(a, b)

FIGURE 1.3.11. The rectangle
R and x-interval I of Theorem 1,
and the solution curve y = y(x)
through the point (a, b).

THEOREM 1 Existence and Uniqueness of Solutions

Suppose that both the function f (x, y) and its partial derivative Dy f (x, y) are
continuous on some rectangle R in the xy-plane that contains the point (a, b)

in its interior. Then, for some open interval I containing the point a, the initial
value problem

dy

dx
= f (x, y), y(a) = b (9)➤

has one and only one solution that is defined on the interval I . (As illustrated in
Fig. 1.3.11, the solution interval I may not be as “wide” as the original rectangle
R of continuity; see Remark 3 below.)
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1.3 Slope Fields and Solution Curves 25

Remark 1: In the case of the differential equation dy/dx = −y of Exam-
ple 1 and Fig. 1.3.2(c), both the function f (x, y) = −y and the partial derivative
∂ f/∂y = −1 are continuous everywhere, so Theorem 1 implies the existence of a
unique solution for any initial data (a, b). Although the theorem ensures existence
only on some open interval containing x = a, each solution y(x) = Ce−x actually
is defined for all x .

Remark 2: In the case of the differential equation dy/dx = −2
√

y of
Example 5(b) and Eq. (8), the function f (x, y) = −2

√
y is continuous wherever

y > 0, but the partial derivative ∂ f/∂y = 1/
√

y is discontinuous when y = 0, and
hence at the point (0, 0). This is why it is possible for there to exist two different
solutions y1(x) = x2 and y2(x) ≡ 0, each of which satisfies the initial condition
y(0) = 0.

Remark 3: In Example 7 of Section 1.1 we examined the especially sim-
ple differential equation dy/dx = y2. Here we have f (x, y) = y2 and ∂ f/∂y = 2y.
Both of these functions are continuous everywhere in the xy-plane, and in partic-
ular on the rectangle −2 < x < 2, 0 < y < 2. Because the point (0, 1) lies in
the interior of this rectangle, Theorem 1 guarantees a unique solution—necessarily
a continuous function—of the initial value problem

dy

dx
= y2, y(0) = 1 (10)➤

on some open x-interval containing a = 0. Indeed this is the solution

y(x) = 1

1 − x

that we discussed in Example 7. But y(x) = 1/(1 − x) is discontinuous at x = 1,
so our unique continuous solution does not exist on the entire interval −2 < x < 2.
Thus the solution interval I of Theorem 1 may not be as wide as the rectangle R
where f and ∂ f/∂y are continuous. Geometrically, the reason is that the solution
curve provided by the theorem may leave the rectangle—wherein solutions of the
differential equation are guaranteed to exist—before it reaches the one or both ends
of the interval (see Fig. 1.3.12).

0 2 4

0

2

4

6

(0, 1)
R

x

y

−2
−2−4

y = 1/(1 − x)

FIGURE 1.3.12. The solution
curve through the initial point
(0, 1) leaves the rectangle R
before it reaches the right side of
R.

The following example shows that, if the function f (x, y) and/or its partial
derivative ∂ f/∂y fail to satisfy the continuity hypothesis of Theorem 1, then the
initial value problem in (9) may have either no solution or many—even infinitely
many—solutions.

Example 6 Consider the first-order differential equation

x
dy

dx
= 2y. (11)

Applying Theorem 1 with f (x, y) = 2y/x and ∂ f/∂y = 2/x , we conclude that
Eq. (11) must have a unique solution near any point in the xy-plane where x �= 0.
Indeed, we see immediately by substitution in (11) that

y(x) = Cx2 (12)
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26 Chapter 1 First-Order Differential Equations

satisfies Eq. (11) for any value of the constant C and for all values of the variable
x . In particular, the initial value problem

x
dy

dx
= 2y, y(0) = 0 (13)

has infinitely many different solutions, whose solution curves are the parabolas y =
Cx2 illustrated in Fig. 1.3.13. (In case C = 0 the “parabola” is actually the x-axis
y = 0.)

Observe that all these parabolas pass through the origin (0, 0), but none of

0 1 2

0

2

4

x

y

(0, b) (0, 0)

−2

−4
−2 −1

FIGURE 1.3.13. There are
infinitely many solution curves
through the point (0, 0), but no
solution curves through the point
(0, b) if b �= 0.

them passes through any other point on the y-axis. It follows that the initial value
problem in (13) has infinitely many solutions, but the initial value problem

x
dy

dx
= 2y, y(0) = b (14)

has no solution if b �= 0.
Finally, note that through any point off the y-axis there passes only one of the

parabolas y = Cx2. Hence, if a �= 0, then the initial value problem

x
dy

dx
= 2y, y(a) = b (15)

has a unique solution on any interval that contains the point x = a but not the origin
x = 0 In summary, the initial value problem in (15) has

• a unique solution near (a, b) if a �= 0;
• no solution if a = 0 but b �= 0;
• infinitely many solutions if a = b = 0.

Still more can be said about the initial value problem in (15). Consider a
typical initial point off the y-axis—for instance the point (−1, 1) indicated in Fig.
1.3.14. Then for any value of the constant C the function defined by

y(x) =
{

x2 if x ≤ 0,
Cx2 if x > 0

(16)

is continuous and satisfies the initial value problem

0 1 2

0

2

4

x

y

−2

−4
−2 −1

y = x2

(−1, 1)

(0, 0)

FIGURE 1.3.14. There are
infinitely many solution curves
through the point (1, −1).

x
dy

dx
= 2y, y(−1) = 1. (17)

For a particular value of C , the solution curve defined by (16) consists of the left
half of the parabola y = x2 and the right half of the parabola y = Cx2. Thus the
unique solution curve near (−1, 1) branches at the origin into the infinitely many
solution curves illustrated in Fig. 1.3.14.

We therefore see that Theorem 1 (if its hypotheses are satisfied) guarantees
uniqueness of the solution near the initial point (a, b), but a solution curve through
(a, b) may eventually branch elsewhere so that uniqueness is lost. Thus a solution
may exist on a larger interval than one on which the solution is unique. For instance,
the solution y(x) = x2 of the initial value problem in (17) exists on the whole x-
axis, but this solution is unique only on the negative x-axis −∞ < x < 0.
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1.3 Slope Fields and Solution Curves 27

1.3 Problems

In Problems 1 through 10, we have provided the slope field of
the indicated differential equation, together with one or more
solution curves. Sketch likely solution curves through the ad-
ditional points marked in each slope field.

1.
dy

dx
= −y − sin x

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.15.

2.
dy

dx
= x + y

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.16.

3.
dy

dx
= y − sin x

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.17.

4.
dy

dx
= x − y

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.18.

5.
dy

dx
= y − x + 1

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.19.

6.
dy

dx
= x − y + 1

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.20.
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7.
dy

dx
= sin x + sin y

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.21.

8.
dy

dx
= x2 − y

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.22.

9.
dy

dx
= x2 − y − 2

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.23.

10.
dy

dx
= −x2 + sin y

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.24.

In Problems 11 through 20, determine whether Theorem 1 does
or does not guarantee existence of a solution of the given initial
value problem. If existence is guaranteed, determine whether
Theorem 1 does or does not guarantee uniqueness of that so-
lution.

11.
dy

dx
= 2x2 y2; y(1) = −1

12.
dy

dx
= x ln y; y(1) = 1

13.
dy

dx
= 3

√
y; y(0) = 1

14.
dy

dx
= 3

√
y; y(0) = 0

15.
dy

dx
= √

x − y; y(2) = 2

16.
dy

dx
= √

x − y; y(2) = 1

17. y
dy

dx
= x − 1; y(0) = 1

18. y
dy

dx
= x − 1; y(1) = 0

19.
dy

dx
= ln(1 + y2); y(0) = 0

20.
dy

dx
= x2 − y2; y(0) = 1

In Problems 21 and 22, first use the method of Example 2
to construct a slope field for the given differential equation.
Then sketch the solution curve corresponding to the given ini-
tial condition. Finally, use this solution curve to estimate the
desired value of the solution y(x).

21. y′ = x + y, y(0) = 0; y(−4) = ?
22. y′ = y − x , y(4) = 0; y(−4) = ?
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1.3 Slope Fields and Solution Curves 29

Problems 23 and 24 are like Problems 21 and 22, but now
use a computer algebra system to plot and print out a slope
field for the given differential equation. If you wish (and know
how), you can check your manually sketched solution curve by
plotting it with the computer.

23. y′ = x2 + y2 − 1, y(0) = 0; y(2) = ?

24. y′ = x + 1

2
y2, y(−2) = 0; y(2) = ?

25. You bail out of the helicopter of Example 3 and pull the
ripcord of your parachute. Now k = 1.6 in Eq. (3), so
your downward velocity satisfies the initial value problem

dv

dt
= 32 − 1.6v, v(0) = 0.

In order to investigate your chances of survival, construct
a slope field for this differential equation and sketch the
appropriate solution curve. What will your limiting veloc-
ity be? Will a strategically located haystack do any good?
How long will it take you to reach 95% of your limiting
velocity?

26. Suppose the deer population P(t)in a small forest satisfies
the logistic equation

dP

dt
= 0.0225P − 0.0003P2.

Construct a slope field and appropriate solution curve to
answer the following questions: If there are 25 deer at
time t = 0 and t is measured in months, how long will
it take the number of deer to double? What will be the
limiting deer population?

The next seven problems illustrate the fact that, if the hypothe-
ses of Theorem 1 are not satisfied, then the initial value prob-
lem y′ = f (x, y), y(a) = b may have either no solutions,
finitely many solutions, or infinitely many solutions.

27. (a) Verify that if c is a constant, then the function defined
piecewise by

y(x) =
{

0 for x � c,

(x − c)2 for x > c

satisfies the differential equation y′ = 2
√

y for all x (in-
cluding the point x = c). Construct a figure illustrating the
fact that the initial value problem y′ = 2

√
y, y(0) = 0 has

infinitely many different solutions. (b) For what values of
b does the initial value problem y′ = 2

√
y, y(0) = b have

(i) no solution, (ii) a unique solution that is defined for all
x?

28. Verify that if k is a constant, then the function y(x) ≡ kx
satisfies the differential equation xy′ = y for all x . Con-
struct a slope field and several of these straight line so-
lution curves. Then determine (in terms of a and b) how
many different solutions the initial value problem xy′ = y,
y(a) = b has—one, none, or infinitely many.

29. Verify that if c is a constant, then the function defined
piecewise by

y(x) =
{

0 for x � c,

(x − c)3 for x > c

satisfies the differential equation y′ = 3y2/3 for all x . Can
you also use the “left half” of the cubic y = (x − c)3 in
piecing together a solution curve of the differential equa-
tion? (See Fig. 1.3.25.) Sketch a variety of such solution
curves. Is there a point (a, b) of the xy-plane such that
the initial value problem y′ = 3y2/3, y(a) = b has either
no solution or a unique solution that is defined for all x?
Reconcile your answer with Theorem 1.

x

y

c

y = (x − c)3

y = x3

FIGURE 1.3.25. A suggestion for Problem 29.

30. Verify that if c is a constant, then the function defined
piecewise by

y(x) =

⎧⎪⎨
⎪⎩

+1 if x � c,

cos(x − c) if c < x < c + π ,

−1 if x � c + π

satisfies the differential equation y′ = −√
1 − y2 for all x .

(Perhaps a preliminary sketch with c = 0 will be helpful.)
Sketch a variety of such solution curves. Then determine
(in terms of a and b) how many different solutions the ini-
tial value problem y′ = −√

1 − y2, y(a) = b has.
31. Carry out an investigation similar to that in Problem 30,

except with the differential equation y′ = +√
1 − y2.

Does it suffice simply to replace cos(x −c) with sin(x −c)
in piecing together a solution that is defined for all x?

32. Verify that if c > 0, then the function defined piecewise
by

y(x) =
{

0 if x2 � c,

(x2 − c)2 if x2 > c

satisfies the differential equation y′ = 4x
√

y for all x .
Sketch a variety of such solution curves for different val-
ues of c. Then determine (in terms of a and b) how many
different solutions the initial value problem y′ = 4x

√
y,

y(a) = b has.
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30 Chapter 1 First-Order Differential Equations

33. If c �= 0, verify that the function defined by y(x) =
x/(cx − 1) (with graph illustrated in Fig. 1.3.26) satisfies
the differential equation x2 y′ + y2 = 0 if x �= 1/c. Sketch
a variety of such solution curves for different values of
c. Also, note the constant-valued function y(x) ≡ 0 that
does not result from any choice of the constant c. Finally,
determine (in terms of a and b) how many different solu-
tions the initial value problem x2 y′ + y2 = 0, y(a) = b
has.

x

y

(1/c, 1/c)

FIGURE 1.3.26. Slope field for x2 y′ + y2 = 0
and graph of a solution y(x) = x/(cx − 1).

34. (a) Use the direction field of Problem 5 to estimate the
values at x = 1 of the two solutions of the differ-
ential equation y′ = y − x + 1 with initial values
y(−1) = −1.2 and y(−1) = −0.8.

(b) Use a computer algebra system to estimate the val-
ues at x = 3 of the two solutions of this differen-
tial equation with initial values y(−3) = −3.01 and
y(−3) = −2.99.

The lesson of this problem is that small changes in initial
conditions can make big differences in results.

35. (a) Use the direction field of Problem 6 to estimate the
values at x = 2 of the two solutions of the differ-
ential equation y′ = x − y + 1 with initial values
y(−3) = −0.2 and y(−3) = +0.2.

(b) Use a computer algebra system to estimate the val-
ues at x = 3 of the two solutions of this differen-
tial equation with initial values y(−3) = −0.5 and
y(−3) = +0.5.

The lesson of this problem is that big changes in initial
conditions may make only small differences in results.

1.3 Application Computer-Generated Slope Fields and Solution Curves

Widely available computer algebra systems and technical computing environments
include facilities to automate the construction of slope fields and solution curves, as
do some graphing calculators (see Fig. 1.3.27).

FIGURE 1.3.27. Slope field and solution curves for the differential
equation

dy

dx
= sin(x − y)

with initial points (0, b), b = −3, −1, −2, 0, 2, 4 and window
−5 ≤ x, y ≤ 5 on a TI-89 graphing calculator.

The applications manual accompanying this textbook includes discussion of
MapleTM, MathematicaTM, and MATLABTM resources for the investigation of dif-
ferential equations. For instance, the Maple command

with(DEtools):
DEplot(diff(y(x),x)=sin(x-y(x)), y(x), x=-5..5, y=-5..5);
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1.3 Slope Fields and Solution Curves 31

and the Mathematica command

<< Graphics\PlotField.m
PlotVectorField[{1, Sin[x-y]}, {x, -5, 5}, {y, -5, 5}]

produce slope fields similar to the one shown in Fig. 1.3.28. Figure 1.3.28 it-

−4
−3
−2
−1

5

−5

4
3
2
1

x
0 5

0y

−5 1−4 2−3 3−2 4−1

y = x − π
2

FIGURE 1.3.28. Computer-
generated slope field and solution
curves for the differential equation
y′ = sin(x − y).

self was generated with the MATLAB program dfield [John Polking and David
Arnold, Ordinary Differential Equations Using MATLAB, 2nd edition, Upper Sad-
dle River, NJ: Prentice Hall, 1999] that is freely available for educational use
(math.rice.edu/∼dfield). When a differential equation is entered in the dfield
setup menu (Fig. 1.3.29), you can (with mouse button clicks) plot both a slope field
and the solution curve (or curves) through any desired point (or points). Another
freely available and user-friendly MATLAB-based ODE package with impressive
graphical capabilities is Iode (www.math.uiuc.edu/iode).

FIGURE 1.3.29. MATLAB dfield setup to construct slope field and solution curves
for y′ = sin(x − y).

Use a graphing calculator or computer system in the following investigations.
You might warm up by generating the slope fields and some solution curves for
Problems 1 through 10 in this section.

INVESTIGATION A: Plot a slope field and typical solution curves for the differen-
tial equation dy/dx = sin(x − y), but with a larger window than that of Fig. 1.3.28.
With −10 � x � 10, −10 � y � 10, for instance, a number of apparent straight
line solution curves should be visible.

(a) Substitute y = ax + b in the differential equation to determine what the coeffi-
cients a and b must be in order to get a solution.

(b) A computer algebra system gives the general solution

y(x) = x − 2 tan−1

(
x − 2 − C

x − C

)
.

Plot this solution with selected values of the constant C to compare the resulting
solution curves with those indicated in Fig. 1.3.28. Can you see that no value of
C yields the linear solution y = x − π/2 corresponding to the initial condition
y(π/2) = 0? Are there any values of C for which the corresponding solution
curves lie close to this straight line solution curve?
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32 Chapter 1 First-Order Differential Equations

INVESTIGATION B: For your own personal investigation, let n be the smallest
digit in your student ID number that is greater than 1, and consider the differential
equation

dy

dx
= 1

n
cos(x − ny).

(a) First investigate (as in part (a) of Investigation A) the possibility of straight line
solutions.

(b) Then generate a slope field for this differential equation, with the viewing win-
dow chosen so that you can picture some of these straight lines, plus a sufficient
number of nonlinear solution curves that you can formulate a conjecture about
what happens to y(x) as x → +∞. State your inference as plainly as you can.
Given the initial value y(0) = y0, try to predict (perhaps in terms of y0) how
y(x) behaves as x → +∞.

(c) A computer algebra system gives the general solution

y(x) = 1

n

[
x + 2 tan−1

(
1

x − C

)]
.

Can you make a connection between this symbolic solution and your graphi-
cally generated solution curves (straight lines or otherwise)?

1.4 Separable Equations and Applications

The first-order differential equation

dy

dx
= H(x, y) (1)

is called separable provided that H(x, y) can be written as the product of a function
of x and a function of y:

dy

dx
= g(x)h(y) = g(x)

f (y)
,➤

where h(y) = 1/ f (y). In this case the variables x and y can be separated—isolated
on opposite sides of an equation—by writing informally the equation

f (y) dy = g(x) dx,

which we understand to be concise notation for the differential equation

f (y)
dy

dx
= g(x). (2)

It is easy to solve this special type of differential equation simply by integrating
both sides with respect to x :

∫
f (y(x))

dy

dx
dx =

∫
g(x) dx + C;
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1.4 Separable Equations and Applications 33

equivalently, ∫
f (y) dy =

∫
g(x) dx + C. (3)

All that is required is that the antiderivatives

F(y) =
∫

f (y) dy and G(x) =
∫

g(x) dx

can be found. To see that Eqs. (2) and (3) are equivalent, note the following conse-
quence of the chain rule:

Dx [F(y(x))] = F ′(y(x))y′(x) = f (y)
dy

dx
= g(x) = Dx [G(x)],

which in turn is equivalent to

F(y(x)) = G(x) + C, (4)

because two functions have the same derivative on an interval if and only if they
differ by a constant on that interval.

Example 1 Solve the initial value problem

dy

dx
= −6xy, y(0) = 7.

Solution Informally, we divide both sides of the differential equation by y and multiply each
side by dx to get

dy

y
= −6x dx .

Hence ∫
dy

y
=

∫
(−6x) dx;

ln |y| = −3x2 + C.

We see from the initial condition y(0) = 7 that y(x) is positive near x = 0, so we
may delete the absolute value symbols:

ln y = −3x2 + C,

and hence
y(x) = e−3x2+C = e−3x2

eC = Ae−3x2
,

where A = eC . The condition y(0) = 7 yields A = 7, so the desired solution is

y(x) = 7e−3x2
.

This is the upper emphasized solution curve shown in Fig. 1.4.1.
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−6

−8

−2 −1

(0, 7)

(0, −4)

FIGURE 1.4.1. Slope field and
solution curves for y′ = −6xy in
Example 1.
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34 Chapter 1 First-Order Differential Equations

Remark: Suppose, instead, that the initial condition in Example 1 had been
y(0) = −4. Then it would follow that y(x) is negative near x = 0. We should
therefore replace |y| with −y in the integrated equation ln |y| = −3x2 + C to
obtain

ln(−y) = −3x2 + C.

The initial condition then yields C = ln 4, so ln(−y) = −3x2 + ln 4, and hence

y(x) = −4e−3x2
.

This is the lower emphasized solution curve in Fig. 1.4.1.

Example 2 Solve the differential equation

dy

dx
= 4 − 2x

3y2 − 5
. (5)

Solution When we separate the variables and integrate both sides, we get

∫
(3y2 − 5) dy =

∫
(4 − 2x) dx;

y3 − 5y = 4x − x2 + C. (6)

This equation is not readily solved for y as an explicit function of x .

As Example 2 illustrates, it may or may not be possible or practical to solve
Eq. (4) explicitly for y in terms of x . If not, then we call (4) an implicit solution
of the differential equation in (2). Thus Eq. (6) gives an implicit solution of the
differential equation in (5). Although it is not convenient to solve Eq. (6) explicitly
in terms of x , we see that each solution curve y = y(x) lies on a contour (or level)
curve where the function

H(x, y) = x2 − 4x + y3 − 5y

is constant. Figure 1.4.2 shows several of these contour curves.

0 2 4 6 8

0

2

4

6

x

y

−2

−4

−6
−6 −4 −2

(1, 3)

(1, 0)

(1, −2)

FIGURE 1.4.2. Slope field and
solution curves for
y′ = (4 − 2x)/(3y2 − 5) in
Example 2.

Example 3 To solve the initial value problem

dy

dx
= 4 − 2x

3y2 − 5
, y(1) = 3, (7)

we substitute x = 1 and y = 3 in Eq. (6) and get C = 9. Thus the desired particular
solution y(x) is defined implicitly by the equation

y3 − 5y = 4x − x2 + 9. (8)

The corresponding solution curve y = y(x) lies on the upper contour curve in
Fig. 1.4.2—the one passing through (1, 3). Because the graph of a differentiable
solution cannot have a vertical tangent line anywhere, it appears from the figure
that this particular solution is defined on the interval (−1, 5) but not on the interval
(−3, 7).
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Remark 1: When a specific value of x is substituted in Eq. (8), we can

0 4 62
y

f(
y)

−4 −2−6

20

15

10

5

0

−5

−10

−15

− 20

FIGURE 1.4.3. Graph of
f (y) = y3 − 5y − 9.

attempt to solve numerically for y. For instance, x = 4 yields the equation

f (y) = y3 − 5y − 9 = 0.

Figure 1.4.3 shows the graph of f . With a graphing calculator we can solve for the
single real root y ≈ 2.8552. This yields the value y(4) ≈ 2.8552 of the particular
solution in Example 3.

Remark 2: If the initial condition in (7) is replaced with the condition
y(1) = 0, then the resulting particular solution of the differential equation in (5)
lies on the lower “half” of the oval contour curve in Fig. 1.4.2. It appears that this
particular solution through (1, 0) is defined on the interval (0, 4) but not on the
interval (−1, 5). On the other hand, with the initial condition y(1) = −2 we get the
lower contour curve in Fig. 1.4.2. This particular solution is defined for all x . Thus
the initial condition can determine whether a particular solution is defined on the
whole real line or only on some bounded interval. With a computer algebra system
one can readily calculate a table of values of the y-solutions of Eq. (8) for x-values
at desired increments from x = −1 to x = 5 (for instance). Such a table of values
serves effectively as a “numerical solution” of the initial value problem in (7).

Implicit, General, and Singular Solutions

The equation K (x, y) = 0 is commonly called an implicit solution of a differential
equation if it is satisfied (on some interval) by some solution y = y(x) of the
differential equation. But note that a particular solution y = y(x) of K (x, y) = 0
may or may not satisfy a given initial condition. For example, differentiation of
x2 + y2 = 4 yields

x + y
dy

dx
= 0,

so x2 + y2 = 4 is an implicit solution of the differential equation x + yy′ = 0. But
only the first of the two explicit solutions

y(x) = +
√

4 − x2 and y(x) = −
√

4 − x2

satisfies the initial condition y(0) = 2 (Fig. 1.4.4).

3

−3

x
0 3

0y

−3

−2

1

−1

2

1−2 2−1

(0, 2)

y = −   4 − x2

y = +   4 − x2

FIGURE 1.4.4. Slope field and
solution curves for y′ = −x/y.

Remark 1: You should not assume that every possible algebraic solution
y = y(x) of an implicit solution satisfies the same differential equation. For in-
stance, if we multiply the implicit solution x2 + y2 − 4 = 0 by the factor (y − 2x),
then we get the new implicit solution

(y − 2x)(x2 + y2 − 4) = 0

that yields (or “contains”) not only the previously noted explicit solutions y =
+√

4 − x2 and y = −√
4 − x2 of the differential equation x + yy′ = 0, but also the

additional function y = 2x that does not satisfy this differential equation.

Remark 2: Similarly, solutions of a given differential equation can be
either gained or lost when it is multiplied or divided by an algebraic factor. For
instance, consider the differential equation

(y − 2x)y
dy

dx
= −x(y − 2x) (9)
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36 Chapter 1 First-Order Differential Equations

having the obvious solution y = 2x . But if we divide both sides by the common
factor (y − 2x), then we get the previously discussed differential equation

y
dy

dx
= −x, or x + y

dy

dx
= 0, (10)

of which y = 2x is not a solution. Thus we “lose” the solution y = 2x of Eq. (9)
upon its division by the factor (y − 2x); alternatively, we “gain” this new solution
when we multiply Eq. (10) by (y − 2x). Such elementary algebraic operations to
simplify a given differential equation before attempting to solve it are common in
practice, but the possibility of loss or gain of such “extraneous solutions” should be
kept in mind.

A solution of a differential equation that contains an “arbitrary constant” (like
the constant C in the solution of Examples 1 and 2) is commonly called a general
solution of the differential equation; any particular choice of a specific value for C
yields a single particular solution of the equation.

The argument preceding Example 1 actually suffices to show that every partic-
ular solution of the differential equation f (y)y′ = g(x) in (2) satisfies the equation
F(y(x)) = G(x) + C in (4). Consequently, it is appropriate to call (4) not merely a
general solution of (2), but the general solution of (2).

In Section 1.5 we shall see that every particular solution of a linear first-order
differential equation is contained in its general solution. By contrast, it is com-
mon for a nonlinear first-order differential equation to have both a general solu-
tion involving an arbitrary constant C and one or several particular solutions that
cannot be obtained by selecting a value for C . These exceptional solutions are
frequently called singular solutions. In Problem 30 we ask you to show that the
general solution of the differential equation (y′)2 = 4y yields the family of parabo-
las y = (x − C)2 illustrated in Fig. 1.4.5, and to observe that the constant-valued
function y(x) ≡ 0 is a singular solution that cannot be obtained from the general
solution by any choice of the arbitrary constant C .

0 5 10 15

0

25

50

75

x

y

−15 −10 −5

FIGURE 1.4.5. The general
solution curves y = (x − C)2 and
the singular solution curve y = 0
of the differential equation
(y′)2 = 4y.

Example 4 Find all solutions of the differential equation

dy

dx
= 6x(y − 1)2/3.

Solution Separation of variables gives∫
1

3(y − 1)2/3
dy =

∫
2x dx;

(y − 1)1/3 = x2 + C;
y(x) = 1 + (x2 + C)3.

Positive values of the arbitrary constant C give the solution curves in Fig. 1.4.6
that lie above the line y = 1, whereas negative values yield those that dip below
it. The value C = 0 gives the solution y(x) = 1 + x6, but no value of C gives
the singular solution y(x) ≡ 1 that was lost when the variables were separated.
Note that the two different solutions y(x) ≡ 1 and y(x) = 1 + (x2 − 1)3 both
satisfy the initial condition y(1) = 1. Indeed, the whole singular solution curve
y = 1 consists of points where the solution is not unique and where the function
f (x, y) = 6x(y − 1)2/3 is not differentiable.

0 1 2

0

2

4

x

y

(1, 1)

−2

−4

−2 −1

y = 1 + x6

y = 1 + (x2 − 1)3

FIGURE 1.4.6. General and
singular solution curves for
y′ = 6x(y − 1)2/3.
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1.4 Separable Equations and Applications 37

Natural Growth and Decay

The differential equation

dx

dt
= kx (k a constant) (11)➤

serves as a mathematical model for a remarkably wide range of natural phenomena—
any involving a quantity whose time rate of change is proportional to its current size.
Here are some examples.

POPULATION GROWTH: Suppose that P(t) is the number of individuals in a
population (of humans, or insects, or bacteria) having constant birth and death rates
β and δ (in births or deaths per individual per unit of time). Then, during a short
time interval �t , approximately β P(t) �t births and δP(t) �t deaths occur, so the
change in P(t) is given approximately by

�P ≈ (β − δ)P(t) �t,

and therefore
dP

dt
= lim

�t→0

�P

�t
= k P, (12)

where k = β − δ.

COMPOUND INTEREST: Let A(t) be the number of dollars in a savings account
at time t (in years), and suppose that the interest is compounded continuously at
an annual interest rate r . (Note that 10% annual interest means that r = 0.10.)
Continuous compounding means that during a short time interval �t , the amount of
interest added to the account is approximately �A = r A(t) �t , so that

d A

dt
= lim

�t→0

�A

�t
= r A. (13)

RADIOACTIVE DECAY: Consider a sample of material that contains N (t) atoms
of a certain radioactive isotope at time t . It has been observed that a constant fraction
of those radioactive atoms will spontaneously decay (into atoms of another element
or into another isotope of the same element) during each unit of time. Consequently,
the sample behaves exactly like a population with a constant death rate and no births.
To write a model for N (t), we use Eq. (12) with N in place of P , with k > 0 in
place of δ, and with β = 0. We thus get the differential equation

d N

dt
= −k N . (14)

The value of k depends on the particular radioactive isotope.
The key to the method of radiocarbon dating is that a constant proportion

of the carbon atoms in any living creature is made up of the radioactive isotope
14C of carbon. This proportion remains constant because the fraction of 14C in the
atmosphere remains almost constant, and living matter is continuously taking up
carbon from the air or is consuming other living matter containing the same constant
ratio of 14C atoms to ordinary 12C atoms. This same ratio permeates all life, because
organic processes seem to make no distinction between the two isotopes.
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38 Chapter 1 First-Order Differential Equations

The ratio of 14C to normal carbon remains constant in the atmosphere because,
although 14C is radioactive and slowly decays, the amount is continuously replen-
ished through the conversion of 14N (ordinary nitrogen) to 14C by cosmic rays bom-
barding the upper atmosphere. Over the long history of the planet, this decay and
replenishment process has come into nearly steady state.

Of course, when a living organism dies, it ceases its metabolism of carbon
and the process of radioactive decay begins to deplete its 14C content. There is no
replenishment of this 14C, and consequently the ratio of 14C to normal carbon begins
to drop. By measuring this ratio, the amount of time elapsed since the death of the
organism can be estimated. For such purposes it is necessary to measure the decay
constant k. For 14C, it is known that k ≈ 0.0001216 if t is measured in years.

(Matters are not as simple as we have made them appear. In applying the tech-
nique of radiocarbon dating, extreme care must be taken to avoid contaminating the
sample with organic matter or even with ordinary fresh air. In addition, the cosmic
ray levels apparently have not been constant, so the ratio of 14C in the atmosphere
has varied over the past centuries. By using independent methods of dating sam-
ples, researchers in this area have compiled tables of correction factors to enhance
the accuracy of this process.)

DRUG ELIMINATION: In many cases the amount A(t) of a certain drug in the
bloodstream, measured by the excess over the natural level of the drug, will decline
at a rate proportional to the current excess amount. That is,

d A

dt
= −λA, (15)

where λ > 0. The parameter λ is called the elimination constant of the drug.

The Natural Growth Equation

The prototype differential equation dx/dt = kx with x(t) > 0 and k a constant
(either negative or positive) is readily solved by separating the variables and inte-
grating: ∫

1

x
dx =

∫
k dt;

ln x = kt + C.

Then we solve for x :

eln x = ekt+C ; x = x(t) = eC ekt = Aekt .

Because C is a constant, so is A = eC . It is also clear that A = x(0) = x0, so the
particular solution of Eq. (11) with the initial condition x(0) = x0 is simply

x(t) = x0ekt . (16)➤

Because of the presence of the natural exponential function in its solution, the
differential equation

dx

dt
= kx (17)➤

is often called the exponential or natural growth equation. Figure 1.4.7 shows a
typical graph of x(t) in the case k > 0; the case k < 0 is illustrated in Fig. 1.4.8.
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x = x0
 ekt

     (k > 0)

t

x

x0

FIGURE 1.4.7. Natural growth.

x = x0
 ekt

     (k < 0)

t

x

x0

FIGURE 1.4.8. Natural decay.

Example 5 According to data listed at www.census.gov, the world’s total population reached
6 billion persons in mid-1999, and was then increasing at the rate of about 212
thousand persons each day. Assuming that natural population growth at this rate
continues, we want to answer these questions:
(a) What is the annual growth rate k?
(b) What will be the world population at the middle of the 21st century?
(c) How long will it take the world population to increase tenfold—thereby reach-
ing the 60 billion that some demographers believe to be the maximum for which the
planet can provide adequate food supplies?

Solution (a) We measure the world population P(t) in billions and measure time in years.
We take t = 0 to correspond to (mid) 1999, so P0 = 6. The fact that P is increasing
by 212,000, or 0.000212 billion, persons per day at time t = 0 means that

P ′(0) = (0.000212)(365.25) ≈ 0.07743

billion per year. From the natural growth equation P ′ = k P with t = 0 we now
obtain

k = P ′(0)

P(0)
≈ 0.07743

6
≈ 0.0129.

Thus the world population was growing at the rate of about 1.29% annually in 1999.
This value of k gives the world population function

P(t) = 6e0.0129t .

(b) With t = 51 we obtain the prediction

P(51) = 6e(0.0129)(51) ≈ 11.58 (billion)

for the world population in mid-2050 (so the population will almost have doubled
in the just over a half-century since 1999).
(c) The world population should reach 60 billion when

60 = 6e0.0129t ; that is, when t = ln 10

0.0129
≈ 178;

and thus in the year 2177.
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40 Chapter 1 First-Order Differential Equations

Note: Actually, the rate of growth of the world population is expected to
slow somewhat during the next half-century, and the best current prediction for the
2050 population is “only” 9.1 billion. A simple mathematical model cannot be
expected to mirror precisely the complexity of the real world.

The decay constant of a radioactive isotope is often specified in terms of an-
other empirical constant, the half-life of the isotope, because this parameter is more
convenient. The half-life τ of a radioactive isotope is the time required for half of
it to decay. To find the relationship between k and τ , we set t = τ and N = 1

2 N0

in the equation N (t) = N0ekt , so that 1
2 N0 = N0ekτ . When we solve for τ , we find

that

τ = ln 2

k
. (18)

For example, the half-life of 14C is τ ≈ (ln 2)/(0.0001216), approximately 5700
years.

Example 6 A specimen of charcoal found at Stonehenge turns out to contain 63% as much 14C
as a sample of present-day charcoal of equal mass. What is the age of the sample?

Solution We take t = 0 as the time of the death of the tree from which the Stonehenge
charcoal was made and N0 as the number of 14C atoms that the Stonehenge sample
contained then. We are given that N = (0.63)N0 now, so we solve the equation
(0.63)N0 = N0e−kt with the value k = 0.0001216. Thus we find that

t = − ln(0.63)

0.0001216
≈ 3800 (years).

Thus the sample is about 3800 years old. If it has any connection with the builders of
Stonehenge, our computations suggest that this observatory, monument, or temple—
whichever it may be—dates from 1800 B.C. or earlier.

Cooling and Heating

According to Newton’s law of cooling (Eq. (3) of Section 1.1), the time rate of
change of the temperature T (t) of a body immersed in a medium of constant tem-
perature A is proportional to the difference A − T . That is,

dT

dt
= k(A − T ), (19)

where k is a positive constant. This is an instance of the linear first-order differential
equation with constant coefficients:

dx

dt
= ax + b. (20)➤

It includes the exponential equation as a special case (b = 0) and is also easy to
solve by separation of variables.

Example 7 A 4-lb roast, initially at 50◦F, is placed in a 375◦F oven at 5:00 P.M. After 75
minutes it is found that the temperature T (t) of the roast is 125◦F. When will the
roast be 150◦F (medium rare)?
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1.4 Separable Equations and Applications 41

Solution We take time t in minutes, with t = 0 corresponding to 5:00 P.M. We also assume
(somewhat unrealistically) that at any instant the temperature T (t) of the roast is
uniform throughout. We have T (t) < A = 375, T (0) = 50, and T (75) = 125.
Hence

dT

dt
= k(375 − T );

∫
1

375 − T
dT =

∫
k dt;

− ln(375 − T ) = kt + C;
375 − T = Be−kt .

Now T (0) = 50 implies that B = 325, so T (t) = 375 − 325e−kt . We also know
that T = 125 when t = 75. Substitution of these values in the preceding equation
yields

k = − 1
75 ln

(
250
325

) ≈ 0.0035.

Hence we finally solve the equation

150 = 375 − 325e(−0.0035)t

for t = −[ln(225/325)]/(0.0035) ≈ 105 (min), the total cooking time required.
Because the roast was placed in the oven at 5:00 P.M., it should be removed at about
6:45 P.M.

Torricelli's Law

Suppose that a water tank has a hole with area a at its bottom, from which water is
leaking. Denote by y(t) the depth of water in the tank at time t , and by V (t) the
volume of water in the tank then. It is plausible—and true, under ideal conditions—
that the velocity of water exiting through the hole is

v = √
2gy, (21)

which is the velocity a drop of water would acquire in falling freely from the surface
of the water to the hole (see Problem 35 of Section 1.2). One can derive this formula
beginning with the assumption that the sum of the kinetic and potential energy of the
system remains constant. Under real conditions, taking into account the constriction
of a water jet from an orifice, v = c

√
2gy, where c is an empirical constant between

0 and 1 (usually about 0.6 for a small continuous stream of water). For simplicity
we take c = 1 in the following discussion.

As a consequence of Eq. (21), we have

dV

dt
= −av = −a

√
2gy; (22a)➤

equivalently,

dV

dt
= −k

√
y where k = a

√
2g. (22b)➤

This is a statement of Torricelli’s law for a draining tank. Let A(y) denote the hori-
zontal cross-sectional area of the tank at height y. Then, applied to a thin horizontal
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slice of water at height y with area A(y) and thickness d y, the integral calculus
method of cross sections gives

V (y) =
∫ y

0
A(y) d y.

The fundamental theorem of calculus therefore implies that dV/dy = A(y) and
hence that

dV

dt
= dV

dy
· dy

dt
= A(y)

dy

dt
. (23)

From Eqs. (22) and (23) we finally obtain

A(y)
dy

dt
= −a

√
2gy = −k

√
y, (24)

an alternative form of Torricelli’s law.

Example 8 A hemispherical bowl has top radius 4 ft and at time t = 0 is full of water. At that
moment a circular hole with diameter 1 in. is opened in the bottom of the tank. How
long will it take for all the water to drain from the tank?

Solution From the right triangle in Fig. 1.4.9, we see that

A(y) = πr2 = π
[
16 − (4 − y)2

] = π(8y − y2).

With g = 32 ft/s2, Eq. (24) becomesPositive y-values

r

44 − y

y

FIGURE 1.4.9. Draining a
hemispherical tank.

π(8y − y2)
dy

dt
= −π

(
1
24

)2 √
2 · 32y ;

∫
(8y1/2 − y3/2) dy = −

∫
1

72 dt;
16
3 y3/2 − 2

5 y5/2 = − 1
72 t + C.

Now y(0) = 4, so

C = 16
3 · 43/2 − 2

5 · 45/2 = 448
15 .

The tank is empty when y = 0, thus when

t = 72 · 448
15 ≈ 2150 (s);

that is, about 35 min 50 s. So it takes slightly less than 36 min for the tank to
drain.
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1.4 Problems

Find general solutions (implicit if necessary, explicit if conve-
nient) of the differential equations in Problems 1 through 18.
Primes denote derivatives with respect to x.

1.
dy

dx
+ 2xy = 0 2.

dy

dx
+ 2xy2 = 0

3.
dy

dx
= y sin x 4. (1 + x)

dy

dx
= 4y

5. 2
√

x
dy

dx
= √

1 − y2 6.
dy

dx
= 3

√
xy

7.
dy

dx
= (64xy)1/3 8.

dy

dx
= 2x sec y

9. (1 − x2)
dy

dx
= 2y 10. (1 + x)2 dy

dx
= (1 + y)2

11. y′ = xy3 12. yy′ = x(y2 + 1)

13. y3 dy

dx
= (y4 + 1) cos x 14.

dy

dx
= 1 + √

x

1 + √
y

15.
dy

dx
= (x − 1)y5

x2(2y3 − y)
16. (x2 + 1)(tan y)y′ = x

17. y′ = 1+ x + y + xy (Suggestion: Factor the right-hand
side.)

18. x2 y′ = 1 − x2 + y2 − x2 y2

Find explicit particular solutions of the initial value problems
in Problems 19 through 28.

19.
dy

dx
= yex , y(0) = 2e

20.
dy

dx
= 3x2(y2 + 1), y(0) = 1

21. 2y
dy

dx
= x√

x2 − 16
, y(5) = 2

22.
dy

dx
= 4x3 y − y, y(1) = −3

23.
dy

dx
+ 1 = 2y, y(1) = 1

24. (tan x)
dy

dx
= y, y

(
1
2 π

) = 1
2 π

25. x
dy

dx
− y = 2x2 y, y(1) = 1

26.
dy

dx
= 2xy2 + 3x2 y2, y(1) = −1

27.
dy

dx
= 6e2x−y, y(0) = 0

28. 2
√

x
dy

dx
= cos2 y, y(4) = π/4

29. (a) Find a general solution of the differential equation
dy/dx = y2. (b) Find a singular solution that is not in-
cluded in the general solution. (c) Inspect a sketch of
typical solution curves to determine the points (a, b) for
which the initial value problem y′ = y2, y(a) = b has a
unique solution.

30. Solve the differential equation (dy/dx)2 = 4y to verify the
general solution curves and singular solution curve that
are illustrated in Fig. 1.4.5. Then determine the points
(a, b) in the plane for which the initial value problem
(y′)2 = 4y, y(a) = b has (a) no solution, (b) infinitely
many solutions that are defined for all x , (c) on some
neighborhood of the point x = a, only finitely many solu-
tions.

31. Discuss the difference between the differential equations
(dy/dx)2 = 4y and dy/dx = 2

√
y. Do they have the

same solution curves? Why or why not? Determine the
points (a, b) in the plane for which the initial value prob-
lem y′ = 2

√
y, y(a) = b has (a) no solution, (b) a unique

solution, (c) infinitely many solutions.

32. Find a general solution and any singular solutions of the
differential equation dymyslashdx = y

√
y2 − 1. Deter-

mine the points (a, b) in the plane for which the initial
value problem y′ = y

√
y2 − 1, y(a) = b has (a) no solu-

tion, (b) a unique solution, (c) infinitely many solutions.

33. (Population growth) A certain city had a population of
25000 in 1960 and a population of 30000 in 1970. Assume
that its population will continue to grow exponentially at a
constant rate. What population can its city planners expect
in the year 2000?

34. (Population growth) In a certain culture of bacteria, the
number of bacteria increased sixfold in 10 h. How long
did it take for the population to double?

35. (Radiocarbon dating) Carbon extracted from an ancient
skull contained only one-sixth as much 14C as carbon ex-
tracted from present-day bone. How old is the skull?

36. (Radiocarbon dating) Carbon taken from a purported relic
of the time of Christ contained 4.6 × 1010 atoms of 14C
per gram. Carbon extracted from a present-day specimen
of the same substance contained 5.0 × 1010 atoms of 14C
per gram. Compute the approximate age of the relic. What
is your opinion as to its authenticity?

37. (Continuously compounded interest) Upon the birth of
their first child, a couple deposited $5000 in an account
that pays 8% interest compounded continuously. The in-
terest payments are allowed to accumulate. How much
will the account contain on the child’s eighteenth birth-
day?

38. (Continuously compounded interest) Suppose that you
discover in your attic an overdue library book on which
your grandfather owed a fine of 30 cents 100 years ago. If
an overdue fine grows exponentially at a 5% annual rate
compounded continuously, how much would you have to
pay if you returned the book today?

39. (Drug elimination) Suppose that sodium pentobarbital is
used to anesthetize a dog. The dog is anesthetized when
its bloodstream contains at least 45 milligrams (mg) of
sodium pentobarbitol per kilogram of the dog’s body
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weight. Suppose also that sodium pentobarbitol is elim-
inated exponentially from the dog’s bloodstream, with a
half-life of 5 h. What single dose should be administered
in order to anesthetize a 50-kg dog for 1 h?

40. The half-life of radioactive cobalt is 5.27 years. Suppose
that a nuclear accident has left the level of cobalt radia-
tion in a certain region at 100 times the level acceptable
for human habitation. How long will it be until the region
is again habitable? (Ignore the probable presence of other
radioactive isotopes.)

41. Suppose that a mineral body formed in an ancient
cataclysm—perhaps the formation of the earth itself—
originally contained the uranium isotope 238U (which has
a half-life of 4.51×109 years) but no lead, the end product
of the radioactive decay of 238U. If today the ratio of 238U
atoms to lead atoms in the mineral body is 0.9, when did
the cataclysm occur?

42. A certain moon rock was found to contain equal numbers
of potassium and argon atoms. Assume that all the argon
is the result of radioactive decay of potassium (its half-life
is about 1.28×109 years) and that one of every nine potas-
sium atom disintegrations yields an argon atom. What is
the age of the rock, measured from the time it contained
only potassium?

43. A pitcher of buttermilk initially at 25◦C is to be cooled
by setting it on the front porch, where the temperature is
0◦C. Suppose that the temperature of the buttermilk has
dropped to 15◦C after 20 min. When will it be at 5◦C?

44. When sugar is dissolved in water, the amount A that re-
mains undissolved after t minutes satisfies the differential
equation d A/dt = −k A (k > 0). If 25% of the sugar dis-
solves after 1 min, how long does it take for half of the
sugar to dissolve?

45. The intensity I of light at a depth of x meters below
the surface of a lake satisfies the differential equation
d I/dx = (−1.4)I . (a) At what depth is the intensity half
the intensity I0 at the surface (where x = 0)? (b) What
is the intensity at a depth of 10 m (as a fraction of I0)?
(c) At what depth will the intensity be 1% of that at the
surface?

46. The barometric pressure p (in inches of mercury) at an
altitude x miles above sea level satisfies the initial value
problem dp/dx = (−0.2)p, p(0) = 29.92. (a) Calculate
the barometric pressure at 10,000 ft and again at 30,000
ft. (b) Without prior conditioning, few people can sur-
vive when the pressure drops to less than 15 in. of mer-
cury. How high is that?

47. A certain piece of dubious information about phenylethy-
lamine in the drinking water began to spread one day in a
city with a population of 100,000. Within a week, 10,000
people had heard this rumor. Assume that the rate of in-
crease of the number who have heard the rumor is propor-
tional to the number who have not yet heard it. How long
will it be until half the population of the city has heard the
rumor?

48. According to one cosmological theory, there were equal
amounts of the two uranium isotopes 235U and 238U at the
creation of the universe in the “big bang.” At present there
are 137.7 atoms of 238U for each atom of 235U. Using the
half-lives 4.51 × 109 years for 238U and 7.10 × 108 years
for 235U, calculate the age of the universe.

49. A cake is removed from an oven at 210◦F and left to cool
at room temperature, which is 70◦F. After 30 min the
temperature of the cake is 140◦F. When will it be 100◦F?

50. The amount A(t) of atmospheric pollutants in a certain
mountain valley grows naturally and is tripling every 7.5
years.

(a) If the initial amount is 10 pu (pollutant units), write
a formula for A(t) giving the amount (in pu) present
after t years.

(b) What will be the amount (in pu) of pollutants present
in the valley atmosphere after 5 years?

(c) If it will be dangerous to stay in the valley when the
amount of pollutants reaches 100 pu, how long will
this take?

51. An accident at a nuclear power plant has left the surround-
ing area polluted with radioactive material that decays nat-
urally. The initial amount of radioactive material present
is 15 su (safe units), and 5 months later it is still 10 su.

(a) Write a formula giving the amount A(t) of radioactive
material (in su) remaining after t months.

(b) What amount of radioactive material will remain after
8 months?

(c) How long—total number of months or fraction
thereof—will it be until A = 1 su, so it is safe for
people to return to the area?

52. There are now about 3300 different human “language fam-
ilies” in the whole world. Assume that all these are de-
rived from a single original language, and that a language
family develops into 1.5 language families every 6 thou-
sand years. About how long ago was the single original
human language spoken?

53. Thousands of years ago ancestors of the Native Americans
crossed the Bering Strait from Asia and entered the west-
ern hemisphere. Since then, they have fanned out across
North and South America. The single language that the
original Native Americans spoke has since split into many
Indian “language families.” Assume (as in Problem 52)
that the number of these language families has been mul-
tiplied by 1.5 every 6000 years. There are now 150 Native
American language families in the western hemisphere.
About when did the ancestors of today’s Native Ameri-
cans arrive?

54. A tank is shaped like a vertical cylinder; it initially con-
tains water to a depth of 9 ft, and a bottom plug is removed
at time t = 0 (hours). After 1 h the depth of the water has
dropped to 4 ft. How long does it take for all the water to
drain from the tank?

55. Suppose that the tank of Problem 48 has a radius of 3 ft
and that its bottom hole is circular with radius 1 in. How
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1.4 Separable Equations and Applications 45

long will it take the water (initially 9 ft deep) to drain com-
pletely?

56. At time t = 0 the bottom plug (at the vertex) of a full con-
ical water tank 16 ft high is removed. After 1 h the water
in the tank is 9 ft deep. When will the tank be empty?

57. Suppose that a cylindrical tank initially containing V0 gal-
lons of water drains (through a bottom hole) in T minutes.
Use Torricelli’s law to show that the volume of water in
the tank after t � T minutes is V = V0 [1 − (t/T )]2.

58. A water tank has the shape obtained by revolving the curve
y = x4/3 around the y-axis. A plug at the bottom is re-
moved at 12 noon, when the depth of water in the tank is
12 ft. At 1 P.M. the depth of the water is 6 ft. When will
the tank be empty?

59. A water tank has the shape obtained by revolving the
parabola x2 = by around the y-axis. The water depth is
4 ft at 12 noon, when a circular plug in the bottom of the
tank is removed. At 1 P.M. the depth of the water is 1 ft.
(a) Find the depth y(t) of water remaining after t hours.
(b) When will the tank be empty? (c) If the initial radius
of the top surface of the water is 2 ft, what is the radius of
the circular hole in the bottom?

60. A cylindrical tank with length 5 ft and radius 3 ft is sit-
uated with its axis horizontal. If a circular bottom hole
with a radius of 1 in. is opened and the tank is initially
half full of xylene, how long will it take for the liquid to
drain completely?

61. A spherical tank of radius 4 ft is full of gasoline when a
circular bottom hole with radius 1 in. is opened. How long
will be required for all the gasoline to drain from the tank?

62. Suppose that an initially full hemispherical water tank of
radius 1 m has its flat side as its bottom. It has a bottom
hole of radius 1 cm. If this bottom hole is opened at 1 P.M.,
when will the tank be empty?

63. Consider the initially full hemispherical water tank of Ex-
ample 8, except that the radius r of its circular bottom hole
is now unknown. At 1 P.M. the bottom hole is opened and
at 1:30 P.M. the depth of water in the tank is 2 ft. (a) Use
Torricelli’s law in the form dV/dt = −(0.6)πr 2

√
2gy

(taking constriction into account) to determine when the
tank will be empty. (b) What is the radius of the bottom
hole?

64. (The clepsydra, or water clock) A 12-h water clock is to
be designed with the dimensions shown in Fig. 1.4.10,
shaped like the surface obtained by revolving the curve
y = f (x) around the y-axis. What should be this curve,
and what should be the radius of the circular bottom hole,
in order that the water level will fall at the constant rate of
4 inches per hour (in./h)?

Water flow

4 ft

1 ft

x

y

y = f (x)
or     

x = g (y)

FIGURE 1.4.10. The clepsydra.

65. Just before midday the body of an apparent homicide vic-
tim is found in a room that is kept at a constant tempera-
ture of 70◦F. At 12 noon the temperature of the body is
80◦F and at 1 P.M. it is 75◦F. Assume that the temperature
of the body at the time of death was 98.6◦F and that it has
cooled in accord with Newton’s law. What was the time
of death?

66. Early one morning it began to snow at a constant rate. At
7 A.M. a snowplow set off to clear a road. By 8 A.M. it
had traveled 2 miles, but it took two more hours (until
10 A.M.) for the snowplow to go an additional 2 miles.
(a) Let t = 0 when it began to snow and let x denote the
distance traveled by the snowplow at time t . Assuming
that the snowplow clears snow from the road at a constant
rate (in cubic feet per hour, say), show that

k
dx

dt
= 1

t

where k is a constant. (b) What time did it start snowing?
(Answer: 6 A.M.)

67. A snowplow sets off at 7 A.M. as in Problem 66. Suppose
now that by 8 A.M. it had traveled 4 miles and that by
9 A.M. it had moved an additional 3 miles. What time did
it start snowing? This is a more difficult snowplow prob-
lem because now a transcendental equation must be solved
numerically to find the value of k. (Answer: 4:27 A.M.)

68. Figure 1.4.11 shows a bead sliding down a frictionless
wire from point P to point Q. The brachistochrone prob-
lem asks what shape the wire should be in order to min-
imize the bead’s time of descent from P to Q. In June
of 1696, John Bernoulli proposed this problem as a pub-
lic challenge, with a 6-month deadline (later extended to
Easter 1697 at George Leibniz’s request). Isaac Newton,
then retired from academic life and serving as Warden
of the Mint in London, received Bernoulli’s challenge on
January 29, 1697. The very next day he communicated
his own solution—the curve of minimal descent time is an
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46 Chapter 1 First-Order Differential Equations

arc of an inverted cycloid—to the Royal Society of Lon-
don. For a modern derivation of this result, suppose the
bead starts from rest at the origin P and let y = y(x) be
the equation of the desired curve in a coordinate system
with the y-axis pointing downward. Then a mechanical
analogue of Snell’s law in optics implies that

sin α

v
= constant, (i)

where α denotes the angle of deflection (from the verti-
cal) of the tangent line to the curve—so cot α = y′(x)

(why?)—and v = √
2gy is the bead’s velocity when it has

descended a distance y vertically (from KE = 1
2 mv2 =

mgy = −PE).

Q

P

FIGURE 1.4.11. A bead sliding down a
wire—the brachistochrone problem.

(a) First derive from Eq. (i) the differential equation

dy

dx
=

√
2a − y

y
(ii)

where a is an appropriate positive constant.
(b) Substitute y = 2a sin2 t , dy = 4a sin t cos t dt in (ii)

to derive the solution

x = a(2t − sin 2t), y = a(1 − cos 2t) (iii)

for which t = y = 0 when x = 0. Finally, the sub-
stitution of θ = 2a in (iii) yields the standard para-
metric equations x = a(θ − sin θ), y = a(1 − cos θ)

of the cycloid that is generated by a point on the rim
of a circular wheel of radius a as it rolls along the x-
axis. [See Example 5 in Section 9.4 of Edwards and
Penney, Calculus: Early Transcendentals, 7th edition
(Upper Saddle River, NJ: Prentice Hall, 2008).]

69. Suppose a uniform flexible cable is suspended between
two points (±L , H) at equal heights located symmetri-
cally on either side of the x-axis (Fig. 1.4.12). Principles
of physics can be used to show that the shape y = y(x) of
the hanging cable satisfies the differential equation

a
d2 y

dx2
=

√
1 +

(
dy

dx

)2

,

where the constant a = T/ρ is the ratio of the cable’s
tension T at its lowest point x = 0 (where y′(0) = 0
) and its (constant) linear density ρ. If we substitute
v = dymyslashdx , dv/dx = d2 y/dx2 in this second-
order differential equation, we get the first-order equation

a
dv

dx
=

√
1 + v2.

Solve this differential equation for y′(x) = v(x) =
sinh(x/a). Then integrate to get the shape function

y(x) = a cosh
( x

a

)
+ C

of the hanging cable. This curve is called a catenary, from
the Latin word for chain.

y0

Sag: H − y0

y

(−L, H) (L, H)

x

FIGURE 1.4.12. The catenary.

1.4 Application The Logistic Equation

As in Eq. (3) of this section, the solution of a separable differential equation reduces
to the evaluation of two indefinite integrals. It is tempting to use a symbolic algebra
system for this purpose. We illustrate this approach using the logistic differential
equation

dx

dt
= ax − bx2 (1)

that models a population x(t) with births (per unit time) proportional to x and deaths
proportional to x2. Here we concentrate on the solution of Eq. (1) and defer discus-
sion of population applications to Section 2.1.
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1.4 Separable Equations and Applications 47

If a = 0.01 and b = 0.0001, for instance, Eq. (1) is

dx

dt
= (0.01)x − (0.0001)x2 = x

10000
(100 − x). (2)

Separation of variables leads to

∫
1

x(100 − x)
dx =

∫
1

10000
dt = t

10000
+ C. (3)

We can evaluate the integral on the left by using the Maple command

int(1/(x∗(100 - x)), x);
the Mathematica command

Integrate[ 1/(x∗(100 - x)), x ]
or the MATLAB command

syms x; int(1/(x∗(100 - x)))
Any computer algebra system gives a result of the form

1

100
ln x − 1

100
ln(x − 100) = t

10000
+ C (4)

equivalent to the graphing calculator result shown in Fig. 1.4.13.
FIGURE 1.4.13. TI-89 screen
showing the integral in Eq. (3).

You can now apply the initial condition x(0) = x0, combine logarithms, and
finally exponentiate to solve Eq. (4) for the particular solution

x(t) = 100x0et/100

100 − x0 + x0et/100
(5)

of Eq. (2). The slope field and solution curves shown in Fig. 1.4.14 suggest that,
whatever is the initial value x0, the solution x(t) approaches 100 as t → +∞. Can
you use Eq. (5) to verify this conjecture?

INVESTIGATION: For your own personal logistic equation, take a = m/n and
b = 1/n in Eq. (1), with m and n being the largest two distinct digits (in either
order) in your student ID number.

(a) First generate a slope field for your differential equation and include a sufficient
number of solution curves that you can see what happens to the population as
t → +∞. State your inference plainly.

(b) Next use a computer algebra system to solve the differential equation symboli-

t

x

0
0

200 400 600 800 1000

20
40
60
80

100
120
140
160
180
200

FIGURE 1.4.14. Slope field and
solution curves for
x ′ = (0.01)x − (0.0001)x2.

cally; then use the symbolic solution to find the limit of x(t) as t → +∞. Was
your graphically-based inference correct?

(c) Finally, state and solve a numerical problem using the symbolic solution. For
instance, how long does it take x to grow from a selected initial value x0 to a
given target value x1?
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48 Chapter 1 First-Order Differential Equations

1.5 Linear First-Order Equations

In Section 1.4 we saw how to solve a separable differential equation by integrating
after multiplying both sides by an appropriate factor. For instance, to solve the
equation

dy

dx
= 2xy (y > 0), (1)

we multiply both sides by the factor 1/y to get

1

y
· dy

dx
= 2x; that is, Dx (ln y) = Dx

(
x2

)
. (2)

Because each side of the equation in (2) is recognizable as a derivative (with respect
to the independent variable x), all that remains are two simple integrations, which
yield ln y = x2 + C . For this reason, the function ρ(y) = 1/y is called an integrat-
ing factor for the original equation in (1). An integrating factor for a differential
equation is a function ρ(x, y) such that the multiplication of each side of the differ-
ential equation by ρ(x, y) yields an equation in which each side is recognizable as
a derivative.

With the aid of the appropriate integrating factor, there is a standard technique
for solving the linear first-order equation

dy

dx
+ P(x)y = Q(x) (3)➤

on an interval on which the coefficient functions P(x) and Q(x) are continuous. We
multiply each side in Eq. (3) by the integrating factor

ρ(x) = e
∫

P(x) dx . (4)➤

The result is

e
∫

P(x) dx dy

dx
+ P(x)e

∫
P(x) dx y = Q(x)e

∫
P(x) dx . (5)

Because

Dx

[∫
P(x) dx

]
= P(x),

the left-hand side is the derivative of the product y(x) ·e
∫

P(x) dx , so Eq. (5) is equiv-
alent to

Dx

[
y(x) · e

∫
P(x) dx

]
= Q(x)e

∫
P(x) dx .

Integration of both sides of this equation gives

y(x)e
∫

P(x) dx =
∫ (

Q(x)e
∫

P(x) dx
)

dx + C.

Finally, solving for y, we obtain the general solution of the linear first-order equation
in (3):

y(x) = e− ∫
P(x) dx

[∫ (
Q(x)e

∫
P(x) dx

)
dx + C

]
. (6)

This formula should not be memorized. In a specific problem it generally is
simpler to use the method by which we developed the formula. That is, in order
to solve an equation that can be written in the form in Eq. (3) with the coefficient
functions P(x) and Q(x) displayed explicitly, you should attempt to carry out the
following steps.
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1.5 Linear First-Order Equations 49

METHOD: SOLUTION OF FIRST-ORDER EQUATIONS

1. Begin by calculating the integrating factor ρ(x) = e
∫

P(x) dx .
2. Then multiply both sides of the differential equation by ρ(x).
3. Next, recognize the left-hand side of the resulting equation as the derivative

of a product:
Dx [ρ(x)y(x)] = ρ(x)Q(x).

4. Finally, integrate this equation,

ρ(x)y(x) =
∫

ρ(x)Q(x) dx + C,

then solve for y to obtain the general solution of the original differential equa-
tion.

Remark 1: Given an initial condition y(x0) = y0, you can (as usual)
substitute x = x0 and y = y0 into the general solution and solve for the value of C
yielding the particular solution that satisfies this initial condition.

Remark 2: You need not supply explicitly a constant of integration when
you find the integrating factor ρ(x). For if we replace

∫
P(x) dx with

∫
P(x) dx + K

in Eq. (4), the result is

ρ(x) = eK+∫
P(x) dx = eK e

∫
P(x) dx .

But the constant factor eK does not affect materially the result of multiplying both
sides of the differential equation in (3) by ρ(x), so we might as well take K = 0.
You may therefore choose for

∫
P(x) dx any convenient antiderivative of P(x),

without bothering to add a constant of integration.

Example 1 Solve the initial value problem

dy

dx
− y = 11

8 e−x/3, y(0) = −1.

Solution Here we have P(x) ≡ −1 and Q(x) = 11
8 e−x/3, so the integrating factor is

ρ(x) = e
∫
(−1) dx = e−x .

Multiplication of both sides of the given equation by e−x yields

e−x dy

dx
− e−x y = 11

8 e−4x/3, (7)

which we recognize as
d

dx

(
e−x y

) = 11
8 e−4x/3.
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50 Chapter 1 First-Order Differential Equations

Hence integration with respect to x gives

e−x y =
∫

11
8 e−4x/3 dx = − 33

32 e−4x/3 + C,

and multiplication by ex gives the general solution

y(x) = Cex − 33
32 e−x/3. (8)

Substitution of x = 0 and y = −1 now gives C = 1
32 , so the desired particular

solution is

y(x) = 1
32 ex − 33

32 e−x/3 = 1
32

(
ex − 33e−x/3

)
.

Remark: Figure 1.5.1 shows a slope field and typical solution curves for
Eq. (7), including the one passing through the point (0, −1). Note that some solu-
tions grow rapidly in the positive direction as x increases, while others grow rapidly
in the negative direction. The behavior of a given solution curve is determined by
its initial condition y(0) = y0. The two types of behavior are separated by the par-
ticular solution y(x) = − 33

32 e−x/3 for which C = 0 in Eq. (8), so y0 = − 33
32 for the

solution curve that is dashed in Fig. 1.5.1. If y0 > − 33
32 , then C > 0 in Eq. (8), so

the term ex eventually dominates the behavior of y(x), and hence y(x) → +∞ as
x → +∞. But if y0 < − 33

32 , then C < 0, so both terms in y(x) are negative and
therefore y(x) → −∞ as x → +∞. Thus the initial condition y0 = − 33

32 is critical

0 1 2 3 4 5

0

1

2

x

y −1

−2

−3

−4

−1

y = −     exp(−x/3)33
32(0, −1)

FIGURE 1.5.1. Slope field and
solution curves for
y′ = y + 11

8 e−x/3.

in the sense that solutions that start above − 33
32 on the y-axis grow in the positive

direction, while solutions that start lower than − 33
32 grow in the negative direction as

x → +∞. The interpretation of a mathematical model often hinges on finding such
a critical condition that separates one kind of behavior of a solution from a different
kind of behavior.

Example 2 Find a general solution of

(x2 + 1)
dy

dx
+ 3xy = 6x . (9)

Solution After division of both sides of the equation by x2 + 1, we recognize the result

dy

dx
+ 3x

x2 + 1
y = 6x

x2 + 1

as a first-order linear equation with P(x) = 3x/(x2 + 1) and Q(x) = 6x/(x2 + 1).
Multiplication by

ρ(x) = exp

(∫
3x

x2 + 1
dx

)
= exp

(
3
2 ln(x2 + 1)

) = (x2 + 1)3/2

yields

(x2 + 1)3/2 dy

dx
+ 3x(x2 + 1)1/2 y = 6x(x2 + 1)1/2,

and thus
Dx

[
(x2 + 1)3/2 y

] = 6x(x2 + 1)1/2.
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1.5 Linear First-Order Equations 51

Integration then yields

(x2 + 1)3/2 y =
∫

6x(x2 + 1)1/2 dx = 2(x2 + 1)3/2 + C.

Multiplication of both sides by (x2 + 1)−3/2 gives the general solution

y(x) = 2 + C(x2 + 1)−3/2. (10)

Remark: Figure 1.5.2 shows a slope field and typical solution curves for
Eq. (9). Note that, as x → +∞, all other solution curves approach the constant
solution curve y(x) ≡ 2 that corresponds to C = 0 in Eq. (10). This constant
solution can be described as an equilibrium solution of the differential equation, be-
cause y(0) = 2 implies that y(x) = 2 for all x (and thus the value of the solution
remains forever where it starts). More generally, the word “equilibrium” connotes

−3
−2
−1

5
4

7
6

3
2
1

x
0 5

0

y

−5 1−4 2−3 3−2 4−1

FIGURE 1.5.2. Slope field and
solution curves for the differential
equation in Eq. (9).

“unchanging,” so by an equilibrium solution of a differential equation is meant a
constant solution y(x) ≡ c, for which it follows that y′(x) ≡ 0. Note that substi-
tution of y′ = 0 in the differential equation (9) yields 3xy = 6x , so it follows that
y = 2 if x �= 0. Hence we see that y(x) ≡ 2 is the only equilibrium solution of this
differential equation, as seems visually obvious in Fig. 1.5.2.

A Closer Look at the Method

The preceding derivation of the solution in Eq. (6) of the linear first-order equation
y′ + Py = Q bears closer examination. Suppose that the coefficient functions P(x)

and Q(x) are continuous on the (possibly unbounded) open interval I . Then the
antiderivatives ∫

P(x) dx and
∫ (

Q(x)e
∫

P(x) dx
)

dx

exist on I . Our derivation of Eq. (6) shows that if y = y(x) is a solution of Eq. (3)
on I , then y(x) is given by the formula in Eq. (6) for some choice of the constant
C . Conversely, you may verify by direct substitution (Problem 31) that the function
y(x) given in Eq. (6) satisfies Eq. (3). Finally, given a point x0 of I and any num-
ber y0, there is—as previously noted—a unique value of C such that y(x0) = y0.
Consequently, we have proved the following existence-uniqueness theorem.

THEOREM 1 The Linear First-Order Equation

If the functions P(x) and Q(x) are continuous on the open interval I containing
the point x0, then the initial value problem

dy

dx
+ P(x)y = Q(x), y(x0) = y0 (11)➤

has a unique solution y(x) on I , given by the formula in Eq. (6) with an appro-
priate value of C .

Remark 1: Theorem 1 gives a solution on the entire interval I for a linear
differential equation, in contrast with Theorem 1 of Section 1.3, which guarantees
only a solution on a possibly smaller interval.
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52 Chapter 1 First-Order Differential Equations

Remark 2: Theorem 1 tells us that every solution of Eq. (3) is included in
the general solution given in Eq. (6). Thus a linear first-order differential equation
has no singular solutions.

Remark 3: The appropriate value of the constant C in Eq. (6)—as needed
to solve the initial value problem in Eq. (11)—can be selected “automatically” by
writing

ρ(x) = exp

(∫ x

x0

P(t) dt

)
,

y(x) = 1

ρ(x)

[
y0 +

∫ x

x0

ρ(t)Q(t) dt

]
.

(12)

The indicated limits x0 and x effect a choice of indefinite integrals in Eq. (6) that
guarantees in advance that ρ(x0) = 1 and that y(x0) = y0 (as you can verify directly
by substituting x = x0 in Eqs. (12)).

Example 3 Solve the initial value problem

x2 dy

dx
+ xy = sin x, y(1) = y0. (13)

Solution Division by x2 gives the linear first-order equation

dy

dx
+ 1

x
y = sin x

x2

with P(x) = 1/x and Q(x) = (sin x)/x2. With x0 = 1 the integrating factor in (12)
is

ρ(x) = exp

(∫ x

1

1

t
dt

)
= exp(ln x) = x,

so the desired particular solution is given by

y(x) = 1

x

[
y0 +

∫ x

1

sin t

t
dt

]
. (14)

In accord with Theorem 1, this solution is defined on the whole positive x-axis.

Comment: In general, an integral such as the one in Eq. (14) would (for
given x) need to be approximated numerically—using Simpson’s rule, for instance—
to find the value y(x) of the solution at x . In this case, however, we have the sine
integral function

Si(x) =
∫ x

0

sin t

t
dt,

which appears with sufficient frequency in applications that its values have been
tabulated. A good set of tables of special functions is Abramowitz and Stegun,
Handbook of Mathematical Functions (New York: Dover, 1965). Then the particu-
lar solution in Eq. (14) reduces to

y(x) = 1

x

[
y0 +

∫ x

0

sin t

t
dt −

∫ 1

0

sin t

t
dt

]
= 1

x
[y0 + Si(x) − Si(1)] . (15)
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1.5 Linear First-Order Equations 53

The sine integral function is available in most scientific computing systems and can
be used to plot typical solution curves defined by Eq. (15). Figure 1.5.3 shows a

3

−3

x
0 15 20

0y

−2

1

−1

2

5 10

(1, 3)

(1, −3)

FIGURE 1.5.3. Typical solution
curves defined by Eq. (15).

selection of solution curves with initial values y(1) = y0 ranging from y0 = −3 to
y0 = 3. It appears that on each solution curve, y(x) → 0 as x → +∞, and this is
in fact true because the sine integral function is bounded.

In the sequel we will see that it is the exception—rather than the rule—when a
solution of a differential equation can be expressed in terms of elementary functions.
We will study various devices for obtaining good approximations to the values of
the nonelementary functions we encounter. In Chapter 2 we will discuss numerical
integration of differential equations in some detail.

Mixture Problems

As a first application of linear first-order equations, we consider a tank containing a
solution—a mixture of solute and solvent—such as salt dissolved in water. There is
both inflow and outflow, and we want to compute the amount x(t) of solute in the
tank at time t , given the amount x(0) = x0 at time t = 0. Suppose that solution
with a concentration of ci grams of solute per liter of solution flows into the tank
at the constant rate of ri liters per second, and that the solution in the tank—kept
thoroughly mixed by stirring—flows out at the constant rate of ro liters per second.

To set up a differential equation for x(t), we estimate the change �x in x
during the brief time interval [t, t + �t]. The amount of solute that flows into the
tank during �t seconds is ri ci �t grams. To check this, note how the cancellation
of dimensions checks our computations:

(
ri

liters

second

) (
ci

grams

liter

)
(�t seconds)

yields a quantity measured in grams.
The amount of solute that flows out of the tank during the same time interval

depends on the concentration co(t) of solute in the solution at time t . But as noted in
Fig. 1.5.4, co(t) = x(t)/V (t), where V (t) denotes the volume (not constant unless
ri = ro) of solution in the tank at time t . Then

Output:
ro  L /s,
co  g/L

x
V

Amount x(t)
Volume V(t)
Concentration co(t) =

Input: ri  L/s,  ci g/L

FIGURE 1.5.4. The single-tank
mixture problem.

�x = {grams input} − {grams output} ≈ ri ci �t − roco �t.

We now divide by �t :
�x

�t
≈ ri ci − roco.

Finally, we take the limit as �t → 0; if all the functions involved are continuous
and x(t) is differentiable, then the error in this approximation also approaches zero,
and we obtain the differential equation

dx

dt
= ri ci − roco, (16)➤

in which ri , ci , and ro are constants, but co denotes the variable concentration

co(t) = x(t)

V (t)
(17)
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54 Chapter 1 First-Order Differential Equations

of solute in the tank at time t . Thus the amount x(t) of solute in the tank satisfies
the differential equation

dx

dt
= ri ci − ro

V
x . (18)

If V0 = V (0), then V (t) = V0 + (ri − ro)t , so Eq. (18) is a linear first-order
differential equation for the amount x(t) of solute in the tank at time t .

Important: Equation (18) need not be committed to memory. It is the pro-
cess we used to obtain that equation—examination of the behavior of the system
over a short time interval [t, t + �t]—that you should strive to understand, because
it is a very useful tool for obtaining all sorts of differential equations.

Remark: It was convenient for us to use g/L mass/volume units in deriving
Eq. (18). But any other consistent system of units can be used to measure amounts
of solute and volumes of solution. In the following example we measure both in
cubic kilometers.

Example 4 Assume that Lake Erie has a volume of 480 km3 and that its rate of inflow (from
Lake Huron) and outflow (to Lake Ontario) are both 350 km3 per year. Suppose that
at the time t = 0 (years), the pollutant concentration of Lake Erie—caused by past
industrial pollution that has now been ordered to cease—is five times that of Lake
Huron. If the outflow henceforth is perfectly mixed lake water, how long will it take
to reduce the pollution concentration in Lake Erie to twice that of Lake Huron?

Solution Here we have

V = 480 (km3),

ri = ro = r = 350 (km3/yr),

ci = c (the pollutant concentration of Lake Huron), and

x0 = x(0) = 5cV,

and the question is this: When is x(t) = 2cV ? With this notation, Eq. (18) is the
separable equation

dx

dt
= rc − r

V
x, (19)

which we rewrite in the linear first-order form

dx

dt
+ px = q (20)

with constant coefficients p = r/V , q = rc, and integrating factor ρ = ept . You
can either solve this equation directly or apply the formula in (12). The latter gives

x(t) = e−pt

[
x0 +

∫ t

0
qept dt

]
= e−pt

[
x0 + q

p

(
ept − 1

)]

= e−r t/V

[
5cV + rc

r/V

(
ert/V − 1

)] ;

x(t) = cV + 4cV e−r t/V . (21)
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To find when x(t) = 2cV , we therefore need only solve the equation

cV + 4cV e−r t/V = 2cV for t = V

r
ln 4 = 480

350
ln 4 ≈ 1.901 (years).

Example 5 A 120-gallon (gal) tank initially contains 90 lb of salt dissolved in 90 gal of water.
Brine containing 2 lb/gal of salt flows into the tank at the rate of 4 gal/min, and the
well-stirred mixture flows out of the tank at the rate of 3 gal/min. How much salt
does the tank contain when it is full?

Solution The interesting feature of this example is that, due to the differing rates of inflow
and outflow, the volume of brine in the tank increases steadily with V (t) = 90 + t
gallons. The change �x in the amount x of salt in the tank from time t to time
t + �t (minutes) is given by

�x ≈ (4)(2) �t − 3

(
x

90 + t

)
�t,

so our differential equation is

dx

dt
+ 3

90 + t
x = 8.

An integrating factor is

ρ(x) = exp

(∫
3

90 + t
dt

)
= e3 ln(90+t) = (90 + t)3,

which gives

Dt
[
(90 + t)3x

] = 8(90 + t)3;
(90 + t)3x = 2(90 + t)4 + C.

Substitution of x(0) = 90 gives C = −(90)4, so the amount of salt in the tank at
time t is

x(t) = 2(90 + t) − 904

(90 + t)3
.

The tank is full after 30 min, and when t = 30, we have

x(30) = 2(90 + 30) − 904

1203
≈ 202 (lb)

of salt in the tank.
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56 Chapter 1 First-Order Differential Equations

1.5 Problems

Find general solutions of the differential equations in Prob-
lems 1 through 25. If an initial condition is given, find the
corresponding particular solution. Throughout, primes denote
derivatives with respect to x.

1. y′ + y = 2, y(0) = 0 2. y′ − 2y = 3e2x , y(0) = 0
3. y′ + 3y = 2xe−3x 4. y′ − 2xy = ex2

5. xy′ + 2y = 3x , y(1) = 5
6. xy′ + 5y = 7x2, y(2) = 5
7. 2xy′ + y = 10

√
x 8. 3xy′ + y = 12x

9. xy′ − y = x , y(1) = 7 10. 2xy′ − 3y = 9x3

11. xy′ + y = 3xy, y(1) = 0
12. xy′ + 3y = 2x5, y(2) = 1
13. y′ + y = ex , y(0) = 1
14. xy′ − 3y = x3, y(1) = 10
15. y′ + 2xy = x , y(0) = −2
16. y′ = (1 − y) cos x , y(π) = 2
17. (1 + x)y′ + y = cos x , y(0) = 1
18. xy′ = 2y + x3 cos x
19. y′ + y cot x = cos x
20. y′ = 1 + x + y + xy, y(0) = 0
21. xy′ = 3y + x4 cos x , y(2π) = 0
22. y′ = 2xy + 3x2 exp(x2), y(0) = 5
23. xy′ + (2x − 3)y = 4x4

24. (x2 + 4)y′ + 3xy = x , y(0) = 1

25. (x2 + 1)
dy

dx
+ 3x3 y = 6x exp

(− 3
2 x2

)
, y(0) = 1

Solve the differential equations in Problems 26 through 28 by
regarding y as the independent variable rather than x.

26. (1 − 4xy2)
dy

dx
= y3 27. (x + yey)

dy

dx
= 1

28. (1 + 2xy)
dy

dx
= 1 + y2

29. Express the general solution of dy/dx = 1 + 2xy in terms
of the error function

erf(x) = 2√
π

∫ x

0
e−t2

dt.

30. Express the solution of the initial value problem

2x
dy

dx
= y + 2x cos x, y(1) = 0

as an integral as in Example 3 of this section.

Problems 31 and 32 illustrate—for the special case of first-
order linear equations—techniques that will be important
when we study higher-order linear equations in Chapter 3.

31. (a) Show that
yc(x) = Ce− ∫

P(x) dx

is a general solution of dy/dx + P(x)y = 0. (b) Show
that

yp(x) = e− ∫
P(x) dx

[∫ (
Q(x)e

∫
P(x) dx

)
dx

]

is a particular solution of dy/dx + P(x)y = Q(x).
(c) Suppose that yc(x) is any general solution of dy/dx +
P(x)y = 0 and that yp(x) is any particular solution of
dy/dx + P(x)y = Q(x). Show that y(x) = yc(x)+ yp(x)

is a general solution of dy/dx + P(x)y = Q(x).

32. (a) Find constants A and B such that yp(x) = A sin x +
B cos x is a solution of dy/dx + y = 2 sin x . (b) Use the
result of part (a) and the method of Problem 31 to find the
general solution of dy/dx + y = 2 sin x . (c) Solve the
initial value problem dy/dx + y = 2 sin x , y(0) = 1.

33. A tank contains 1000 liters (L) of a solution consisting of
100 kg of salt dissolved in water. Pure water is pumped
into the tank at the rate of 5 L/s, and the mixture—kept
uniform by stirring— is pumped out at the same rate. How
long will it be until only 10 kg of salt remains in the tank?

34. Consider a reservoir with a volume of 8 billion cubic feet
(ft3) and an initial pollutant concentration of 0.25%. There
is a daily inflow of 500 million ft3 of water with a pollu-
tant concentration of 0.05% and an equal daily outflow of
the well-mixed water in the reservoir. How long will it
take to reduce the pollutant concentration in the reservoir
to 0.10%?

35. Rework Example 4 for the case of Lake Ontario, which
empties into the St. Lawrence River and receives inflow
from Lake Erie (via the Niagara River). The only differ-
ences are that this lake has a volume of 1640 km3 and an
inflow-outflow rate of 410 km3/year.

36. A tank initially contains 60 gal of pure water. Brine
containing 1 lb of salt per gallon enters the tank at
2 gal/min, and the (perfectly mixed) solution leaves the
tank at 3 gal/min; thus the tank is empty after exactly 1 h.
(a) Find the amount of salt in the tank after t minutes.
(b) What is the maximum amount of salt ever in the tank?

37. A 400-gal tank initially contains 100 gal of brine contain-
ing 50 lb of salt. Brine containing 1 lb of salt per gallon
enters the tank at the rate of 5 gal/s, and the well-mixed
brine in the tank flows out at the rate of 3 gal/s. How
much salt will the tank contain when it is full of brine?

38. Consider the cascade of two tanks shown in Fig. 1.5.5,
with V1 = 100 (gal) and V2 = 200 (gal) the volumes of
brine in the two tanks. Each tank also initially contains
50 lb of salt. The three flow rates indicated in the fig-
ure are each 5 gal/min, with pure water flowing into tank
1. (a) Find the amount x(t) of salt in tank 1 at time t .
(b) Suppose that y(t) is the amount of salt in tank 2 at
time t . Show first that

dy

dt
= 5x

100
− 5y

200
,

and then solve for y(t), using the function x(t) found in
part (a). (c) Finally, find the maximum amount of salt
ever in tank 2.
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Tank 1
Volume V1
Amount x

Tank 2
Volume V2
Amount y

FIGURE 1.5.5. A cascade of two tanks.

39. Suppose that in the cascade shown in Fig. 1.5.5, tank 1
initially contains 100 gal of pure ethanol and tank 2 ini-
tially contains 100 gal of pure water. Pure water flows
into tank 1 at 10 gal/min, and the other two flow rates
are also 10 gal/min. (a) Find the amounts x(t) and y(t)
of ethanol in the two tanks at time t � 0. (b) Find the
maximum amount of ethanol ever in tank 2.

40. A multiple cascade is shown in Fig. 1.5.6. At time t = 0,
tank 0 contains 1 gal of ethanol and 1 gal of water; all the
remaining tanks contain 2 gal of pure water each. Pure
water is pumped into tank 0 at 1 gal/min, and the vary-
ing mixture in each tank is pumped into the one below it
at the same rate. Assume, as usual, that the mixtures are
kept perfectly uniform by stirring. Let xn(t) denote the
amount of ethanol in tank n at time t .

Tank 2

Tank 1

Tank n

Tank 0

FIGURE 1.5.6. A multiple cascade.

(a) Show that x0(t) = e−t/2. (b) Show by induction on n

that

xn(t) = tne−t/2

n! 2n
for n > 0.

(c) Show that the maximum value of xn(t) for n > 0 is
Mn = xn(2n) = nne−n/n!. (d) Conclude from Stirling’s
approximation n! ≈ nne−n

√
2πn that Mn ≈ (2πn)−1/2.

41. A 30-year-old woman accepts an engineering position
with a starting salary of $30,000 per year. Her salary
S(t) increases exponentially, with S(t) = 30et/20 thou-
sand dollars after t years. Meanwhile, 12% of her salary
is deposited continuously in a retirement account, which
accumulates interest at a continuous annual rate of 6%.
(a) Estimate �A in terms of �t to derive the differential
equation satisfied by the amount A(t) in her retirement
account after t years. (b) Compute A(40), the amount
available for her retirement at age 70.

42. Suppose that a falling hailstone with density δ = 1 starts
from rest with negligible radius r = 0. Thereafter its ra-
dius is r = kt (k is a constant) as it grows by accretion
during its fall. Use Newton’s second law—according to
which the net force F acting on a possibly variable mass
m equals the time rate of change dp/dt of its momentum
p = mv—to set up and solve the initial value problem

d

dt
(mv) = mg, v(0) = 0,

where m is the variable mass of the hailstone, v = dy/dt
is its velocity, and the positive y-axis points downward.
Then show that dv/dt = g/4. Thus the hailstone falls as
though it were under one-fourth the influence of gravity.

43. Figure 1.5.7 shows a slope field and typical solution
curves for the equation y′ = x − y. (a) Show that ev-
ery solution curve approaches the straight line y = x − 1
as x → +∞. (b) For each of the five values y1 = 3.998,
3.999, 4.000, 4.001, and 4.002, determine the initial value
y0 (accurate to four decimal places) such that y(5) = y1

for the solution satisfying the initial condition y(−5) =
y0.

0
x

y 0

− 10
− 8

− 4
− 2

− 6

2
4

8
10

6

− 5 5

FIGURE 1.5.7. Slope field and solution
curves for y′ = x − y.
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58 Chapter 1 First-Order Differential Equations

44. Figure 1.5.8 shows a slope field and typical solution
curves for the equation y′ = x + y. (a) Show that every
solution curve approaches the straight line y = −x − 1
as x → −∞. (b) For each of the five values y1 = −10,
−5, 0, 5, and 10, determine the initial value y0 (accurate to
five decimal places) such that y(5) = y1 for the solution
satisfying the initial condition y(−5) = y0.

0
x

y 0

− 10
− 8

− 4
− 2

− 6

2
4

8
10

6

− 5 5

FIGURE 1.5.8. Slope field and solution
curves for y′ = x + y.

Problems 45 and 46 deal with a shallow reservoir that has
a one square kilometer water surface and an average water
depth of 2 meters. Initially it is filled with fresh water, but at
time t = 0 water contaminated with a liquid pollutant begins
flowing into the reservoir at the rate of 200 thousand cubic
meters per month. The well-mixed water in the reservoir flows
out at the same rate. Your first task is to find the amount x(t) of
pollutant (in millions of liters) in the reservoir after t months.

45. The incoming water has a pollutant concentration of
c(t) = 10 liters per cubic meter (L/m3). Verify that
the graph of x(t) resembles the steadily rising curve in
Fig. 1.5.9, which approaches asymptotically the graph of
the equilibrium solution x(t) ≡ 20 that corresponds to the
reservoir’s long-term pollutant content. How long does it
take the pollutant concentration in the reservoir to reach
5 L/m3?

10 20 30 40 50 60

5

10

15

20

25

t

x

x = 20

Problem 46

Problem 45

FIGURE 1.5.9. Graphs of solutions in
Problems 45 and 46.

46. The incoming water has pollutant concentration c(t) =
10(1 + cos t) L/m3 that varies between 0 and 20, with an
average concentration of 10 L/m3 and a period of oscilla-
tion of slightly over 6 1

4 months. Does it seem predictable
that the lake’s polutant content should ultimately oscillate
periodically about an average level of 20 million liters?
Verify that the graph of x(t) does, indeed, resemble the
oscillatory curve shown in Fig. 1.5.9. How long does it
take the pollutant concentration in the reservoir to reach
5 L/m3?

1.5 Application Indoor Temperature Oscillations

For an interesting applied problem that involves the solution of a linear differen-
tial equation, consider indoor temperature oscillations that are driven by outdoor
temperature oscillations of the form

A(t) = a0 + a1 cos ωt + b1 sin ωt. (1)

If ω = π/12, then these oscillations have a period of 24 hours (so that the cycle of
outdoor temperatures repeats itself daily) and Eq. (1) provides a realistic model for
the temperature outside a house on a day when no change in the overall day-to-day
weather pattern is occurring. For instance, for a typical July day in Athens, GA
with a minimum temperature of 70◦F when t = 4 (4 A.M.) and a maximum of
90◦F when t = 16 (4 P.M.), we would take

A(t) = 80 − 10 cos ω(t − 4) = 80 − 5 cos ωt − 5
√

3 sin ωt. (2)

We derived Eq. (2) by using the identity cos(α − β) = cos α cos β + sin α sin β to
get a0 = 80, a1 = −5, and b1 = −5

√
3 in Eq. (1).

If we write Newton’s law of cooling (Eq. (3) of Section 1.1) for the corre-
sponding indoor temperature u(t) at time t , but with the outside temperature A(t)
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1.5 Linear First-Order Equations 59

given by Eq. (1) instead of a constant ambient temperature A, we get the linear
first-order differential equation

du

dt
= −k(u − A(t));

that is,

du

dt
+ ku = k(a0 + a1 cos ωt + b1 sin ωt) (3)

with coefficient functions P(t) ≡ k and Q(t) = k A(t). Typical values of the
proportionality constant k range from 0.2 to 0.5 (although k might be greater than
0.5 for a poorly insulated building with open windows, or less than 0.2 for a well-
insulated building with tightly sealed windows).

SCENARIO: Suppose that our air conditioner fails at time t0 = 0 one midnight,
and we cannot afford to have it repaired until payday at the end of the month. We
therefore want to investigate the resulting indoor temperatures that we must endure
for the next several days.

Begin your investigation by solving Eq. (3) with the initial condition u(0) =
u0 (the indoor temperature at the time of the failure of the air conditioner). You
may want to use the integral formulas in 49 and 50 of the endpapers, or possibly a
computer algebra system. You should get the solution

u(t) = a0 + c0e−kt + c1 cos ωt + d1 sin ωt, (4)

where

c0 = u0 − a0 − k2a1 − kωb1

k2 + ω2
,

c1 = k2a1 − kωb1

k2 + ω2
, d1 = kωa1 + k2b1

k2 + ω2

with ω = π/12.
With a0 = 80, a1 = −5, b1 = −5

√
3 (as in Eq. (2)), ω = π/12, and k = 0.2

(for instance), this solution reduces (approximately) to

u(t) = 80 + e−t/5 (u0 − 82.3351) + (2.3351) cos
π t

12
− (5.6036) sin

π t

12
. (5)

Observe first that the “damped” exponential term in Eq. (5) approaches zero
as t → +∞, leaving the long-term “steady periodic” solution

usp(t) = 80 + (2.3351) cos
π t

12
− (5.6036) sin

π t

12
. (6)

Consequently, the long-term indoor temperatures oscillate every 24 hours around
the same average temperature 80◦F as the average outdoor temperature.

Figure 1.5.10 shows a number of solution curves corresponding to possible
initial temperatures u0 ranging from 65◦F to 95◦F. Observe that—whatever the

0 20 3010 40
t (h)

u 
(d

eg
)

100

95

90

85

80

75

70

65

60
t = 12 t = 24 t = 36

u0 = 95

u0 = 65

FIGURE 1.5.10. Solution curves
given by Eq. (5) with u0 = 65, 68,
71, . . . , 92, 95.

initial temperature—the indoor temperature “settles down” within about 18 hours
to a periodic daily oscillation. But the amplitude of temperature variation is less
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indoors than outdoors. Indeed, using the trigonometric identity mentioned earlier,
Eq. (6) can be rewritten (verify this!) as

u(t) = 80 − (6.0707) cos

(
π t

12
− 1.9656

)

= 80 − (6.0707) cos
π

12
(t − 7.5082). (7)

Do you see that this implies that the indoor temperature varies between a minimum
of about 74◦F and a maximum of about 86◦F?

Finally, comparison of Eqs. (2) and (7) indicates that the indoor temperature
lags behind the outdoor temperature by about 7.5082 − 4 ≈ 3.5 hours, as illustrated
in Fig. 1.5.11. Thus the temperature inside the house continues to rise until about
7:30 P.M. each evening, so the hottest part of the day inside is early evening rather
than late afternoon (as outside).

For a personal problem to investigate, carry out a similar analysis using av-

0 20 3010 40
t (h)

u 
(d

eg
)

100

95

90

85

80

75

70

65

60
t = 12 t = 24 t = 36

Outdoor
temperature4 P.M.

Indoor
temperature

7:30 P.M.

FIGURE 1.5.11. Comparison of
indoor and outdoor temperature
oscillations.

erage July daily maximum/minimum figures for your own locale and a value of k
appropriate to your own home. You might also consider a winter day instead of
a summer day. (What is the winter-summer difference for the indoor temperature
problem?) You may wish to explore the use of available technology both to solve
the differential equation and to graph its solution for the indoor temperature in com-
parison with the outdoor temperature.

1.6 Substitution Methods and Exact Equations

The first-order differential equations we have solved in the previous sections have
all been either separable or linear. But many applications involve differential equa-
tions that are neither separable nor linear. In this section we illustrate (mainly with
examples) substitution methods that sometimes can be used to transform a given
differential equation into one that we already know how to solve.

For instance, the differential equation

dy

dx
= f (x, y), (1)

with dependent variable y and independent variable x , may contain a conspicuous
combination

v = α(x, y) (2)

of x and y that suggests itself as a new independent variable v. Thus the differential
equation

dy

dx
= (x + y + 3)2

practically demands the substitution v = x + y + 3 of the form in Eq. (2).
If the substitution relation in Eq. (2) can be solved for

y = β(x, v), (3)

Pearson Custom Publishing

Not For Resale
Or

Distribution



1.6 Substitution Methods and Exact Equations 61

then application of the chain rule—regarding v as an (unknown) function of x—
yields

dy

dx
= ∂β

∂x

dx

dx
+ ∂β

∂v

dv

dx
= βx + βv

dv

dx
, (4)

where the partial derivatives ∂β/∂x = βx(x, v) and ∂β/∂v = βv(x, v) are known
functions of x and v. If we substitute the right-hand side in (4) for dy/dx in Eq. (1)
and then solve for dv/dx , the result is a new differential equation of the form

dv

dx
= g(x, v) (5)

with new dependent variable v. If this new equation is either separable or linear,
then we can apply the methods of preceding sections to solve it.

If v = v(x) is a solution of Eq. (5), then y = β(x, v(x)) will be a solution of
the original Eq. (1). The trick is to select a substitution such that the transformed
Eq. (5) is one we can solve. Even when possible, this is not always easy; it may
require a fair amount of ingenuity or trial and error.

Example 1 Solve the differential equation

dy

dx
= (x + y + 3)2.

Solution As indicated earlier, let’s try the substitution

v = x + y + 3; that is, y = v − x − 3.

Then
dy

dx
= dv

dx
− 1,

so the transformed equation is

dv

dx
= 1 + v2.

This is a separable equation, and we have no difficulty in obtaining its solution

x =
∫

dv

1 + v2
= tan−1 v + C.

So v = tan(x − C). Because v = x + y + 3, the general solution of the original
equation dy/dx = (x + y + 3)2 is x + y + 3 = tan(x − C); that is,

y(x) = tan(x − C) − x − 3.

Remark: Figure 1.6.1 shows a slope field and typical solution curves for
the differential equation of Example 1. We see that, although the function f (x, y) =
(x+y+3)2 is continuously differentiable for all x and y, each solution is continuous
only on a bounded interval. In particular, because the tangent function is continuous
on the open interval (−π/2, π/2), the particular solution with arbitrary constant
value C is continuous on the interval where −π/2 < x−C < π/2; that is, C−π/2 <

0
x

y 0

− 10
− 8

− 4
− 2

− 6

2
4

8
10

6

− 5 5

FIGURE 1.6.1. Slope field and
solution curves for
y′ = (x + y + 3)2.

x < C + π/2. This situation is fairly typical of nonlinear differential equations, in
contrast with linear differential equations, whose solutions are continuous wherever
the coefficient functions in the equation are continuous.
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62 Chapter 1 First-Order Differential Equations

Example 1 illustrates the fact that any differential equation of the form

dy

dx
= F(ax + by + c) (6)

can be transformed into a separable equation by use of the substitution v = ax +
by + c (see Problem 55). The paragraphs that follow deal with other classes of
first-order equations for which there are standard substitutions that are known to
succeed.

Homogeneous Equations

A homogeneous first-order differential equation is one that can be written in the
form

dy

dx
= F

( y

x

)
. (7)➤

If we make the substitutions

v = y

x
, y = vx,

dy

dx
= v + x

dv

dx
, (8)

then Eq. (7) is transformed into the separable equation

x
dv

dx
= F(v) − v.

Thus every homogeneous first-order differential equation can be reduced to an inte-
gration problem by means of the substitutions in (8).

Remark: A dictionary definition of “homogeneous” is “of a similar kind
or nature.” Consider a differential equation of the form

Axm yn dy

dx
= Bx p yq + Cxr ys (∗)

whose polynomial coefficient functions are “homogeneous” in the sense that each
of their terms has the same total degree, m + n = p + q = r + s = K . If we
divide each side of (∗) by x K , then the result—because xm yn/xm+n = (y/x)n , and
so forth—is the equation

A
( y

x

)n dy

dx
= B

( y

x

)q + C
( y

x

)s

which evidently can be written (by another division) in the form of Eq. (7). More
generally, a differential equation of the form P(x, y)y′ = Q(x, y) with polynomial
coefficients P and Q is homogeneous if the terms in these polynomials all have the
same total degree K . The differential equation in the following example is of this
form with K = 2.

Example 2 Solve the differential equation

2xy
dy

dx
= 4x2 + 3y2.
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1.6 Substitution Methods and Exact Equations 63

Solution This equation is neither separable nor linear, but we recognize it as a homogeneous
equation by writing it in the form

dy

dx
= 4x2 + 3y2

2xy
= 2

(
x

y

)
+ 3

2

( y

x

)
.

The substitutions in (8) then take the form

y = vx,
dy

dx
= v + x

dv

dx
, v = y

x
, and

1

v
= x

y
.

These yield

v + x
dv

dx
= 2

v
+ 3

2
v,

and hence

x
dv

dx
= 2

v
+ v

2
= v2 + 4

2v
;

∫
2v

v2 + 4
dv =

∫
1

x
dx;

ln(v2 + 4) = ln |x | + ln C.

We apply the exponential function to both sides of the last equation to obtain

v2 + 4 = C |x |;
y2

x2
+ 4 = C |x |;

y2 + 4x2 = kx3.

Note that the left-hand side of this equation is necessarily nonnegative. It follows
that k > 0 in the case of solutions that are defined for x > 0, while k < 0 for
solutions where x < 0. Indeed, the family of solution curves illustrated in Fig. 1.6.2
exhibits symmetry about both coordinate axes. Actually, there are positive-valued
and negative-valued solutions of the forms y(x) = ±√

kx3 − 4x2 that are defined
for x > 4/k if the constant k is positive, and for x < 4/k if k is negative.

6

−6

x
0 6

0y

−6

−4

2

−2

4

2−4 4−2

FIGURE 1.6.2. Slope field and
solution curves for
2xyy′ = 4x2 + 3y2.

Example 3 Solve the initial value problem

x
dy

dx
= y +

√
x2 − y2, y(x0) = 0,

where x0 > 0.

Solution We divide both sides by x and find that

dy

dx
= y

x
+

√
1 −

( y

x

)2
,
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64 Chapter 1 First-Order Differential Equations

so we make the substitutions in (8); we get

v + x
dv

dx
= v +

√
1 − v2 ;

∫
1√

1 − v2
dv =

∫
1

x
dx;

sin−1 v = ln x + C.

We need not write ln |x | because x > 0 near x = x0 > 0. Now note that v(x0) =
y(x0)/x0 = 0, so C = sin−1 0 − ln x0 = − ln x0. Hence

v = y

x
= sin (ln x − ln x0) = sin

(
ln

x

x0

)
,

and therefore

y(x) = x sin

(
ln

x

x0

)
is the desired particular solution. Figure 1.6.3 shows some typical solution curves.
Because of the radical in the differential equation, these solution curves are confined
to the indicated triangular region x � |y|. You can check that the boundary lines
y = x and y = −x (for x > 0) are singular solution curves that consist of points of
tangency with the solution curves found earlier.

0 20 403010 50
x

y = x

y = −x

y

50
40
30
20
10

0

−50
−40
−30
−20
−10

(10, 0)

y = x sin(ln(x/10))
y = x sin(ln(x/20))

(20, 0)

FIGURE 1.6.3. Solution curves
for xy′ = y + √

x2 − y2.

Bernoulli Equations

A first-order differential equation of the form

dy

dx
+ P(x)y = Q(x)yn (9)➤

is called a Bernoulli equation. If either n = 0 or n = 1, then Eq. (9) is linear.
Otherwise, as we ask you to show in Problem 56, the substitution

v = y1−n (10)➤

transforms Eq. (9) into the linear equation

dv

dx
+ (1 − n)P(x)v = (1 − n)Q(x).

Rather than memorizing the form of this transformed equation, it is more efficient
to make the substitution in Eq. (10) explicitly, as in the following examples.

Example 4 If we rewrite the homogeneous equation 2xyy′ = 4x2 + 3y2 of Example 2 in the
form

dy

dx
− 3

2x
y = 2x

y
,

we see that it is also a Bernoulli equation with P(x) = −3/(2x), Q(x) = 2x ,
n = −1, and 1 − n = 2. Hence we substitute

v = y2, y = v1/2, and
dy

dx
= dy

dv

dv

dx
= 1

2
v−1/2 dv

dx
.
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1.6 Substitution Methods and Exact Equations 65

This gives
1

2
v−1/2 dv

dx
− 3

2x
v1/2 = 2xv−1/2.

Then multiplication by 2v1/2 produces the linear equation

dv

dx
− 3

x
v = 4x

with integrating factor ρ = e
∫
(−3/x) dx = x−3. So we obtain

Dx(x−3v) = 4

x2
;

x−3v = −4

x
+ C;

x−3 y2 = −4

x
+ C;

y2 = −4x2 + Cx3.

Example 5 The equation

x
dy

dx
+ 6y = 3xy4/3

is neither separable nor linear nor homogeneous, but it is a Bernoulli equation with
n = 4

3 , 1 − n = − 1
3 . The substitutions

v = y−1/3, y = v−3, and
dy

dx
= dy

dv

dv

dx
= −3v−4 dv

dx

transform it into

−3xv−4 dv

dx
+ 6v−3 = 3xv−4.

Division by −3xv−4 yields the linear equation

dv

dx
− 2

x
v = −1

with integrating factor ρ = e
∫
(−2/x) dx = x−2. This gives

Dx(x−2v) = − 1

x2
; x−2v = 1

x
+ C; v = x + Cx2;

and finally,

y(x) = 1

(x + Cx2)3
.
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66 Chapter 1 First-Order Differential Equations

Example 6 The equation

2xe2y dy

dx
= 3x4 + e2y (11)

is neither separable, nor linear, nor homogeneous, nor is it a Bernoulli equation. But
we observe that y appears only in the combinations e2y and Dx(e2y) = 2e2y y′. This
prompts the substitution

v = e2y,
dv

dx
= 2e2y dy

dx

that transforms Eq. (11) into the linear equation xv′(x) = 3x4 + v(x); that is,

dv

dx
− 1

x
v = 3x3.

After multiplying by the integrating factor ρ = 1/x , we find that

1

x
v =

∫
3x2 dx = x3 + C, so e2y = v = x4 + Cx,

and hence

y(x) = 1
2 ln

∣∣x4 + Cx
∣∣ .

Flight Trajectories

Suppose that an airplane departs from the point (a, 0) located due east of its intended
destination—an airport located at the origin (0, 0). The plane travels with constant
speed v0 relative to the wind, which is blowing due north with constant speed w.

x

y

wy = f (x)

(a, 0)

v0

FIGURE 1.6.4. The airplane
headed for the origin.

As indicated in Fig. 1.6.4, we assume that the plane’s pilot maintains its heading
directly toward the origin.

Figure 1.6.5 helps us derive the plane’s velocity components relative to the
ground. They are

x

w

θ

(x, y)

x2 + y2

y
v0

FIGURE 1.6.5. The components
of the velocity vector of the
airplane.

dx

dt
= −v0 cos θ = − v0x√

x2 + y2
,

dy

dt
= −v0 sin θ + w = − v0 y√

x2 + y2
+ w.

Hence the trajectory y = f (x) of the plane satisfies the differential equation

dy

dx
= dy/dt

dx/dt
= 1

v0x

(
v0 y − w

√
x2 + y2

)
. (12)

If we set

k = w

v0
, (13)
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1.6 Substitution Methods and Exact Equations 67

the ratio of the windspeed to the plane’s airspeed, then Eq. (12) takes the homoge-
neous form

dy

dx
= y

x
− k

[
1 +

( y

x

)2
]1/2

. (14)

The substitution y = xv, y′ = v + xv′ then leads routinely to

∫
dv√

1 + v2
= −

∫
k

x
dx . (15)

By trigonometric substitution, or by consulting a table for the integral on the left,
we find that

ln
(
v +

√
1 + v2

)
= −k ln x + C, (16)

and the initial condition v(a) = y(a)/a = 0 yields

C = k ln a. (17)

As we ask you to show in Problem 68, the result of substituting (17) in Eq. (16) and
then solving for v is

v = 1

2

[( x

a

)−k −
( x

a

)k
]

. (18)

Because y = xv, we finally obtain

y(x) = a

2

[( x

a

)1−k −
( x

a

)1+k
]

(19)

for the equation of the plane’s trajectory.
Note that only in the case k < 1 (that is, w < v0) does the curve in Eq. (19)

pass through the origin, so that the plane reaches its destination. If w = v0 (so
that k = 1), then Eq. (19) takes the form y(x) = 1

2 a(1 − x2/a2), so the plane’s
trajectory approaches the point (0, a/2) rather than (0, 0). The situation is even

y

x(0, 0)

(0, a/2)

w < v0

w > v0

w = v0

(a, 0)

FIGURE 1.6.6. The three cases
w < v0 (plane velocity exceeds
wind velocity), w = v0 (equal
velocities), and w > v0 (wind is
greater).

worse if w > v0 (so k > 1)—in this case it follows from Eq. (19) that y → +∞ as
x → 0. The three cases are illustrated in Fig. 1.6.6.

Example 7 If a = 200 mi, v0 = 500 mi/h, and w = 100 mi/h, then k = w/v0 = 1
5 , so the plane

will succeed in reaching the airport at (0, 0). With these values, Eq. (19) yields

y(x) = 100

[( x

200

)4/5 −
( x

200

)6/5
]

. (20)

Now suppose that we want to find the maximum amount by which the plane is
blown off course during its trip. That is, what is the maximum value of y(x) for
0 � x � 200?

Solution Differentiation of the function in Eq. (20) yields

dy

dx
= 1

2

[
4

5

( x

200

)−1/5 − 6

5

( x

200

)1/5
]

,
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68 Chapter 1 First-Order Differential Equations

and we readily solve the equation y′(x) = 0 to obtain (x/200)2/5 = 2
3 . Hence

ymax = 100

[(
2

3

)2

−
(

2

3

)3
]

= 400

27
≈ 14.81.

Thus the plane is blown almost 15 mi north at one point during its westward journey.
(The graph of the function in Eq. (20) is the one used to construct Fig. 1.6.4. The
vertical scale there is exaggerated by a factor of 4.)

Exact Differential Equations

We have seen that a general solution y(x) of a first-order differential equation is
often defined implicitly by an equation of the form

F(x, y(x)) = C, (21)

where C is a constant. On the other hand, given the identity in (21), we can recover
the original differential equation by differentiating each side with respect to x . Pro-
vided that Eq. (21) implicitly defines y as a differentiable function of x , this gives
the original differential equation in the form

∂ F

∂x
+ ∂ F

∂y

dy

dx
= 0;

that is,

M(x, y) + N (x, y)
dy

dx
= 0, (22)

where M(x, y) = Fx(x, y) and N (x, y) = Fy(x, y).
It is sometimes convenient to rewrite Eq. (22) in the more symmetric form

M(x, y) dx + N (x, y) dy = 0, (23)➤

called its differential form. The general first-order differential equation y′ =
f (x, y) can be written in this form with M = f (x, y) and N ≡ −1. The pre-
ceding discussion shows that, if there exists a function F(x, y) such that

∂ F

∂x
= M and

∂ F

∂y
= N ,

then the equation

F(x, y) = C➤

implicitly defines a general solution of Eq. (23). In this case, Eq. (23) is called an
exact differential equation—the differential

d F = Fx dx + Fy dy

of F(x, y) is exactly M dx + N dy.
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1.6 Substitution Methods and Exact Equations 69

Natural questions are these: How can we determine whether the differential
equation in (23) is exact? And if it is exact, how can we find the function F such
that Fx = M and Fy = N? To answer the first question, let us recall that if the
mixed second-order partial derivatives Fxy and Fyx are continuous on an open set
in the xy-plane, then they are equal: Fxy = Fyx . If Eq. (23) is exact and M and N
have continuous partial derivatives, it then follows that

∂ M

∂y
= Fxy = Fyx = ∂ N

∂x
.

Thus the equation

∂ M

∂y
= ∂ N

∂x
(24)➤

is a necessary condition that the differential equation M dx + N dy = 0 be exact.
That is, if My �= Nx , then the differential equation in question is not exact, so we
need not attempt to find a function F(x, y) such that Fx = M and Fy = N—there
is no such function.

Example 8 The differential equation

y3 dx + 3xy2 dy = 0 (25)

is exact because we can immediately see that the function F(x, y) = xy3 has the
property that Fx = y3 and Fy = 3xy2. Thus a general solution of Eq. (25) is

xy3 = C;

if you prefer, y(x) = kx−1/3.

But suppose that we divide each term of the differential equation in Example
8 by y2 to obtain

y dx + 3x dy = 0. (26)

This equation is not exact because, with M = y and N = 3x , we have

∂ M

∂y
= 1 �= 3 = ∂ N

∂x
.

Hence the necessary condition in Eq. (24) is not satisfied.
We are confronted with a curious situation here. The differential equations in

(25) and (26) are essentially equivalent, and they have exactly the same solutions,
yet one is exact and the other is not. In brief, whether a given differential equation
is exact or not is related to the precise form M dx + N dy = 0 in which it is written.

Theorem 1 tells us that (subject to differentiability conditions usually satisfied
in practice) the necessary condition in (24) is also a sufficient condition for exact-
ness. In other words, if My = Nx , then the differential equation M dx + N dy = 0
is exact.
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70 Chapter 1 First-Order Differential Equations

THEOREM 1 Criterion for Exactness

Suppose that the functions M(x, y) and N (x, y) are continuous and have con-
tinuous first-order partial derivatives in the open rectangle R : a < x < b,
c < y < d. Then the differential equation

M(x, y) dx + N (x, y) dy = 0 (23)

is exact in R if and only if

∂ M

∂y
= ∂ N

∂x
(24)

at each point of R. That is, there exists a function F(x, y) defined on R with
∂ F/∂x = M and ∂ F/∂y = N if and only if Eq. (24) holds on R.

Proof : We have seen already that it is necessary for Eq. (24) to hold if
Eq. (23) is to be exact. To prove the converse, we must show that if Eq. (24) holds,
then we can construct a function F(x, y) such that ∂ F/∂x = M and ∂ F/∂y = N .
Note first that, for any function g(y), the function

F(x, y) =
∫

M(x, y) dx + g(y) (27)

satisfies the condition ∂ F/∂x = M . (In Eq. (27), the notation
∫

M(x, y) dx denotes
an antiderivative of M(x, y) with respect to x .) We plan to choose g(y) so that

N = ∂ F

∂y
=

(
∂

∂y

∫
M(x, y) dx

)
+ g′(y)

as well; that is, so that

g′(y) = N − ∂

∂y

∫
M(x, y) dx . (28)

To see that there is such a function of y, it suffices to show that the right-hand side in
Eq. (28) is a function of y alone. We can then find g(y) by integrating with respect
to y. Because the right-hand side in Eq. (28) is defined on a rectangle, and hence on
an interval as a function of x , it suffices to show that its derivative with respect to x
is identically zero. But

∂

∂x

(
N − ∂

∂y

∫
M(x, y) dx

)
= ∂ N

∂x
− ∂

∂x

∂

∂y

∫
M(x, y) dx

= ∂ N

∂x
− ∂

∂y

∂

∂x

∫
M(x, y) dx

= ∂ N

∂x
− ∂ M

∂y
= 0

by hypothesis. So we can, indeed, find the desired function g(y) by integrating
Eq. (28). We substitute this result in Eq. (27) to obtain

F(x, y) =
∫

M(x, y) dx +
∫ (

N (x, y) − ∂

∂y

∫
M(x, y) dx

)
dy (29)

as the desired function with Fx = M and Fy = N . ▲

Pearson Custom Publishing

Not For Resale
Or

Distribution
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Instead of memorizing Eq. (29), it is usually better to solve an exact equation
M dx + N dy = 0 by carrying out the process indicated by Eqs. (27) and (28). First
we integrate M(x, y) with respect to x and write

F(x, y) =
∫

M(x, y) dx + g(y),

thinking of the function g(y) as an “arbitrary constant of integration” as far as the
variable x is concerned. Then we determine g(y) by imposing the condition that
∂ F/∂y = N (x, y). This yields a general solution in the implicit form F(x, y) = C .

Example 9 Solve the differential equation

(6xy − y3) dx + (4y + 3x2 − 3xy2) dy = 0. (30)

Solution Let M(x, y) = 6xy − y3 and N (x, y) = 4y + 3x2 − 3xy2. The given equation is
exact because

∂ M

∂y
= 6x − 3y2 = ∂ N

∂x
.

Integrating ∂ F/∂x = M(x, y) with respect to x , we get

F(x, y) =
∫

(6xy − y3) dx = 3x2 y − xy3 + g(y).

Then we differentiate with respect to y and set ∂ F/∂y = N (x, y). This yields

∂ F

∂y
= 3x2 − 3xy2 + g′(y) = 4y + 3x2 − 3xy2,

and it follows that g′(y) = 4y. Hence g(y) = 2y2 + C1, and thus

F(x, y) = 3x2 y − xy3 + 2y2 + C1.

Therefore, a general solution of the differential equation is defined implicitly by the
equation

3x2 y − xy3 + 2y2 = C (31)

(we have absorbed the constant C1 into the constant C).

Remark: Figure 1.6.7 shows a rather complicated structure of solution
curves for the differential equation of Example 9. The solution satisfying a given
initial condition y(x0) = y0 is defined implicitly by Eq. (31), with C determined by
substituting x = x0 and y = y0 in the equation. For instance, the particular solution
satisfying y(0) = 1 is defined implicitly by the equation 3x2 y − xy3 + 2y2 = 2.
The other two special points in the figure—at (0, 0) and near (0.75, 2.12)—are ones
where both coefficient functions in Eq. (30) vanish, so the theorem of Section 1.3
does not guarantee a unique solution.

−4
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−5

4
3
2
1

x
0 5

0y

−5 1−4 2−3 3−2 4−1

(0, 1)

FIGURE 1.6.7. Slope field and
solution curves for the exact
equation in Example 9.
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72 Chapter 1 First-Order Differential Equations

Reducible Second-Order Equations

A second-order differential equation involves the second derivative of the unknown
function y(x), and thus has the general form

F(x, y, y′, y′′) = 0. (32)

If either the dependent variable y or the independent variable x is missing from a
second-order equation, then it is easily reduced by a simple substitution to a first-
order equation that may be solvable by the methods of this chapter.

Dependent variable y missing. If y is missing, then Eq. (32) takes the form

F(x, y′, y′′) = 0. (33)➤

Then the substitution

p = y′ = dy

dx
, y′′ = dp

dx
(34)➤

results in the first-order differential equation

F(x, p, p′) = 0.

If we can solve this equation for a general solution p(x, C1) involving an arbitrary
constant C1, then we need only write

y(x) =
∫

y′(x) dx =
∫

p(x, C1) dx + C2

to get a solution of Eq. (33) that involves two arbitrary constants C1 and C2 (as is to
be expected in the case of a second-order differential equation).

Example 10 Solve the equation xy′′ + 2y′ = 6x in which the dependent variable y is missing.

Solution The substitution defined in (34) gives the first-order equation

x
dp

dx
+ 2p = 6x; that is,

dp

dx
+ 2

x
p = 6.

Observing that the equation on the right here is linear, we multiply by its integrating
factor ρ = exp

(∫
(2/x) dx

) = e2 ln x = x2 and get

Dx(x2 p) = 6x2,

x2 p = 2x3 + C1,

p = dy

dx
= 2x + C1

x2
.

A final integration with respect to x yields the general solution

y(x) = x2 + C1

x
+ C2

of the second-order equation xy′′ + 2y′ = 6x . Solution curves with C1 = 0 but
C2 �= 0 are simply vertical translates of the parabola y = x2 (for which C1 = C2 =
0). Figure 1.6.8 shows this parabola and some typical solution curves with C2 = 0
but C1 �= 0. Solution curves with C1 and C2 both nonzero are vertical translates of
those (other than the parabola) shown in Fig. 1.6.8.
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y = x2

FIGURE 1.6.8. Solution curves

of the form y = x2 + C1

x
for

C1 = 0, ±3, ±10, ±20, ±35, ±60,
±100.
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Independent variable x missing. If x is missing, then Eq. (32) takes the form

F(y, y′, y′′) = 0. (35)➤

Then the substitution

p = y′ = dy

dx
, y′′ = dp

dx
= dp

dy

dy

dx
= p

dp

dy
(36)➤

results in the first-order differential equation

F

(
y, p, p

dp

dy

)
= 0

for p as a function of y. If we can solve this equation for a general solution p(y, C1)

involving an arbitrary constant C1, then (assuming that y′ �= 0) we need only write

x(y) =
∫

dx

dy
dy =

∫
1

dy/dx
dy =

∫
1

p
dy =

∫
dy

p(y, C1)
+ C2.

If the final integral P = ∫
(1/p) dy can be evaluated, the result is an implicit solution

x(y) = P(y, C1) + C2 of our second-order differential equation.

Example 11 Solve the equation yy′′ = (y′)2 in which the independent variable x is missing.

Solution We assume temporarily that y and y′ are both nonnegative, and then point out at the
end that this restriction is unnecessary. The substitution defined in (36) gives the
first-order equation

yp
dp

dy
= p2.

Then separation of variables gives∫
dp

p
=

∫
dy

y
,

ln p = ln y + C (because y > 0 and p = y′ > 0),

p = C1 y

where C1 = eC . Hence

dx

dy
= 1

p
= 1

C1 y
,

C1x =
∫

dy

y
= ln y + C1.

The resulting general solution of the second-order equation yy′′ = (y′)2 is

y(x) = exp(C1x − C2) = AeBx ,

where A = e−C2 and B = C1. Despite our temporary assumptions, which imply
that the constants A and B are both positive, we readily verify that y(x) = AeBx

satisfies yy′′ = (y′)2 for all real values of A and B. With B = 0 and different
values of A, we get all horizontal lines in the plane as solution curves. The upper
half of Fig. 1.6.9 shows the solution curves obtained with A = 1 (for instance) and
different positive values of B. With A = −1 these solution curves are reflected
in the x-axis, and with negative values of B they are reflected in the y-axis. In
particular, we see that we get solutions of yy′′ = (y′)2, allowing both positive and
negative possibilities for both y and y′.

0 1 2 3 4 5

0

1

2

3

4

5

x

y

−1

−2

−3

−4
−5

−5 −4 −3 −2 −1

FIGURE 1.6.9. The solution
curves y = AeBx with B = 0 and
A = 0, ±1 are the horizontal lines
y = 0, ±1. The exponential curves
with B > 0 and A = ±1 are in
color, those with B < 0 and
A = ±1 are black.
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74 Chapter 1 First-Order Differential Equations

1.6 Problems

Find general solutions of the differential equations in Prob-
lems 1 through 30. Primes denote derivatives with respect to x
throughout.

1. (x + y)y′ = x − y 2. 2xyy′ = x2 + 2y2

3. xy′ = y + 2
√

xy 4. (x − y)y′ = x + y
5. x(x + y)y′ = y(x − y) 6. (x + 2y)y′ = y
7. xy2 y′ = x3 + y3 8. x2 y′ = xy + x2ey/x

9. x2 y′ = xy + y2 10. xyy′ = x2 + 3y2

11. (x2 − y2)y′ = 2xy
12. xyy′ = y2 + x

√
4x2 + y2

13. xy′ = y + √
x2 + y2

14. yy′ + x = √
x2 + y2

15. x(x + y)y′ + y(3x + y) = 0
16. y′ = √

x + y + 1 17. y′ = (4x + y)2

18. (x + y)y′ = 1 19. x2 y′ + 2xy = 5y3

20. y2 y′ + 2xy3 = 6x 21. y′ = y + y3

22. x2 y′ + 2xy = 5y4 23. xy′ + 6y = 3xy4/3

24. 2xy′ + y3e−2x = 2xy
25. y2(xy′ + y)(1 + x4)1/2 = x
26. 3y2 y′ + y3 = e−x

27. 3xy2 y′ = 3x4 + y3

28. xey y′ = 2(ey + x3e2x )

29. (2x sin y cos y)y′ = 4x2 + sin2 y
30. (x + ey)y′ = xe−y − 1

In Problems 31 through 42, verify that the given differential
equation is exact; then solve it.

31. (2x + 3y) dx + (3x + 2y) dy = 0

32. (4x − y) dx + (6y − x) dy = 0

33. (3x2 + 2y2) dx + (4xy + 6y2) dy = 0

34. (2xy2 + 3x2) dx + (2x2 y + 4y3) dy = 0

35.
(

x3 + y

x

)
dx + (y2 + ln x) dy = 0

36. (1 + yexy) dx + (2y + xexy) dy = 0

37. (cos x + ln y) dx +
(

x

y
+ ey

)
dy = 0

38. (x + tan−1 y) dx + x + y

1 + y2
dy = 0

39. (3x2 y3 + y4) dx + (3x3 y2 + y4 + 4xy3) dy = 0

40. (ex sin y + tan y) dx + (ex cos y + x sec2 y) dy = 0

41.
(

2x

y
− 3y2

x4

)
dx +

(
2y

x3
− x2

y2
+ 1√

y

)
dy = 0

42.
2x5/2 − 3y5/3

2x5/2 y2/3
dx + 3y5/3 − 2x5/2

3x3/2 y5/3
dy = 0

Find a general solution of each reducible second-order differ-
ential equation in Problems 43–54. Assume x, y and/or y′
positive where helpful (as in Example 11).

43. xy′′ = y′ 44. yy′′ + (y′)2 = 0
45. y′′ + 4y = 0 46. xy′′ + y′ = 4x
47. y′′ = (y′)2 48. x2 y′′ + 3xy′ = 2

49. yy′′ + (y′)2 = yy′ 50. y′′ = (x + y′)2

51. y′′ = 2y(y′)3 52. y3 y′′ = 1
53. y′′ = 2yy′ 54. yy′′ = 3(y′)2

55. Show that the substitution v = ax + by + c transforms
the differential equation dy/dx = F(ax + by + c) into a
separable equation.

56. Suppose that n �= 0 and n �= 1. Show that the sub-
stitution v = y1−n transforms the Bernoulli equation
dy/dx + P(x)y = Q(x)yn into the linear equation

dv

dx
+ (1 − n)P(x)v(x) = (1 − n)Q(x).

57. Show that the substitution v = ln y transforms the differ-
ential equation dy/dx + P(x)y = Q(x)(y ln y) into the
linear equation dv/dx + P(x) = Q(x)v(x).

58. Use the idea in Problem 57 to solve the equation

x
dy

dx
− 4x2 y + 2y ln y = 0.

59. Solve the differential equation

dy

dx
= x − y − 1

x + y + 3

by finding h and k so that the substitutions x = u + h,
y = v + k transform it into the homogeneous equation

dv

du
= u − v

u + v
.

60. Use the method in Problem 59 to solve the differential
equation

dy

dx
= 2y − x + 7

4x − 3y − 18
.

61. Make an appropriate substitution to find a solution of the
equation dy/dx = sin(x − y). Does this general solution
contain the linear solution y(x) = x − π/2 that is readily
verified by substitution in the differential equation?

62. Show that the solution curves of the differential equation

dy

dx
= − y(2x3 − y3)

x(2y3 − x3)

are of the form x3 + y3 = 3Cxy.
63. The equation dy/dx = A(x)y2 + B(x)y + C(x) is called

a Riccati equation. Suppose that one particular solution
y1(x) of this equation is known. Show that the substitution

y = y1 + 1

v

transforms the Riccati equation into the linear equation

dv

dx
+ (B + 2Ay1)v = −A.
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1.6 Substitution Methods and Exact Equations 75

Use the method of Problem 63 to solve the equations in Prob-
lems 64 and 65, given that y1(x) = x is a solution of each.

64.
dy

dx
+ y2 = 1 + x2

65.
dy

dx
+ 2xy = 1 + x2 + y2

66. An equation of the form

y = xy′ + g(y′) (37)

is called a Clairaut equation. Show that the one-
parameter family of straight lines described by

y(x) = Cx + g(C) (38)

is a general solution of Eq. (37).
67. Consider the Clairaut equation

y = xy′ − 1
4 (y′)2

for which g(y′) = − 1
4 (y′)2 in Eq. (37). Show that the line

y = Cx − 1
4 C2

is tangent to the parabola y = x2 at the point
(

1
2 C, 1

4 C2
)
.

Explain why this implies that y = x2 is a singular solu-
tion of the given Clairaut equation. This singular solution
and the one-parameter family of straight line solutions are
illustrated in Fig. 1.6.10.

x

y = x2

y

y = Cx − C21
4

FIGURE 1.6.10. Solutions of the Clairaut
equation of Problem 67. The “typical” straight
line with equation y = Cx − 1

4 C2 is tangent to
the parabola at the point ( 1

2 C, 1
4 C2).

68. Derive Eq. (18) in this section from Eqs. (16) and (17).

69. In the situation of Example 7, suppose that a = 100 mi,
v0 = 400 mi/h, and w = 40 mi/h. Now how far north-
ward does the wind blow the airplane?

70. As in the text discussion, suppose that an airplane main-
tains a heading toward an airport at the origin. If v0 = 500
mi/h and w = 50 mi/h (with the wind blowing due north),
and the plane begins at the point (200, 150), show that its
trajectory is described by

y +
√

x2 + y2 = 2(200x9)1/10.

71. A river 100 ft wide is flowing north at w feet per second.
A dog starts at (100, 0) and swims at v0 = 4 ft/s, always
heading toward a tree at (0, 0) on the west bank directly
across from the dog’s starting point. (a) If w = 2 ft/s,
show that the dog reaches the tree. (b) If w = 4 ft/s,
show that the dog reaches instead the point on the west
bank 50 ft north of the tree. (c) If w = 6 ft/s, show that
the dog never reaches the west bank.

72. In the calculus of plane curves, one learns that the curva-
ture κ of the curve y = y(x) at the point (x, y) is given
by

κ = |y′′(x)|
[1 + y′(x)2]3/2

,

and that the curvature of a circle of radius r is κ = 1/r .
[See Example 3 in Section 11.6 of Edwards and Penney,
Calculus: Early Transcendentals, 7th edition (Upper Sad-
dle River, NJ: Prentice Hall, 2008).] Conversely, substi-
tute ρ = y′ to derive a general solution of the second-order
differential equation

r y′′ = [1 + (y′)2]3/2

(with r constant) in the form

(x − a)2 + (y − b)2 = r 2.

Thus a circle of radius r (or a part thereof) is the only plane
curve with constant curvature 1/r .

1.6 Application Computer Algebra Solutions

Computer algebra systems typically include commands for the “automatic” solution
of differential equations. But two different such systems often give different results
whose equivalence is not clear, and a single system may give the solution in an
overly complicated form. Consequently, computer algebra solutions of differential
equations often require considerable “processing” or simplification by a human user
in order to yield concrete and applicable information. Here we illustrate these issues
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76 Chapter 1 First-Order Differential Equations

using the interesting differential equation

dy

dx
= sin(x − y) (1)

that appeared in the Section 1.3 Application. The Maple command

dsolve( D(y)(x) = sin(x - y(x)), y(x));

yields the simple and attractive result

y(x) = x − 2 tan−1

(
x − 2 − C1

x − C1

)
(2)

that was cited there. But the supposedly equivalent Mathematica command

DSolve[ y'[x] == Sin[x - y[x]], y[x], x]

yields a considerably more complicated result from which—with a fair amount of
effort in simplification—one can extract the quite different looking solution

y(x) = 2 cos−1

⎛
⎜⎝2 cos

x

2
+ (x − c)

(
cos

x

2
+ sin

x

2

)
√

2 + 2(x − c + 1)2

⎞
⎟⎠ . (3)

This apparent disparity is not unusual; different symbolic algebra systems, or
even different versions of the same system, often yield different forms of a solution
of the same differential equation. As an alternative to attempted reconciliation of
such seemingly disparate results as in Eqs. (2) and (3), a common tactic is sim-
plification of the differential equation before submitting it to a computer algebra
system.

EXERCISE 1: Show that the plausible substitution v = x − y in Eq. (1) yields the
separable equation

dv

dx
= 1 − sin v. (4)

Now the Maple command int(1/(1-sin(v)),v) yields

∫
dv

1 − v
= 2

1 − tan
v

2

(5)

(omitting the constant of integration, as symbolic computer algebra systems often
do).

EXERCISE 2: Use simple algebra to deduce from Eq. (5) the integral formula

∫
dv

1 − v
=

1 + tan
v

2

1 − tan
v

2

+ C. (6)
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1.6 Substitution Methods and Exact Equations 77

EXERCISE 3: Deduce from (6) that Eq. (4) has the general solution

v(x) = 2 tan−1

(
x − 1 + C

x + 1 + C

)
,

and hence that Eq. (1) has the general solution

y(x) = x − 2 tan−1

(
x − 1 + C

x + 1 + C

)
. (7)

EXERCISE 4: Finally, reconcile the forms in Eq. (2) and Eq. (7). What is the
relation between the constants C and C1?

EXERCISE 5: Show that the integral in Eq. (5) yields immediately the graphing
calculator implicit solution shown in Fig. 1.6.11.

INVESTIGATION: For your own personal differential equation, let p and q be

FIGURE 1.6.11. Implicit
solution of y′ = sin(x − y)
generated by a TI-89 graphing
calculator.

two distinct nonzero digits in your student ID number, and consider the differential
equation

dy

dx
= 1

p
cos(x − qy). (8)

(a) Find a symbolic general solution using a computer algebra system and/or some
combination of the techniques listed in this project.

(b) Determine the symbolic particular solution corresponding to several typical ini-
tial conditions of the form y(x0) = y0.

(c) Determine the possible values of a and b such that the straight line y = ax + b
is a solution curve of Eq. (8).

(d) Plot a direction field and some typical solution curves. Can you make a con-
nection between the symbolic solution and your (linear and nonlinear) solution
curves?

Chapter 1 Summary

In this chapter we have discussed applications of and solution methods for several
important types of first-order differential equations, including those that are separa-
ble (Section 1.4), linear (Section 1.5), or exact (Section 1.6). In Section 1.6 we also
discussed substitution techniques that can sometimes be used to transform a given
first-order differential equation into one that is either separable, linear, or exact.

Lest it appear that these methods constitute a “grab bag” of special and unre-
lated techniques, it is important to note that they are all versions of a single idea.
Given a differential equation

f (x, y, y′) = 0, (1)

we attempt to write it in the form

d

dx
[G(x, y)] = 0. (2)

It is precisely to obtain the form in Eq. (2) that we multiply the terms in Eq. (1) by an
appropriate integrating factor (even if all we are doing is separating the variables).
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78 Chapter 1 First-Order Differential Equations

But once we have found a function G(x, y) such that Eqs. (1) and (2) are equivalent,
a general solution is defined implicitly by means of the equation

G(x, y) = C (3)

that one obtains by integrating Eq. (2).
Given a specific first-order differential equation to be solved, we can attack it

by means of the following steps:

• Is it separable? If so, separate the variables and integrate (Section 1.4).
• Is it linear? That is, can it be written in the form

dy

dx
+ P(x)y = Q(x)?

If so, multiply by the integrating factor ρ = exp
(∫

P dx
)

of Section 1.5.
• Is it exact? That is, when the equation is written in the form M dx+N dy = 0,

is ∂ M/∂y = ∂ N/∂x (Section 1.6)?
• If the equation as it stands is not separable, linear, or exact, is there a plausible

substitution that will make it so? For instance, is it homogeneous (Section
1.6)?

Many first-order differential equations succumb to the line of attack outlined
here. Nevertheless, many more do not. Because of the wide availability of com-
puters, numerical techniques are commonly used to approximate the solutions of
differential equations that cannot be solved readily or explicitly by the methods of
this chapter. Indeed, most of the solution curves shown in figures in this chapter
were plotted using numerical approximations rather than exact solutions. Several
numerical methods for the appropriate solution of differential equations will be dis-
cussed in Chapter 2.

Chapter 1 Review Problems

Find general solutions of the differential equations in Problems 1 through 30. Primes denote derivatives with respect
to x.

1. x3 + 3y − xy′ = 0 2. xy2 + 3y2 − x2 y′ = 0
3. xy + y2 − x2 y′ = 0
4. 2xy3 + ex + (3x2 y2 + sin y)y′ = 0
5. 3y + x4 y′ = 2xy 6. 2xy2 + x2 y′ = y2

7. 2x2 y + x3 y′ = 1 8. 2xy + x2 y′ = y2

9. xy′ + 2y = 6x2√y 10. y′ = 1 + x2 + y2 + x2 y2

11. x2 y′ = xy + 3y2

12. 6xy3 + 2y4 + (9x2 y2 + 8xy3)y′ = 0
13. 4xy2 + y′ = 5x4 y2 14. x3 y′ = x2 y − y3

15. y′ + 3y = 3x2e−3x 16. y′ = x2 − 2xy + y2

17. ex + yexy + (ey + xeyx )y′ = 0
18. 2x2 y − x3 y′ = y3 19. 3x5 y2 + x3 y′ = 2y2

20. xy′ + 3y = 3x−3/2

21. (x2 − 1)y′ + (x − 1)y = 1
22. xy′ = 6y + 12x4 y2/3

23. ey + y cos x + (xey + sin x)y′ = 0
24. 9x2 y2 + x3/2 y′ = y2 25. 2y + (x + 1)y′ = 3x + 3

26. 9x1/2 y4/3 − 12x1/5 y3/2 + (8x3/2 y1/3 − 15x6/5 y1/2)y′ = 0
27. 3y + x3 y4 + 3xy′ = 0 28. y + xy′ = 2e2x

29. (2x + 1)y′ + y = (2x + 1)3/2 30. y′ = √
x + y

Each of the differential equations in Problems 31 through 36
is of two different types considered in this chapter—separable,
linear, homogeneous, Bernoulli, exact, etc. Hence, derive gen-
eral solutions for each of these equations in two different ways;
then reconcile your results.

31.
dy

dx
= 3(y + 7)x2 32.

dy

dx
= xy3 − xy

33.
dy

dx
= −3x2 + 2y2

4xy
34.

dy

dx
= x + 3y

y − 3x

35.
dy

dx
= 2xy + 2x

x2 + 1
36.

dy

dx
=

√
y − y

tan x
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2.1 Population Models

In Section 1.4 we introduced the exponential differential equation d P/dt = k P ,
with solution P(t) = P0ekt , as a mathematical model for natural population

growth that occurs as a result of constant birth and death rates. Here we present
a more general population model that accommodates birth and death rates that are
not necessarily constant. As before, however, our population function P(t) will be
a continuous approximation to the actual population, which of course changes only
by integral increments—that is, by one birth or death at a time.

Suppose that the population changes only by the occurrence of births and
deaths—there is no immigration or emigration from outside the country or envi-
ronment under consideration. It is customary to track the growth or decline of a
population in terms of its birth rate and death rate functions defined as follows:

• β(t) is the number of births per unit of population per unit of time at time t ;
• δ(t) is the number of deaths per unit of population per unit of time at time t .

Then the numbers of births and deaths that occur during the time interval
[t, t + �t] is given (approximately) by

births: β(t) · P(t) · �t, deaths: δ(t) · P(t) · �t.

Hence the change �P in the population during the time interval [t, t + �t] of
length �t is

�P = {births} − {deaths} ≈ β(t) · P(t) · �t − δ(t) · P(t) · �t,

so
�P

�t
≈ [β(t) − δ(t)] P(t).

79
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80 Chapter 2 Mathematical Models and Numerical Methods

The error in this approximation should approach zero as �t → 0, so—taking
the limit—we get the differential equation

dP

dt
= (β − δ)P, (1)➤

in which we write β = β(t), δ = δ(t), and P = P(t) for brevity. Equation (1) is
the general population equation. If β and δ are constant, Eq. (1) reduces to the
natural growth equation with k = β − δ. But it also includes the possibility that β

and δ are variable functions of t . The birth and death rates need not be known in
advance; they may well depend on the unknown function P(t).

Example 1 Suppose that an alligator population numbers 100 initially, and that its death rate is
δ = 0 (so none of the alligators is dying). If the birth rate is β = (0.0005)P—and
thus increases as the population does—then Eq. (1) gives the initial value problem

dP

dt
= (0.0005)P2, P(0) = 100

(with t in years). Then upon separating the variables we get

∫
1

P2
dP =

∫
(0.0005) dt;

− 1

P
= (0.0005)t + C.

Substitution of t = 0, P = 100 gives C = −1/100, and then we readily solve for

P(t) = 2000

20 − t
.

For instance, P(10) = 2000/10 = 200, so after 10 years the alligator popu-
lation has doubled. But we see that P → +∞ as t → 20, so a real “population
explosion” occurs in 20 years. Indeed, the direction field and solution curves shown
in Fig. 2.1.1 indicate that a population explosion always occurs, whatever the size
of the (positive) initial population P(0) = P0. In particular, it appears that the
population always becomes unbounded in a finite period of time.

t

P

0
0

10 20 30 40 50

100

200

300

400

500

(0, 100)

FIGURE 2.1.1. Slope field and solution curves for the equation
dP/dt = (0.0005)P2 in Example 1.
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2.1 Population Models 81

Bounded Populations and the Logistic Equation

In situations as diverse as the human population of a nation and a fruit fly population
in a closed container, it is often observed that the birth rate decreases as the popu-
lation itself increases. The reasons may range from increased scientific or cultural
sophistication to a limited food supply. Suppose, for example, that the birth rate
β is a linear decreasing function of the population size P , so that β = β0 − β1 P ,
where β0 and β1 are positive constants. If the death rate δ = δ0 remains constant,
then Eq. (1) takes the form

dP

dt
= (β0 − β1 P − δ0)P;

that is,
dP

dt
= a P − bP2, (2)➤

where a = β0 − δ0 and b = β1.
If the coefficients a and b are both positive, then Eq. (2) is called the logistic

equation. For the purpose of relating the behavior of the population P(t) to the
values of the parameters in the equation, it is useful to rewrite the logistic equation
in the form

dP

dt
= k P(M − P), (3)➤

where k = b and M = a/b are constants.

Example 2 In Example 4 of Section 1.3 we explored graphically a population that is modeled
by the logistic equation

dP

dt
= 0.0004P(150 − P) = 0.06P − 0.0004P2. (4)

To solve this differential equation symbolically, we separate the variables and inte-
grate. We get ∫

dP

P(150 − P)
=

∫
0.0004 dt,

1

150

∫ (
1

P
+ 1

150 − P

)
dP =

∫
0.0004 dt [partial fractions],

ln |P| − ln |150 − P| = 0.06t + C,

P

150 − P
= ±eC e0.06t = Be0.06t [where B = ±eC ].

If we substitute t = 0 and P = P0 �= 150 into this last equation, we find that
B = P0/(150 − P0). Hence

P

150 − P
= P0e0.06t

150 − P0
.

Finally, this equation is easy to solve for the population

P(t) = 150P0

P0 + (150 − P0)e−0.06t
(5)
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82 Chapter 2 Mathematical Models and Numerical Methods

at time t in terms of the initial population P0 = P(0). Figure 2.1.2 shows a number

25 50 75 100
t20

60

120
150
180

240

300

P

P0 = 300

P0 = 20

FIGURE 2.1.2. Typical solution
curves for the logistic equation
P ′ = 0.06P − 0.0004P2.

of solution curves corresponding to different values of the initial population ranging
from P0 = 20 to P0 = 300. Note that all these solution curves appear to approach
the horizontal line P = 150 as an asymptote. Indeed, you should be able to see
directly from Eq. (5) that limt→∞ P(t) = 150, whatever the initial value P0 > 0.

Limiting Populations and Carrying Capacity

The finite limiting population noted in Example 2 is characteristic of logistic pop-
ulations. In Problem 32 we ask you to use the method of solution of Example 2 to
show that the solution of the logistic initial value problem

dP

dt
= k P(M − P), P(0) = P0 (6)

is

P(t) = MP0

P0 + (M − P0)e−k Mt
. (7)

Actual animal populations are positive valued. If P0 = M , then (7) reduces
to the unchanging (constant-valued) “equilibrium population” P(t) ≡ M . Other-
wise, the behavior of a logistic population depends on whether 0 < P0 < M or
P0 > M . If 0 < P0 < M , then we see from (6) and (7) that P ′ > 0 and

P(t) = MP0

P0 + (M − P0)e−k Mt
= MP0

P0 + {pos. number} <
MP0

P0
= M.

However, if P0 > M , then we see from (6) and (7) that P ′ < 0 and

P(t) = MP0

P0 + (M − P0)e−k Mt
= MP0

P0 + {neg. number} >
MP0

P0
= M.

In either case, the “positive number” or “negative number” in the denominator has
absolute value less than P0 and—because of the exponential factor—approaches 0
as t → +∞. It follows that

lim
t→+∞ P(t) = MP0

P0 + 0
= M. (8)

Thus a population that satisfies the logistic equation does not grow without
bound like a naturally growing population modeled by the exponential equation
P ′ = k P . Instead, it approaches the finite limiting population M as t → +∞.
As illustrated by the typical logistic solution curves in Fig. 2.1.3, the population
P(t) steadily increases and approaches M from below if 0 < P0 < M , but steadily
decreases and approaches M from above if P0 > M . Sometimes M is called the
carrying capacity of the environment, considering it to be the maximum population

t

M

P

M/2

P = M

P = M/2

FIGURE 2.1.3. Typical solution
curves for the logistic equation
P ′ = k P(M − P). Each solution
curve that starts below the line
P = M/2 has an inflection point
on this line. (See Problem 34.)

that the environment can support on a long-term basis.
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Example 3 Suppose that in 1885 the population of a certain country was 50 million and was
growing at the rate of 750,000 people per year at that time. Suppose also that in
1940 its population was 100 million and was then growing at the rate of 1 million
per year. Assume that this population satisfies the logistic equation. Determine both
the limiting population M and the predicted population for the year 2000.

Solution We substitute the two given pairs of data in Eq. (3) and find that

0.75 = 50k(M − 50), 1.00 = 100k(M − 100).

We solve simultaneously for M = 200 and k = 0.0001. Thus the limiting popula-
tion of the country in question is 200 million. With these values of M and k, and
with t = 0 corresponding to the year 1940 (in which P0 = 100), we find that—
according to Eq. (7)—the population in the year 2000 will be

P(60) = 100 · 200

100 + (200 − 100)e−(0.0001)(200)(60)
,

about 153.7 million people.

Historical Note

The logistic equation was introduced (around 1840) by the Belgian mathematician
and demographer P. F. Verhulst as a possible model for human population growth.
In the next two examples we compare natural growth and logistic model fits to the
19th-century U.S. population census data, then compare projections for the 20th
century.

Example 4 The U.S. population in 1800 was 5.308 million and in 1900 was 76.212 million. If
we take P0 = 5.308 (with t = 0 in 1800) in the natural growth model P(t) = P0ert

and substitute t = 100, P = 76.212, we find that

76.212 = 5.308e100r , so r = 1

100
ln

76.212

5.308
≈ 0.026643.

Thus our natural growth model for the U.S. population during the 19th century
is

P(t) = (5.308)e(0.026643)t (9)

(with t in years and P in millions). Because e0.026643 ≈ 1.02700, the average popu-
lation growth between 1800 and 1900 was about 2.7% per year.

Example 5 The U.S. population in 1850 was 23.192 million. If we take P0 = 5.308 and sub-
stitute the data pairs t = 50, P = 23.192 (for 1850) and t = 100, P = 76.212 (for
1900) in the logistic model formula in Eq. (7), we get the two equations

(5.308)M

5.308 + (M − 5.308)e−50k M
= 23.192,

(5.308)M

5.308 + (M − 5.308)e−100k M
= 76.212

(10)
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84 Chapter 2 Mathematical Models and Numerical Methods

in the two unknowns k and M . Nonlinear systems like this ordinarily are solved
numerically using an appropriate computer system. But with the right algebraic
trick (Problem 36 in this section) the equations in (10) can be solved manually for
k = 0.000167716, M = 188.121. Substitution of these values in Eq. (7) yields the
logistic model

P(t) = 998.546

5.308 + (182.813)e−(0.031551)t
. (11)

The table in Fig. 2.1.4 compares the actual 1800–1990 U.S. census popula-
tion figures with those predicted by the exponential growth model in (9) and the
logistic model in (11). Both agree well with the 19th-century figures. But the ex-
ponential model diverges appreciably from the census data in the early decades
of the 20th century, whereas the logistic model remains accurate until 1940. By
the end of the 20th century the exponential model vastly overestimates the actual
U.S. population—predicting over a billion in the year 2000—whereas the logistic
model somewhat underestimates it.

Actual Exponential Exponential Logistic Logistic
Year U.S. Pop. Model Error Model Error

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

5.308

7.240

9.638

12.861

17.064

23.192

31.443

38.558

50.189

62.980

76.212

92.228

106.022

123.203

132.165

151.326

179.323

203.302

226.542

248.710

281.422

5.308

6.929

9.044

11.805

15.409

20.113

26.253

34.268

44.730

58.387

76.212

99.479

129.849

169.492

221.237

288.780

376.943

492.023

642.236

838.308

1094.240

0.000

0.311

0.594

1.056

1.655

3.079

5.190

4.290

5.459

4.593

0.000

−7.251

−23.827

−46.289

−89.072

−137.454

−197.620

−288.721

−415.694

−589.598

−812.818

5.308

7.202

9.735

13.095

17.501

23.192

30.405

39.326

50.034

62.435

76.213

90.834

105.612

119.834

132.886

144.354

154.052

161.990

168.316

173.252

177.038

0.000

0.038

−0.097

−0.234

−0.437

0.000

1.038

−0.768

0.155

0.545

−0.001

1.394

0.410

3.369

−0.721

6.972

25.271

41.312

58.226

76.458

104.384

FIGURE 2.1.4. Comparison of exponential growth and logistic models with U.S. census
populations (in millions).

The two models are compared in Fig. 2.1.5, where plots of their respective
errors—as a percentage of the actual population—are shown for the 1800–1950
period. We see that the logistic model tracks the actual population reasonably well
throughout this 150-year period. However, the exponential error is considerably
larger during the 19th century and literally goes off the chart during the first half of
the 20th century.

Error

40%

1800 1850 1900 1950

20%

−20%

−40%

Year 
Logistic

Exponential

FIGURE 2.1.5. Percentage
errors in the exponential and
logistic population models for
1800–1950.
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2.1 Population Models 85

In order to measure the extent to which a given model fits actual data, it is cus-
tomary to define the average error (in the model) as the square root of the average
of the squares of the individual errors (the latter appearing in the fourth and sixth
columns of the table in Fig. 2.1.4). Using only the 1800–1900 data, this definition
gives 3.162 for the average error in the exponential model, while the average error
in the logistic model is only 0.452. Consequently, even in 1900 we might well have
anticipated that the logistic model would predict the U.S. population growth during
the 20th century more accurately than the exponential model.

The moral of Examples 4 and 5 is simply that one should not expect too much
of models that are based on severely limited information (such as just a pair of data
points). Much of the science of statistics is devoted to the analysis of large “data
sets” to formulate useful (and perhaps reliable) mathematical models.

More Applications of the Logistic Equation

We next describe some situations that illustrate the varied circumstances in which
the logistic equation is a satisfactory mathematical model.

1. Limited environment situation. A certain environment can support a popula-
tion of at most M individuals. It is then reasonable to expect the growth rate
β − δ (the combined birth and death rates) to be proportional to M − P , be-
cause we may think of M − P as the potential for further expansion. Then
β − δ = k(M − P), so that

dP

dt
= (β − δ)P = k P(M − P).

The classic example of a limited environment situation is a fruit fly population
in a closed container.

2. Competition situation. If the birth rate β is constant but the death rate δ is
proportional to P , so that δ = αP , then

dP

dt
= (β − αP)P = k P(M − P).

This might be a reasonable working hypothesis in a study of a cannibalistic
population, in which all deaths result from chance encounters between indi-
viduals. Of course, competition between individuals is not usually so deadly,
nor its effects so immediate and decisive.

3. Joint proportion situation. Let P(t) denote the number of individuals in a
constant-size susceptible population M who are infected with a certain con-
tagious and incurable disease. The disease is spread by chance encounters.
Then P ′(t) should be proportional to the product of the number P of individ-
uals having the disease and the number M − P of those not having it, and
therefore dP/dt = k P(M − P). Again we discover that the mathematical
model is the logistic equation. The mathematical description of the spread of
a rumor in a population of M individuals is identical.

Example 6 Suppose that at time t = 0, 10 thousand people in a city with population M = 100
thousand people have heard a certain rumor. After 1 week the number P(t) of
those who have heard it has increased to P(1) = 20 thousand. Assuming that P(t)
satisfies a logistic equation, when will 80% of the city’s population have heard the
rumor?
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86 Chapter 2 Mathematical Models and Numerical Methods

Solution Substituting P0 = 10 and M = 100 (thousand) in Eq. (7), we get

P(t) = 1000

10 + 90e−100kt
. (12)

Then substitution of t = 1, P = 20 gives the equation

20 = 1000

10 + 90e−100k

that is readily solved for

e−100k = 4
9 , so k = 1

100 ln 9
4 ≈ 0.008109.

With P(t) = 80, Eq. (12) takes the form

80 = 1000

10 + 90e−100kt
,

which we solve for e−100kt = 1
36 . It follows that 80% of the population has heard

the rumor when

t = ln 36

100k
= ln 36

ln 9
4

≈ 4.42,

thus after about 4 weeks and 3 days.

Doomsday versus Extinction

Consider a population P(t) of unsophisticated animals in which females rely solely
on chance encounters to meet males for reproductive purposes. It is reasonable to
expect such encounters to occur at a rate that is proportional to the product of the
number P/2 of males and the number P/2 of females, hence at a rate proportional
to P2. We therefore assume that births occur at the rate k P2 (per unit time, with
k constant). The birth rate (births/time/population) is then given by β = k P . If
the death rate δ is constant, then the general population equation in (1) yields the
differential equation

dP

dt
= k P2 − δP = k P(P − M) (13)➤

(where M = δ/k > 0) as a mathematical model of the population.
Note that the right-hand side in Eq. (13) is the negative of the right-hand side

in the logistic equation in (3). We will see that the constant M is now a threshold
population, with the way the population behaves in the future depending critically
on whether the initial population P0 is less than or greater than M .

Example 7 Consider an animal population P(t) that is modeled by the equation

dP

dt
= 0.0004P(P − 150) = 0.0004P2 − 0.06P. (14)

We want to find P(t) if (a) P(0) = 200; (b) P(0) = 100.
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2.1 Population Models 87

Solution To solve the equation in (14), we separate the variables and integrate. We get∫
dP

P(P − 150)
=

∫
0.0004 dt,

− 1

150

∫ (
1

P
− 1

P − 150

)
dP =

∫
0.0004 dt [partial fractions],

ln |P| − ln |P − 150| = −0.06t + C,

P

P − 150
= ±eC e−0.06t = Be−0.06t [where B = ±eC ]. (15)

(a) Substitution of t = 0 and P = 200 into (15) gives B = 4. With this value of B
we solve Eq. (15) for

P(t) = 600e−0.06t

4e−0.06t − 1
. (16)

Note that, as t increases and approaches T = ln(4)/0.06 ≈ 23.105, the positive
denominator on the right in (16) decreases and approaches 0. Consequently P(t) →
+∞ as t → T −. This is a doomsday situation—a real population explosion.
(b) Substitution of t = 0 and P = 100 into (15) gives B = −2. With this value of
B we solve Eq. (15) for

P(t) = 300e−0.06t

2e−0.06t + 1
= 300

2 + e0.06t
. (17)

Note that, as t increases without bound, the positive denominator on the right in
(16) approaches +∞. Consequently, P(t) → 0 as t → +∞. This is an (eventual)
extinction situation.

Thus the population in Example 7 either explodes or is an endangered species
threatened with extinction, depending on whether or not its initial size exceeds the
threshold population M = 150. An approximation to this phenomenon is some-
times observed with animal populations, such as the alligator population in certain
areas of the southern United States.

Figure 2.1.6 shows typical solution curves that illustrate the two possibilities
for a population P(t) satisfying Eq. (13). If P0 = M (exactly!), then the popula-
tion remains constant. However, this equilibrium situation is very unstable. If P0

exceeds M (even slightly), then P(t) rapidly increases without bound, whereas if
the initial (positive) population is less than M (however slightly), then it decreases
(more gradually) toward zero as t → +∞. See Problem 33.

t

M

P

P = M

FIGURE 2.1.6. Typical solution
curves for the explosion/extinction
equation P ′ = k P(P − M).

2.1 Problems

Separate variables and use partial fractions to solve the initial
value problems in Problems 1–8. Use either the exact solution
or a computer-generated slope field to sketch the graphs of sev-
eral solutions of the given differential equation, and highlight
the indicated particular solution.

1.
dx

dt
= x − x2, x(0) = 2 2.

dx

dt
= 10x − x2, x(0) = 1

3.
dx

dt
= 1 − x2, x(0) = 3 4.

dx

dt
= 9 − 4x2, x(0) = 0
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5.
dx

dt
= 3x(5 − x), x(0) = 8

6.
dx

dt
= 3x(x − 5), x(0) = 2

7.
dx

dt
= 4x(7 − x), x(0) = 11

8.
dx

dt
= 7x(x − 13), x(0) = 17

9. The time rate of change of a rabbit population P is pro-
portional to the square root of P . At time t = 0 (months)
the population numbers 100 rabbits and is increasing at
the rate of 20 rabbits per month. How many rabbits will
there be one year later?

10. Suppose that the fish population P(t) in a lake is attacked
by a disease at time t = 0, with the result that the fish
cease to reproduce (so that the birth rate is β = 0) and the
death rate δ (deaths per week per fish) is thereafter propor-
tional to 1/

√
P . If there were initially 900 fish in the lake

and 441 were left after 6 weeks, how long did it take all
the fish in the lake to die?

11. Suppose that when a certain lake is stocked with fish, the
birth and death rates β and δ are both inversely propor-
tional to

√
P . (a) Show that

P(t) =
(

1
2 kt + √

P0

)2
,

where k is a constant. (b) If P0 = 100 and after 6 months
there are 169 fish in the lake, how many will there be after
1 year?

12. The time rate of change of an alligator population P in
a swamp is proportional to the square of P . The swamp
contained a dozen alligators in 1988, two dozen in 1998.
When will there be four dozen alligators in the swamp?
What happens thereafter?

13. Consider a prolific breed of rabbits whose birth and death
rates, β and δ, are each proportional to the rabbit popula-
tion P = P(t), with β > δ. (a) Show that

P(t) = P0

1 − k P0t
, k constant.

Note that P(t) → +∞ as t → 1/(k P0). This is dooms-
day. (b) Suppose that P0 = 6 and that there are nine
rabbits after ten months. When does doomsday occur?

14. Repeat part (a) of Problem 13 in the case β < δ. What
now happens to the rabbit population in the long run?

15. Consider a population P(t) satisfying the logistic equa-
tion dP/dt = a P − bP2, where B = a P is the time rate
at which births occur and D = bP2 is the rate at which
deaths occur. If the initial population is P(0) = P0, and
B0 births per month and D0 deaths per month are occur-
ring at time t = 0, show that the limiting population is
M = B0 P0/D0.

16. Consider a rabbit population P(t) satisfying the logistic
equation as in Problem 15. If the initial population is 120
rabbits and there are 8 births per month and 6 deaths per
month occurring at time t = 0, how many months does it
take for P(t) to reach 95% of the limiting population M?

17. Consider a rabbit population P(t) satisfying the logistic
equation as in Problem 15. If the initial population is 240
rabbits and there are 9 births per month and 12 deaths per
month occurring at time t = 0, how many months does it
take for P(t) to reach 105% of the limiting population M?

18. Consider a population P(t) satisfying the extinction-
explosion equation dP/dt = a P2 − bP , where B = a P2

is the time rate at which births occur and D = bP is
the rate at which deaths occur. If the initial population
is P(0) = P0 and B0 births per month and D0 deaths per
month are occurring at time t = 0, show that the threshold
population is M = D0 P0/B0.

19. Consider an alligator population P(t) satisfying the
extinction/explosion equation as in Problem 18. If the ini-
tial population is 100 alligators and there are 10 births per
month and 9 deaths per months occurring at time t = 0,
how many months does it take for P(t) to reach 10 times
the threshold population M?

20. Consider an alligator population P(t) satisfying the
extinction/explosion equation as in Problem 18. If the ini-
tial population is 110 alligators and there are 11 births per
month and 12 deaths per month occurring at time t = 0,
how many months does it take for P(t) to reach 10% of
the threshold population M?

21. Suppose that the population P(t) of a country satisfies the
differential equation dP/dt = k P(200 − P) with k con-
stant. Its population in 1940 was 100 million and was then
growing at the rate of 1 million per year. Predict this coun-
try’s population for the year 2000.

22. Suppose that at time t = 0, half of a “logistic” popula-
tion of 100,000 persons have heard a certain rumor, and
that the number of those who have heard it is then increas-
ing at the rate of 1000 persons per day. How long will it
take for this rumor to spread to 80% of the population?
(Suggestion: Find the value of k by substituting P(0) and
P ′(0) in the logistic equation, Eq. (3).)

23. As the salt KNO3 dissolves in methanol, the number x(t)
of grams of the salt in a solution after t seconds satisfies
the differential equation dx/dt = 0.8x − 0.004x2.

(a) What is the maximum amount of the salt that will ever
dissolve in the methanol?

(b) If x = 50 when t = 0, how long will it take for an
additional 50 g of salt to dissolve?

24. Suppose that a community contains 15,000 people who
are susceptible to Michaud’s syndrome, a contagious dis-
ease. At time t = 0 the number N (t) of people who have
developed Michaud’s syndrome is 5000 and is increasing
at the rate of 500 per day. Assume that N ′(t) is propor-
tional to the product of the numbers of those who have
caught the disease and of those who have not. How long
will it take for another 5000 people to develop Michaud’s
syndrome?
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2.1 Population Models 89

25. The data in the table in Fig. 2.1.7 are given for a certain
population P(t) that satisfies the logistic equation in (3).
(a) What is the limiting population M? (Suggestion: Use
the approximation

P ′(t) ≈ P(t + h) − P(t − h)

2h

with h = 1 to estimate the values of P ′(t) when P =
25.00 and when P = 47.54. Then substitute these values
in the logistic equation and solve for k and M .) (b) Use
the values of k and M found in part (a) to determine when
P = 75. (Suggestion: Take t = 0 to correspond to the
year 1925.)

Year P (millions)

1924

1925

1926
...

1974

1975

1976

24.63

25.00

25.38
...

47.04

47.54

48.04

FIGURE 2.1.7. Population data for Problem 25.

26. A population P(t) of small rodents has birth rate β =
(0.001)P (births per month per rodent) and constant death
rate δ. If P(0) = 100 and P ′(0) = 8, how long (in
months) will it take this population to double to 200 ro-
dents? (Suggestion: First find the value of δ.)

27. Consider an animal population P(t) with constant death
rate δ = 0.01 (deaths per animal per month) and with
birth rate β proportional to P . Suppose that P(0) = 200
and P ′(0) = 2. (a) When is P = 1000? (b) When does
doomsday occur?

28. Suppose that the number x(t) (with t in months) of alliga-
tors in a swamp satisfies the differential equation dx/dt =
0.0001x2 − 0.01x .

(a) If initially there are 25 alligators in the swamp, solve
this differential equation to determine what happens
to the alligator population in the long run.

(b) Repeat part (a), except with 150 alligators initially.

29. During the period from 1790 to 1930, the U.S. population
P(t) (t in years) grew from 3.9 million to 123.2 million.
Throughout this period, P(t) remained close to the solu-
tion of the initial value problem

dP

dt
= 0.03135P − 0.0001489P2, P(0) = 3.9.

(a) What 1930 population does this logistic equation pre-
dict?

(b) What limiting population does it predict?

(c) Has this logistic equation continued since 1930 to ac-
curately model the U.S. population?

[This problem is based on a computation by Verhulst, who
in 1845 used the 1790–1840 U.S. population data to pre-
dict accurately the U.S. population through the year 1930
(long after his own death, of course).]

30. A tumor may be regarded as a population of multiplying
cells. It is found empirically that the “birth rate” of the
cells in a tumor decreases exponentially with time, so that
β(t) = β0e−αt (where α and β0 are positive constants),
and hence

dP

dt
= β0e−αt P, P(0) = P0.

Solve this initial value problem for

P(t) = P0 exp

(
β0

α
(1 − e−αt )

)
.

Observe that P(t) approaches the finite limiting popula-
tion P0 exp (β0/α) as t → +∞.

31. For the tumor of Problem 30, suppose that at time t = 0
there are P0 = 106 cells and that P(t) is then increasing
at the rate of 3 × 105 cells per month. After 6 months the
tumor has doubled (in size and in number of cells). Solve
numerically for α, and then find the limiting population of
the tumor.

32. Derive the solution

P(t) = MP0

P0 + (M − P0)e−k Mt

of the logistic initial value problem P ′ = k P(M − P),
P(0) = P0. Make it clear how your derivation depends on
whether 0 < P0 < M or P0 > M .

33. (a) Derive the solution

P(t) = MP0

P0 + (M − P0)ek Mt

of the extinction-explosion initial value problem P ′ =
k P(P − M), P(0) = P0.

(b) How does the behavior of P(t) as t increases depend
on whether 0 < P0 < M or P0 > M?

34. If P(t) satisfies the logistic equation in (3), use the chain
rule to show that

P ′′(t) = 2k2 P(P − 1
2 M)(P − M).

Conclude that P ′′ > 0 if 0 < P < 1
2 M ; P ′′ = 0 if

P = 1
2 M ; P ′′ < 0 if 1

2 M < P < M ; and P ′′ > 0
if P > M . In particular, it follows that any solution
curve that crosses the line P = 1

2 M has an inflection point
where it crosses that line, and therefore resembles one of
the lower S-shaped curves in Fig. 2.1.3.
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35. Consider two population functions P1(t) and P2(t), both
of which satisfy the logistic equation with the same limit-
ing population M but with different values k1 and k2 of the
constant k in Eq. (3). Assume that k1 < k2. Which pop-
ulation approaches M the most rapidly? You can reason
geometrically by examining slope fields (especially if ap-
propriate software is available), symbolically by analyzing
the solution given in Eq. (7), or numerically by substitut-
ing successive values of t .

36. To solve the two equations in (10) for the values of k and
M , begin by solving the first equation for the quantity
x = e−50k M and the second equation for x2 = e−100k M .
Upon equating the two resulting expressions for x2 in
terms of M , you get an equation that is readily solved for
M . With M now known, either of the original equations
is readily solved for k. This technique can be used to “fit”
the logistic equation to any three population values P0, P1,
and P2 corresponding to equally spaced times t0 = 0, t1,
and t2 = 2t1.

37. Use the method of Problem 36 to fit the logistic equation
to the actual U.S. population data (Fig. 2.1.4) for the years

1850, 1900, and 1950. Solve the resulting logistic equa-
tion and compare the predicted and actual populations for
the years 1990 and 2000.

38. Fit the logistic equation to the actual U.S. population data
(Fig. 2.1.4) for the years 1900, 1930, and 1960. Solve the
resulting logistic equation, then compare the predicted and
actual populations for the years 1980, 1990, and 2000.

39. Birth and death rates of animal populations typically are
not constant; instead, they vary periodically with the pas-
sage of seasons. Find P(t) if the population P satisfies
the differential equation

dP

dt
= (k + b cos 2π t)P,

where t is in years and k and b are positive constants. Thus
the growth-rate function r(t) = k + b cos 2π t varies pe-
riodically about its mean value k. Construct a graph that
contrasts the growth of this population with one that has
the same initial value P0 but satisfies the natural growth
equation P ′ = k P (same constant k). How would the two
populations compare after the passage of many years?

2.1 Application Logistic Modeling of Population Data

These investigations deal with the problem of fitting a logistic model to given pop-
ulation data. Thus we want to determine the numerical constants a and b so that the
solution P(t) of the initial value problem

dP

dt
= a P + bP2, P(0) = P0 (1)

approximates the given values P0, P1, . . . , Pn of the population at the times t0 = 0,
t1, . . . , tn . If we rewrite Eq. (1) (the logistic equation with k M = a and k = −b) in
the form

1

P

dP

dt
= a + bP, (2)

then we see that the points(
P(ti ),

P ′(ti )
P(ti )

)
, i = 0, 1, 2, . . . , n,

should all lie on the straight line with y-intercept a and slope b (as determined by
the function of P on the right-hand side in Eq. (2)).

This observation provides a way to find a and b. If we can determine the
approximate values of the derivatives P ′

1, P ′
2, . . . corresponding to the given popu-

lation data, then we can proceed with the following agenda:

• First plot the points (P1, P ′
1/P1), (P2, P ′

2/P2), . . . on a sheet of graph paper
with horizontal P-axis.

• Then use a ruler to draw a straight line that appears to approximate these points
well.
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2.2 Equilibrium Solutions and Stability 91

• Finally, measure this straight line’s y-intercept a and slope b.

But where are we to find the needed values of the derivative P ′(t) of the (as
yet) unknown function P? It is easiest to use the approximation

P ′
i = Pi+1 − Pi−1

ti+1 − ti−1
(3)

suggested by Fig. 2.1.8. For instance, if we take i = 0 corresponding to the year
1790, then the U.S. population data in Fig. 2.1.9 give

P ′
1 = P2 − P0

t2 − t0
= 7.240 − 3.929

20
≈ 0.166

for the slope at (t1, P1) corresponding to the year 1800.

P-axis

t-axistiti − 1 ti + 1

(ti + 1, Pi + 1)

(ti , Pi)

Slope: P'(ti)

(ti − 1, Pi − 1)

Slope:
Pi + 1 − Pi − 1
ti + 1 − ti − 1

FIGURE 2.1.8. The symmetric difference approximation
Pi+1 − Pi−1

ti+1 − ti−1
to the derivative P ′(ti ).

INVESTIGATION A: Use Eq. (3) to verify the slope figures shown in the final col-
umn of the table in Fig. 2.1.9, then plot the points (P1, P ′

1/P1), . . . , (P11, P ′
11/P11)

indicated by the dots in Fig. 2.1.10. If an appropriate graphing calculator, spread-
sheet, or computer program is available, use it to find the straight line y = a + bP
as in (2) that best fits these points. If not, draw your own straight line approximat-
ing these points, and then measure its intercept a and slope b as accurately as you
can. Next, solve the logistic equation in (1) with these numerical parameters, taking
t = 0 corresponding to the year 1800. Finally, compare the predicted 20th-century
U.S. population figures with the actual data listed in Fig. 2.1.4.

INVESTIGATION B: Repeat Investigation A, but take t = 0 in 1900 and use only
20th-century population data. Do you get a better approximation for the U.S. popu-
lation during the final decades of the 20th century?

INVESTIGATION C: Model similarly the world population data shown in
Fig. 2.1.11. The Population Division of the United Nations predicts a world popu-
lation of 8.177 billion in the year 2025. What do you predict?
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92 Chapter 2 Mathematical Models and Numerical Methods

Population Slope
Year i ti Pi P ′

i

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

0

1

2

3

4

5

6

7

8

9

10

11

12

−10

0

10

20

30

40

50

60

70

80

90

100

110

3.929

5.308

7.240

9.638

12.861

17.064

23.192

31.443

38.558

50.189

62.980

76.212

92.228

0.166

0.217

0.281

0.371

0.517

0.719

0.768

0.937

1.221

1.301

1.462

FIGURE 2.1.9. U.S. population data (in millions) and
approximate slopes.

P

P
'/P

0 20 40 60 80 100

0.02

0.03

0.04

0

0.01

FIGURE 2.1.10. Points and approximating
straight line for U.S. population data from
1800 to 1900.

World
Population

Year (billions)

1960

1965

1970

1975

1980

1985

1990

1995

2000

3.049

3.358

3.721

4.103

4.473

4.882

5.249

5.679

6.127

FIGURE 2.1.11. World population data.

2.2 Equilibrium Solutions and Stability

In previous sections we have often used explicit solutions of differential equations to
answer specific numerical questions. But even when a given differential equation is
difficult or impossible to solve explicitly, it often is possible to extract qualitative in-
formation about general properties of its solutions. For example, we may be able to
establish that every solution x(t) grows without bound as t → +∞, or approaches
a finite limit, or is a periodic function of t . In this section we introduce—mainly by
consideration of simple differential equations that can be solved explicitly—some
of the more important qualitative questions that can sometimes be answered for
equations that are difficult or impossible to solve.
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2.2 Equilibrium Solutions and Stability 93

Example 1 Let x(t) denote the temperature of a body with initial temperature x(0) = x0. At
time t = 0 this body is immersed in a medium with constant temperature A. As-
suming Newton’s law of cooling,

dx

dt
= −k(x − A) (k > 0 constant), (1)

we readily solve (by separation of variables) for the explicit solution

x(t) = A + (x0 − A)e−kt .

It follows immediately that

lim
t→∞ x(t) = A, (2)

so the temperature of the body approaches that of the surrounding medium (as is
evident to one’s intuition). Note that the constant function x(t) ≡ A is a solution of
Eq. (1); it corresponds to the temperature of the body when it is in thermal equilib-
rium with the surrounding medium. In Fig. 2.2.1 the limit in (2) means that every

t

x = A

x

FIGURE 2.2.1. Typical solution
curves for the equation of
Newton’s law of cooling,
dx/dt = −k(x − A).

other solution curve approaches the equilibrium solution curve x = A asymptoti-
cally as t → +∞.

Remark: The behavior of solutions of Eq. (1) is summarized briefly by the
phase diagram in Fig. 2.2.2—which indicates the direction (or “phase”) of change
in x as a function of x itself. The right-hand side f (x) = −k(x − A) = k(A − x) is
positive if x < A, negative if x > A. This observation corresponds to the fact that
solutions starting above the line x = A and those starting below it both approach
the limiting solution x(t) ≡ A as t increases (as indicated by the arrows).

x = Ax < A x > A

x' < 0x' > 0

FIGURE 2.2.2. Phase diagram
for the equation
dx/dt = f (x) = k(A − x).

In Section 2.1 we introduced the general population equation

dx

dt
= (β − δ)x, (3)

where β and δ are the birth and death rates, respectively, in births or deaths per
individual per unit of time. The question of whether a population x(t) is bounded or
unbounded as t → +∞ is of evident interest. In many situations—like the logistic
and explosion/extinction populations of Section 2.1—the birth and death rates are
known functions of x . Then Eq. (3) takes the form

dx

dt
= f (x). (4)

This is an autonomous first-order differential equation—one in which the indepen-
dent variable t does not appear explicitly (the terminology here stemming from the
Greek word autonomos for “independent,” e.g., of the time t). As in Example 1, the
solutions of the equation f (x) = 0 play an important role and are called critical
points of the autonomous differential equation dx/dt = f (x).

If x = c is a critical point of Eq. (4), then the differential equation has the
constant solution x(t) ≡ c. A constant solution of a differential equation is some-
times called an equilibrium solution (one may think of a population that remains
constant because it is in “equilibrium” with its environment). Thus the critical point
x = c, a number, corresponds to the equilibrium solution x(t) ≡ c, a constant-
valued function.

Example 2 illustrates the fact that the qualitative behavior (as t increases) of
the solutions of an autonomous first-order equation can be described in terms of its
critical points.
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94 Chapter 2 Mathematical Models and Numerical Methods

Example 2 Consider the logistic differential equation

dx

dt
= kx(M − x) (5)

(with k > 0 and M > 0). It has two critical points—the solutions x = 0 and x = M
of the equation

f (x) = kx(M − x) = 0.

In Section 2.1 we discussed the logistic-equation solution

x(t) = Mx0

x0 + (M − x0)e−k Mt
(6)

satisfying the initial condition x(0) = x0. Note that the initial values x0 = 0 and
x0 = M yield the equilibrium solutions x(t) ≡ 0 and x(t) ≡ M of Eq. (5).

We observed in Section 2.1 that if x0 > 0, then x(t) → M as t → +∞. But
if x0 < 0, then the denominator in Eq. (6) initially is positive, but vanishes when

t = t1 = 1

k M
ln

M − x0

−x0
> 0.

Because the numerator in (6) is negative in this case, it follows that

lim
t→t−1

x(t) = −∞ if x0 < 0.

It follows that the solution curves of the logistic equation in (5) look as illustrated in

t

x = M

x = 0

x

FIGURE 2.2.3. Typical solution
curves for the logistic equation
dx/dt = kx(M − x).

Fig. 2.2.3. Here we see graphically that every solution either approaches the equi-
librium solution x(t) ≡ M as t increases, or (in a visually obvious sense) diverges
away from the other equilibrium solution x(t) ≡ 0.

Stability of Critical Points

Figure 2.2.3 illustrates the concept of stability. A critical point x = c of an au-
tonomous first-order equation is said to be stable provided that, if the initial value
x0 is sufficiently close to c, then x(t) remains close to c for all t > 0. More precisely,
the critical point c is stable if, for each ε > 0, there exists δ > 0 such that

|x0 − c| < δ implies that |x(t) − c| < ε (7)

for all t > 0. The critical point x = c is unstable if it is not stable.
Figure 2.2.4 shows a “wider view” of the solution curves of a logistic equation

with k = 1 and M = 4. Note that the strip 3.5 < x < 4.5 enclosing the stable
equilibrium curve x = 4 acts like a funnel—solution curves (moving from left to
right) enter this strip and thereafter remain within it. By contrast, the strip −0.5 <

x < 0.5 enclosing the unstable solution curve x = 0 acts like a spout—solution
curves leave this strip and thereafter remain outside it. Thus the critical point x = M

12108642
t

x

0
−3
−2
−1

0
1
2
3
4
5
6
7

FIGURE 2.2.4. Solution curves,
funnel, and spout for
dx/dt = 4x − x2.

is stable, whereas the critical point x = 0 is unstable.

Remark 1: We can summarize the behavior of solutions of the logistic
equation in (5)—in terms of their initial values—by means of the phase diagram
shown in Fig. 2.2.5. It indicates that x(t) → M as t → +∞ if either x0 > M
or 0 < x0 < M , whereas x(t) → −∞ as t increases if x0 < 0. The fact that M
is a stable critical point would be important, for instance, if we wished to conduct
an experiment with a population of M bacteria. It is impossible to count precisely
M bacteria for M large, but any initially positive population will approach M as t

x = M
Stable

x' > 0 x' < 0x' < 0

x = 0
Unstable

FIGURE 2.2.5. Phase diagram
for the logistic equation
dx/dt = f (x) = kx(M − x).

increases.
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2.2 Equilibrium Solutions and Stability 95

Remark 2: Related to the stability of the limiting solution M = a/b of
the logistic equation

dx

dt
= ax − bx2 (8)

is the “predictability” of M for an actual population. The coefficients a and b are
unlikely to be known precisely for an actual population. But if they are replaced with
close approximations a� and b�—derived perhaps from empirical measurements—
then the approximate limiting population M� = a�/b� will be close to the actual
limiting population M = a/b. We may therefore say that the value M of the limiting
population predicted by a logistic equation not only is a stable critical point of the
differential equation; this value also is “stable” with respect to small perturbations
of the constant coefficients in the equation. (Note that one of these two statements
involves changes in the initial value x0; the other involves changes in the coefficients
a and b.)

Example 3 Consider now the explosion/extinction equation

dx

dt
= kx(x − M) (9)

of Eq. (10) in Section 2.1. Like the logistic equation, it has the two critical points
x = 0 and x = M corresponding to the equilibrium solutions x(t) ≡ 0 and x(t) ≡
M . According to Problem 33 in Section 2.1, its solution with x(0) = x0 is given by

x(t) = Mx0

x0 + (M − x0)ek Mt
(10)

(with only a single difference in sign from the logistic solution in (6)). If x0 < M ,
then (because the coefficient of the exponential in the denominator is positive) it
follows immediately from Eq. (10) that x(t) → 0 as t → +∞. But if x0 > M , then
the denominator in (10) initially is positive, but vanishes when

t = t1 = 1

k M
ln

x0

x0 − M
> 0.

Because the numerator in (10) is positive in this case, it follows that

t

x = M

x = 0

x

FIGURE 2.2.6. Typical solution
curves for the explosion/extinction
equation dx/dt = kx(x − M).

lim
t→t−1

x(t) = +∞ if x0 > M.

Therefore, the solution curves of the explosion/extinction equation in (9) look as
illustrated in Fig. 2.2.6. A narrow band along the equilibrium curve x = 0 (as in
Fig. 2.2.4) would serve as a funnel, while a band along the solution curve x = M
would serve as a spout for solutions. The behavior of the solutions of Eq. (9) is
summarized by the phase diagram in Fig. 2.2.7, where we see that the critical point
x = 0 is stable and the critical point x = M is unstable.

x = M
Unstable

x' < 0 x' > 0x' > 0

x = 0
Stable

FIGURE 2.2.7. Phase diagram
for the explosion/extinction
equation
dx/dt = f (x) = kx(x − M).
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96 Chapter 2 Mathematical Models and Numerical Methods

Harvesting a Logistic Population

The autonomous differential equation

dx

dt
= ax − bx2 − h (11)

(with a, b, and h all positive) may be considered to describe a logistic population
with harvesting. For instance, we might think of the population of fish in a lake
from which h fish per year are removed by fishing.

Example 4 Let us rewrite Eq. (11) in the form

dx

dt
= kx(M − x) − h, (12)

which exhibits the limiting population M in the case h = 0 of no harvesting. As-
suming hereafter that h > 0, we can solve the quadratic equation −kx2+k Mx−h =
0 for the two critical points

H, N = k M ± √
(k M)2 − 4hk

2k
= 1

2

(
M ±

√
M2 − 4h/k

)
, (13)

assuming that the harvesting rate h is sufficiently small that 4h < k M2, so both
roots H and N are real with 0 < H < N < M . Then we can rewrite Eq. (12) in the
form

dx

dt
= k(N − x)(x − H). (14)

For instance, the number of critical points of the equation may change abruptly as
the value of a parameter is changed. In Problem 24 we ask you to solve this equation
for the solution

x(t) = N (x0 − H) − H(x0 − N )e−k(N−H)t

(x0 − H) − (x0 − N )e−k(N−H)t
(15)

in terms of the initial value x(0) = x0.
Note that the exponent −k(N − H)t is negative for t > 0. If x0 > N , then

each of the coefficients within parentheses in Eq. (15) is positive; it follows that

If x0 > N then x(t) → N as t → +∞. (16)

In Problem 25 we ask you to deduce also from Eq. (15) that

x = 0

t

x = N

x = H

x

FIGURE 2.2.8. Typical solution
curves for the logistic harvesting
equation
dx/dt = k(N − x)(x − H).

If H < x0 < N then x(t) → N as t → +∞, whereas (17)

if x0 < H then x(t) → −∞ as t → t1 (18)

for a positive value t1 that depends on x0. It follows that the solution curves of
Eq. (12)—still assuming that 4h < k M2—look as illustrated in Fig. 2.2.8. (Can
you visualize a funnel along the line x = N and a spout along the line x = H?)
Thus the constant solution x(t) ≡ N is an equilibrium limiting solution, whereas
x(t) ≡ H is a threshold solution that separates different behaviors—the population
approaches N if x0 > H , while it becomes extinct because of harvesting if x0 < H .
Finally, the stable critical point x = N and the unstable critical point x = H are
illustrated in the phase diagram in Fig. 2.2.9.

x = N
Stable

x' > 0 x' < 0x' < 0

x = H
Unstable

FIGURE 2.2.9. Phase diagram
for the logistic harvesting equation
dx/dt = f (x) = k(N −x)(x − H).
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2.2 Equilibrium Solutions and Stability 97

Example 5 For a concrete application of our stability conclusions in Example 4, suppose that
k = 1 and M = 4 for a logistic population x(t) of fish in a lake, measured in
hundreds after t years. Without any fishing at all, the lake would eventually contain
nearly 400 fish, whatever the initial population. Now suppose that h = 3, so that
300 fish are “harvested” annually (at a constant rate throughout the year). Equation
(12) is then dx/dt = x(4 − x) − 3, and the quadratic equation

−x2 + 4x − 3 = (3 − x)(x − 1) = 0

has solutions H = 1 and N = 3. Thus the threshold population is 100 fish and the
(new) limiting population is 300 fish. In short, if the lake is stocked initially with
more than 100 fish, then as t increases, the fish population will approach a limiting
value of 300 fish. But if the lake is stocked initially with fewer than 100 fish, then
the lake will be “fished out” and the fish will disappear entirely within a finite period
of time.

Bifurcation and Dependence on Parameters

A biological or physical system that is modeled by a differential equation may de-
pend crucially on the numerical values of certain coefficients or parameters that
appear in the equation. For instance, the number of critical points of the equation
may change abruptly as the value of a parameter is changed.

Example 6 The differential equation

dx

dt
= x(4 − x) − h (19)

(with x in hundreds) models the harvesting of a logistic population with k = 1
and limiting population M = 4 (hundred). In Example 5 we considered the case
of harvesting level h = 3, and found that the new limiting population is N = 3
hundred and the threshold population is H = 1 hundred. Typical solution curves,
including the equilibrium solutions x(t) ≡ 3 and x(t) ≡ 1, then look like those
pictured in Fig. 2.2.8.

Now let’s investigate the dependence of this picture upon the harvesting level
h. According to Eq. (13) with k = 1 and M = 4, the limiting and threshold
populations N and H are given by

H, N = 1

2

(
4 ± √

16 − 4h
)

= 2 ± √
4 − h. (20)

If h < 4—we can consider negative values of h to describe stocking rather than
harvesting the fish—then there are distinct equilibrium solutions x(t) ≡ N and
x(t) ≡ H with N > H as in Fig. 2.2.8.

But if h = 4, then Eq. (20) gives N = H = 2, so the differential equation
has only the single equilibrium solution x(t) ≡ 2. In this case the solution curves
of the equation look like those illustrated in Fig. 2.2.10. If the initial number x0 (in
hundreds) of fish exceeds 2, then the population approaches a limiting population
of 2 (hundred fish). However, any initial population x0 < 2 (hundred) results in ex-
tinction with the fish dying out as a consequence of the harvesting of 4 hundred fish

0 2 4

1

3

5

t

x

−1

x(t) ≡ 2

FIGURE 2.2.10. Solution curves
of the equation x ′ = x(4 − x) − h
with critical harvesting h = 4.

annually. The critical point x = 2 might therefore be described as “semistable”—it
looks stable on the side x > 2 where solution curves approach the equilibrium so-
lution x(t) ≡ 2 as t increases, but unstable on the side x < 2 where solution curves
instead diverge away from the equilibrium solution.
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98 Chapter 2 Mathematical Models and Numerical Methods

If, finally, h > 4, then the quadratic equation corresponding to (20) has no

0 2 4

1

3

5

t

x

−1

FIGURE 2.2.11. Solution curves
of the equation x ′ = x(4 − x) − h
with excessive harvesting h = 5.

real solutions and the differential equation in (19) has no equilibrium solutions. The
solution curves then look like those illustrated in Fig. 2.2.11, and (whatever the
initial number of fish) the population dies out as a result of the excessive harvesting.

If we imagine turning a dial to gradually increase the value of the parameter h
in Eq. (19), then the picture of the solution curves changes from one like Fig. 2.2.8
with h < 4, to Fig. 2.2.10 with h = 4, to one like Fig. 2.2.11 with h > 4. Thus the
differential equation has

• two critical points if h < 4 ;
• one critical point if h = 4 ;
• no critical point if h > 4.

The value h = 4—for which the qualitative nature of the solutions changes as h
increases—is called a bifurcation point for the differential equation containing the
parameter h. A common way to visualize the corresponding “bifurcation” in the
solutions is to plot the bifurcation diagram consisting of all points (h, c), where c
is a critical point of the equation x ′ = x(4 − x) + h . For instance, if we rewrite
Eq. (20) as

c = 2 ± √
4 − h,

(c − 2)2 = 4 − h,

where either c = N or c = H , then we get the equation of the parabola that is shown
in Fig. 2.2.12. This parabola is then the bifurcation diagram for our differential
equation that models a logistic fish population with harvesting at the level specified
by the parameter h.

4
h

c

(c − 2)2 = 4 − h

FIGURE 2.2.12. The parabola
(c − 2)2 = 4 − h is the bifurcation
diagram for the differential
equation x ′ = x(4 − x) − h.

2.2 Problems

In Problems 1 through 12 first solve the equation f (x) = 0
to find the critical points of the given autonomous differential
equation dx/dt = f (x). Then analyze the sign of f (x) to de-
termine whether each critical point is stable or unstable, and
construct the corresponding phase diagram for the differen-
tial equation. Next, solve the differential equation explicitly
for x(t) in terms of t . Finally, use either the exact solution
or a computer-generated slope field to sketch typical solution
curves for the given differential equation, and verify visually
the stability of each critical point.

1.
dx

dt
= x − 4 2.

dx

dt
= 3 − x

3.
dx

dt
= x2 − 4x 4.

dx

dt
= 3x − x2

5.
dx

dt
= x2 − 4 6.

dx

dt
= 9 − x2

7.
dx

dt
= (x − 2)2 8.

dx

dt
= −(3 − x)2

9.
dx

dt
= x2 − 5x + 4 10.

dx

dt
= 7x − x2 − 10

11.
dx

dt
= (x − 1)3 12.

dx

dt
= (2 − x)3

In Problems 13 through 18, use a computer system or graphing
calculator to plot a slope field and/or enough solution curves
to indicate the stability or instability of each critical point of
the given differential equation. (Some of these critical points
may be semistable in the sense mentioned in Example 6.)

13.
dx

dt
= (x + 2)(x − 2)2 14.

dx

dt
= x(x2 − 4)

15.
dx

dt
= (x2 − 4)2 16.

dx

dt
= (x2 − 4)3

17.
dx

dt
= x2(x2 − 4) 18.

dx

dt
= x3(x2 − 4)

19. The differential equation dx/dt = 1
10 x(10−x)−h models

a logistic population with harvesting at rate h. Determine
(as in Example 6) the dependence of the number of critical
points on the parameter h, and then construct a bifurcation
diagram like Fig. 2.2.12.

20. The differential equation dx/dt = 1
100 x(x −5)+ s models

a population with stocking at rate s. Determine the depen-
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2.2 Equilibrium Solutions and Stability 99

dence of the number of critical points c on the parameter s,
and then construct the corresponding bifurcation diagram
in the sc-plane.

21. Consider the differential equation dx/dt = kx − x3.
(a) If k ≤ 0, show that the only critical value c = 0 of
x is stable. (b) If k > 0, show that the critical point c = 0
is now unstable, but that the critical points c = ±√

k are
stable. Thus the qualitative nature of the solutions changes
at k = 0 as the parameter k increases, and so k = 0 is a
bifurcation point for the differential equation with param-
eter k. The plot of all points of the form (k, c) where c is a
critical point of the equation x ′ = kx −x3 is the “pitchfork
diagram” shown in Fig. 2.2.13.

22. Consider the differential equation dx/dt = x + kx3 con-
taining the parameter k. Analyze (as in Problem 21) the
dependence of the number and nature of the critical points
on the value of k, and construct the corresponding bifur-
cation diagram.

23. Suppose that the logistic equation dx/dt = kx(M − x)

models a population x(t) of fish in a lake after t months
during which no fishing occurs. Now suppose that, be-
cause of fishing, fish are removed from the lake at the rate
of hx fish per month (with h a positive constant). Thus
fish are “harvested” at a rate proportional to the existing
fish population, rather than at the constant rate of Exam-
ple 4. (a) If 0 < h < k M , show that the population is
still logistic. What is the new limiting population? (b) If
h � k M , show that x(t) → 0 are t → +∞, so the lake is
eventually fished out.

24. Separate variables in the logistic harvesting equation
dx/dt = k(N − x)(x − H) and then use partial fractions
to derive the solution given in Eq. (15).

25. Use the alternative forms

x(t) = N (x0 − H) + H(N − x0)e−k(N−H)t

(x0 − H) + (N − x0)e−k(N−H)t

= H(N − x0)e−k(N−H)t − N (H − x0)

(N − x0)e−k(N−H)t − (H − x0)

of the solution in (15) to establish the conclusions stated
in (17) and (18).

Example 4 dealt with the case 4h > k M2 in the equation
dx/dt = kx(M − x) − h that describes constant-rate har-
vesting of a logistic population. Problems 26 and 27 deal with
the other cases.

26. If 4h = k M2, show that typical solution curves look
as illustrated in Fig. 2.2.14. Thus if x0 � M/2, then
x(t) → M/2 as t → +∞. But if x0 < M/2, then
x(t) = 0 after a finite period of time, so the lake is
fished out. The critical point x = M/2 might be called
semistable, because it looks stable from one side, unstable
from the other.

27. If 4h > k M2, show that x(t) = 0 after a finite period of
time, so the lake is fished out (whatever the initial popula-
tion). [Suggestion: Complete the square to rewrite the dif-
ferential equation in the form dx/dt = −k[(x − a)2 + b2].
Then solve explicitly by separation of variables.] The re-
sults of this and the previous problem (together with Ex-
ample 4) show that h = 1

4 k M2 is a critical harvesting rate
for a logistic population. At any lesser harvesting rate the
population approaches a limiting population N that is less
than M (why?), whereas at any greater harvesting rate the
population reaches extinction.

28. This problem deals with the differential equation dx/dt =
kx(x−M)−h that models the harvesting of an unsophisti-
cated population (such as alligators). Show that this equa-
tion can be rewritten in the form dx/dt = k(x − H)(x −
K ), where

H = 1
2

(
M +

√
M2 + 4h/k

)
> 0,

K = 1
2

(
M −

√
M2 + 4h/k

)
< 0.

Show that typical solution curves look as illustrated in
Fig. 2.2.15.

29. Consider the two differential equations

dx

dt
= (x − a)(x − b)(x − c) (21)

and
dx

dt
= (a − x)(b − x)(c − x), (22)

c

k

FIGURE 2.2.13. Bifurcation
diagram for dx/dt = kx − x3.

t

x = M/2

x = 0

x

FIGURE 2.2.14. Solution curves
for harvesting a logistic population
with 4h = k M2.

t

x = H

x = K
x = 0x

FIGURE 2.2.15. Solution curves
for harvesting a population of
alligators.
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100 Chapter 2 Mathematical Models and Numerical Methods

each having the critical points a, b, and c; suppose that
a < b < c. For one of these equations, only the criti-
cal point b is stable; for the other equation, b is the only
unstable critical point. Construct phase diagrams for the
two equations to determine which is which. Without at-

tempting to solve either equation explicitly, make rough
sketches of typical solution curves for each. You should
see two funnels and a spout in one case, two spouts and a
funnel in the other.

2.3 Acceleration–Velocity Models

In Section 1.2 we discussed vertical motion of a mass m near the surface of the earth
under the influence of constant gravitational acceleration. If we neglect any effects
of air resistance, then Newton’s second law (F = ma) implies that the velocity v of
the mass m satisfies the equation

m
dv

dt
= FG, (1)

where FG = −mg is the (downward-directed) force of gravity, where the gravita-
tional acceleration is g ≈ 9.8 m/s2 (in mks units; g ≈ 32 ft/s2 in fps units).

Example 1 Suppose that a crossbow bolt is shot straight upward from the ground (y0 = 0) with
initial velocity v0 = 49 (m/s). Then Eq. (1) with g = 9.8 gives

dv

dt
= −9.8, so v(t) = −(9.8)t + v0 = −(9.8)t + 49.

Hence the bolt’s height function y(t) is given by

y(t) =
∫

[−(9.8)t + 49] dt = −(4.9)t2 + 49t + y0 = −(4.9)t2 + 49t.

The bolt reaches its maximum height when v = −(9.8)t + 49 = 0, hence when
t = 5 (s). Thus its maximum height is

ymax = y(5) = −(4.9)(52) + (49)(5) = 122.5 (m).

The bolt returns to the ground when y = −(4.9)t (t − 10) = 0, and thus after 10
seconds aloft.

Now we want to take account of air resistance in a problem like Example 1.
The force FR exerted by air resistance on the moving mass m must be added in
Eq. (1), so now

m
dv

dt
= FG + FR. (2)

Newton showed in his Principia Mathematica that certain simple physical assump-
tions imply that FR is proportional to the square of the velocity: FR = kv2. But
empirical investigations indicate that the actual dependence of air resistance on ve-
locity can be quite complicated. For many purposes it suffices to assume that

FR = kv p,

where 1 � p � 2 and the value of k depends on the size and shape of the body, as
well as the density and viscosity of the air. Generally speaking, p = 1 for relatively
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2.3 Acceleration–Velocity Models 101

low speeds and p = 2 for high speeds, whereas 1 < p < 2 for intermediate speeds.
But how slow “low speed” and how fast “high speed” are depend on the same factors
that determine the value of the coefficient k.

Thus air resistance is a complicated physical phenomenon. But the simplify-
ing assumption that FR is exactly of the form given here, with either p = 1 or p = 2,
yields a tractable mathematical model that exhibits the most important qualitative
features of motion with resistance.

Resistance Proportional to Velocity

Let us first consider the vertical motion of a body with mass m near the surfacey

m m

Ground level

FR

FG

Net force F = FR + FG

(Note: FR acts upward when
the body is falling.)

FIGURE 2.3.1. Vertical motion
with air resistance.

of the earth, subject to two forces: a downward gravitational force FG and a force
FR of air resistance that is proportional to velocity (so that p = 1) and of course
directed opposite the direction of motion of the body. If we set up a coordinate
system with the positive y-direction upward and with y = 0 at ground level, then
FG = −mg and

FR = −kv, (3)➤

where k is a positive constant and v = dy/dt is the velocity of the body. Note that
the minus sign in Eq. (3) makes FR positive (an upward force) if the body is falling
(v is negative) and makes FR negative (a downward force) if the body is rising (v is
positive). As indicated in Fig. 2.3.1, the net force acting on the body is then

F = FR + FG = −kv − mg,

and Newton’s law of motion F = m(dv/dt) yields the equation

m
dv

dt
= −kv − mg.

Thus

dv

dt
= −ρv − g, (4)➤

where ρ = k/m > 0. You should verify for yourself that if the positive y-axis were
directed downward, then Eq. (4) would take the form dv/dt = −ρv + g.

Equation (4) is a separable first-order differential equation, and its solution is

v(t) =
(

v0 + g

ρ

)
e−ρt − g

ρ
. (5)

Here, v0 = v(0) is the initial velocity of the body. Note that

vτ = lim
t→∞ v(t) = − g

ρ
. (6)

Thus the speed of a body falling with air resistance does not increase indefinitely;
instead, it approaches a finite limiting speed, or terminal speed,

|vτ | = g

ρ
= mg

k
. (7)
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102 Chapter 2 Mathematical Models and Numerical Methods

This fact is what makes a parachute a practical invention; it even helps explain
the occasional survival of people who fall without parachutes from high-flying air-
planes.

We now rewrite Eq. (5) in the form

dy

dt
= (v0 − vτ )e

−ρt + vτ . (8)

Integration gives

y(t) = − 1

ρ
(v0 − vτ )e

−ρt + vτ t + C.

We substitute 0 for t and let y0 = y(0) denote the initial height of the body. Thus
we find that C = y0 + (v0 − vτ )/ρ, and so

y(t) = y0 + vτ t + 1

ρ
(v0 − vτ )(1 − e−ρt). (9)

Equations (8) and (9) give the velocity v and height y of a body moving ver-
tically under the influence of gravity and air resistance. The formulas depend on
the initial height y0 of the body, its initial velocity v0, and the drag coefficient ρ,
the constant such that the acceleration due to air resistance is aR = −ρv. The two
equations also involve the terminal velocity vτ defined in Eq. (6).

For a person descending with the aid of a parachute, a typical value of ρ is
1.5, which corresponds to a terminal speed of |vτ | ≈ 21.3 ft/s, or about 14.5 mi/h.
With an unbuttoned overcoat flapping in the wind in place of a parachute, an unlucky
skydiver might increase ρ to perhaps as much as 0.5, which gives a terminal speed
of |vτ | ≈ 65 ft/s, about 44 mi/h. See Problems 10 and 11 for some parachute-jump
computations.

Example 2 We again consider a bolt shot straight upward with initial velocity v0 = 49 m/s
from a crossbow at ground level. But now we take air resistance into account, with
ρ = 0.04 in Eq. (4). We ask how the resulting maximum height and time aloft
compare with the values found in Example 1.

Solution We substitute y0 = 0, v0 = 49, and vτ = −g/ρ = −245 in Eqs. (5) and (9), and
obtain

v(t) = 294e−t/25 − 245,

y(t) = 7350 − 245t − 7350e−t/25.

To find the time required for the bolt to reach its maximum height (when v = 0),
we solve the equation

v(t) = 294e−t/25 − 245 = 0

for tm = 25 ln(294/245) ≈ 4.558 (s). Its maximum height is then ymax = v(tm) ≈
108.280 meters (as opposed to 122.5 meters without air resistance). To find when
the bolt strikes the ground, we must solve the equation

y(t) = 7350 − 245t − 7350e−t/25 = 0.

Using Newton’s method, we can begin with the initial guess t0 = 10 and carry out
the iteration tn+1 = tn − y(tn)/y′(tn) to generate successive approximations to the
root. Or we can simply use the Solve command on a calculator or computer. We
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2.3 Acceleration–Velocity Models 103

find that the bolt is in the air for tf ≈ 9.411 seconds (as opposed to 10 seconds
without air resistance). It hits the ground with a reduced speed of |v(tf)| ≈ 43.227
m/s (as opposed to its initial velocity of 49 m/s).

Thus the effect of air resistance is to decrease the bolt’s maximum height, the
total time spent aloft, and its final impact speed. Note also that the bolt now spends
more time in descent (tf − tm ≈ 4.853 s) than in ascent (tm ≈ 4.558 s).

Resistance Proportional to Square of Velocity

Now we assume that the force of air resistance is proportional to the square of the
velocity:

FR = ±kv2, (10)➤

with k > 0. The choice of signs here depends on the direction of motion, which
the force of resistance always opposes. Taking the positive y-direction as upward,
FR < 0 for upward motion (when v > 0) while FR > 0 for downward motion
(when v < 0). Thus the sign of FR is always opposite that of v, so we can rewrite
Eq. (10) as

FR = −kv|v|. (10′)

Then Newton’s second law gives

m
dv

dt
= FG + FR = −mg − kv|v|;

that is,

dv

dt
= −g − ρv|v|, (11)

where ρ = k/m > 0. We must discuss the cases of upward and downward motion
separately.

UPWARD MOTION: Suppose that a projectile is launched straight upward from
the initial position y0 with initial velocity v0 > 0. Then Eq. (11) with v > 0 gives
the differential equation

dv

dt
= −g − ρv2 = −g

(
1 + ρ

g
v2

)
. (12)

In Problem 13 we ask you to make the substitution u = v
√

ρ/g and apply the
familiar integral ∫

1

1 + u2
du = tan−1 u + C

to derive the projectile’s velocity function

v(t) =
√

g

ρ
tan

(
C1 − t

√
ρg

)
with C1 = tan−1

(
v0

√
ρ

g

)
. (13)

Because
∫

tan u du = − ln | cos u| + C , a second integration (see Problem 14)
yields the position function

y(t) = y0 + 1

ρ
ln

∣∣∣∣∣cos
(
C1 − t

√
ρg

)
cos C1

∣∣∣∣∣ . (14)
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104 Chapter 2 Mathematical Models and Numerical Methods

DOWNWARD MOTION: Suppose that a projectile is launched (or dropped)
straight downward from the initial position y0 with initial velocity v0 � 0. Then
Eq. (11) with v < 0 gives the differential equation

dv

dt
= −g + ρv2 = −g

(
1 − ρ

g
v2

)
. (15)

In Problem 15 we ask you to make the substitution u = v
√

ρ/g and apply the
integral ∫

1

1 − u2
du = tanh−1 u + C

to derive the projectile’s velocity function

v(t) =
√

g

ρ
tanh

(
C2 − t

√
ρg

)
with C2 = tanh−1

(
v0

√
ρ

g

)
. (16)

Because
∫

tanh u du = ln | cosh u| + C , another integration (Problem 16) yields the
position function

y(t) = y0 − 1

ρ
ln

∣∣∣∣∣cosh
(
C2 − t

√
ρg

)
cosh C2

∣∣∣∣∣ . (17)

(Note the analogy between Eqs. (16) and (17) and Eqs. (13) and (14) for upward
motion.)

If v0 = 0, then C2 = 0, so v(t) = −√
g/ρ tanh

(
t
√

ρg
)
. Because

lim
x→∞ tanh x = lim

x→∞
sinh x

cosh x
= lim

x→∞

1
2 (ex − e−x)

1
2 (ex + e−x)

= 1,

it follows that in the case of downward motion the body approaches the terminal
speed

|vτ | =
√

g

ρ
(18)

(as compared with |vτ | = g/ρ in the case of downward motion with linear resistance
described by Eq. (4)).

Example 3 We consider once more a bolt shot straight upward with initial velocity v0 = 49 m/s
from a crossbow at ground level, as in Example 2. But now we assume air resistance
proportional to the square of the velocity, with ρ = 0.0011 in Eqs. (12) and (15). In
Problems 17 and 18 we ask you to verify the entries in the last line of the following
table.

Air Maximum Time Ascent Descent Impact
Resistance Height (ft) Aloft (s) Time (s) Time (s) Speed (ft/s)

0.0

(0.04)v

(0.0011)v2

122.5

108.28

108.47

10

9.41

9.41

5

4.56

4.61

5

4.85

4.80

49

43.23

43.49

Comparison of the last two lines of data here indicates little difference—for the
motion of our crossbow bolt—between linear air resistance and air resistance pro-
portional to the square of the velocity. And in Fig. 2.3.2, where the corresponding
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2.3 Acceleration–Velocity Models 105

t

y

1 2 3 4 5 6 7 8 9 10

Without
resistance

With
resistance

20
40
60
80

100
120

FIGURE 2.3.2. The height functions in Example 1 (without air
resistance), Example 2 (with linear air resistance), and Example 3
(with air resistance proportional to the square of the velocity) are all
plotted. The graphs of the latter two are visually indistinguishable.

height functions are graphed, the difference is hardly visible. However, the differ-
ence between linear and nonlinear resistance can be significant in more complex
situations—such as, for instance, the atmospheric reentry and descent of a space
vehicle.

Variable Gravitational Acceleration

Unless a projectile in vertical motion remains in the immediate vicinity of the earth’s
surface, the gravitational acceleration acting on it is not constant. According to
Newton’s law of gravitation, the gravitational force of attraction between two point
masses M and m located at a distance r apart is given by

F = G Mm

r2
, (19)➤

where G is a certain empirical constant (G ≈ 6.6726 × 10−11 N·(m/kg)2 in mks
units). The formula is also valid if either or both of the two masses are homogeneous
spheres; in this case, the distance r is measured between the centers of the spheres.

The following example is similar to Example 2 in Section 1.2, but now we
take account of lunar gravity.

Example 4 A lunar lander is free-falling toward the moon, and at an altitude of 53 kilometers
above the lunar surface its downward velocity is measured at 1477 km/h. Its retro-
rockets, when fired in free space, provide a deceleration of T = 4 m/s2. At what
height above the lunar surface should the retrorockets be activated to ensure a “soft
touchdown” (v = 0 at impact)?

Solution Let r(t) denote the lander’s distance from the center of the moon at time t (Fig.
2.3.3). When we combine the (constant) thrust acceleration T and the (negative)
lunar acceleration F/m = G M/r2 of Eq. (19), we get the (acceleration) differential
equation

d2r

dt2
= T − G M

r2
, (20)

where M = 7.35 × 1022 (kg) is the mass of the moon, which has a radius of
R = 1.74 × 106 meters (or 1740 km, a little over a quarter of the earth’s radius).
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106 Chapter 2 Mathematical Models and Numerical Methods

Noting that this second-order differential equation does not involve the independent
variable t , we substitute

v = dr

dt
,

d2r

dt2
= dv

dt
= dv

dr
· dr

dt
= v

dv

dr

(as in Eq. (36) of Section 1.6) and obtain the first-order equation

v
dv

dr
= T − GM

r2

with the new independent variable r . Integration with respect to r now yields the
equation

Lunar surface

Center of moon

Lander

r − R

R

FIGURE 2.3.3. The lunar lander
descending to the surface of the
moon.

1

2
v2 = T r + GM

r
+ C (21)

that we can apply both before ignition (T = 0 ) and after ignition (T = 4).

Before ignition: Substitution of T = 0 in (21) gives the equation

1

2
v2 = GM

r
+ C1 (21a)

where the constant is given by C1 = v2
0/2 − GM/r0 with

v0 = −1477
km

h
× 1000

m

km
× 1 h

3600 s
= −14770

36

m

s

and r0 = (1.74×106)+53,000 = 1.793×106 m (from the initial velocity–position
measurement).

After ignition: Substitution of T = 4 and v = 0, r = R (at touchdown) into (21)
gives

1

2
v2 = 4r + GM

r
+ C2 (21b)

where the constant C2 = −4R−GM/R is obtained by substituting the values v = 0,
r = R at touchdown.

At the instant of ignition the lunar lander’s position and velocity satisfy both
(21a) and (21b). Therefore we can find its desired height h above the lunar surface
at ignition by equating the right-hand sides in (21a) and (21b). This gives r =
1
4 (C1 −C2) = 1.78187×106 and finally h = r − R = 41,870 meters (that is, 41.87
kilometers—just over 26 miles). Moreover, substitution of this value of r in (21a)
gives the velocity v = −450 m/s at the instant of ignition.
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2.3 Acceleration–Velocity Models 107

Escape Velocity

In his novel From the Earth to the Moon (1865), Jules Verne raised the questionr

m

M

Velocity v (t )

r (t )

R

FIGURE 2.3.4. A mass m at a
great distance from the earth.

of the initial velocity necesary for a projectile fired from the surface of the earth
to reach the moon. Similarly, we can ask what initial velocity v0 is necessary for
the projectile to escape from the earth altogether. This will be so if its velocity
v = dr/dt remains positive for all t > 0, so it continues forever to move away from
the earth. With r(t) denoting the projectile’s distance from the earth’s center at time
t (Fig. 2.3.4), we have the equation

dv

dt
= d2r

dt2
= −GM

r2
, (22)

similar to Eq. (20), but with T = 0 (no thrust) and with M = 5.975 × 1024 (kg)
denoting the mass of the earth, which has an equatorial radius of R = 6.378 × 106

(m). Substitution of the chain rule expression dv/dt = v(dv/dr) as in Example 4
gives

v
dv

dr
= −GM

r2
.

Then integration of both sides with respect to r yields

1

2
v2 = GM

r
+ C.

Now v = v0 and r = R when t = 0, so C = 1
2v2

0 − GM/R, and hence solution for
v2 gives

v2 = v2
0 + 2GM

(
1

r
− 1

R

)
. (23)

This implicit solution of Eq. (22) determines the projectile’s velocity v as a function
of its distance r from the earth’s center. In particular,

v2 > v2
0 − 2GM

R
,

so v will remain positive provided that v2
0 � 2GM/R. Therefore, the escape velocity

from the earth is given by

v0 =
√

2GM

R
. (24)

In Problem 27 we ask you to show that, if the projectile’s initial velocity exceeds√
2G M/R, then r(t) → ∞ as t → ∞, so it does, indeed, “escape” from the

earth. With the given values of G and the earth’s mass M and radius R, this gives
v0 ≈ 11,180 (m/s) (about 36,680 ft/s, about 6.95 mi/s, about 25,000 mi/h).

Remark: Equation (24) gives the escape velocity for any other (spherical)
planetary body when we use its mass and radius. For instance, when we use the
mass M and radius R for the moon given in Example 4, we find that escape velocity
from the lunar surface is v0 ≈ 2375 m/s. This is just over one-fifth of the escape
velocity from the earth’s surface, a fact that greatly facilitates the return trip (“From
the Moon to the Earth”).
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108 Chapter 2 Mathematical Models and Numerical Methods

2.3 Problems

1. The acceleration of a Maserati is proportional to the dif-
ference between 250 km/h and the velocity of this sports
car. If this machine can accelerate from rest to 100 km/h
in 10 s, how long will it take for the car to accelerate from
rest to 200 km/h?

2. Suppose that a body moves through a resisting medium
with resistance proportional to its velocity v, so that
dv/dt = −kv. (a) Show that its velocity and position
at time t are given by

v(t) = v0e−kt

and
x(t) = x0 +

(v0

k

)
(1 − e−kt ).

(b) Conclude that the body travels only a finite distance,
and find that distance.

3. Suppose that a motorboat is moving at 40 ft/s when its
motor suddenly quits, and that 10 s later the boat has
slowed to 20 ft/s. Assume, as in Problem 2, that the re-
sistance it encounters while coasting is proportional to its
velocity. How far will the boat coast in all?

4. Consider a body that moves horizontally through a
medium whose resistance is proportional to the square of
the velocity v, so that dv/dt = −kv2. Show that

v(t) = v0

1 + v0kt

and that

x(t) = x0 + 1

k
ln(1 + v0kt).

Note that, in contrast with the result of Problem 2, x(t) →
+∞ as t → +∞. Which offers less resistance when the
body is moving fairly slowly—the medium in this prob-
lem or the one in Problem 2? Does your answer seem
consistent with the observed behaviors of x(t) as t → ∞?

5. Assuming resistance proportional to the square of the ve-
locity (as in Problem 4), how far does the motorboat of
Problem 3 coast in the first minute after its motor quits?

6. Assume that a body moving with velocity v encounters
resistance of the form dv/dt = −kv3/2. Show that

v(t) = 4v0(
kt

√
v0 + 2

)2

and that

x(t) = x0 + 2

k

√
v0

(
1 − 2

kt
√

v0 + 2

)
.

Conclude that under a 3
2 -power resistance a body coasts

only a finite distance before coming to a stop.
7. Suppose that a car starts from rest, its engine providing an

acceleration of 10 ft/s2, while air resistance provides 0.1
ft/s2 of deceleration for each foot per second of the car’s
velocity. (a) Find the car’s maximum possible (limiting)
velocity. (b) Find how long it takes the car to attain 90%
of its limiting velocity, and how far it travels while doing
so.

8. Rework both parts of Problem 7, with the sole difference
that the deceleration due to air resistance now is (0.001)v2

ft/s2 when the car’s velocity is v feet per second.
9. A motorboat weighs 32,000 lb and its motor provides a

thrust of 5000 lb. Assume that the water resistance is 100
pounds for each foot per second of the speed v of the boat.
Then

1000
dv

dt
= 5000 − 100v.

If the boat starts from rest, what is the maximum velocity
that it can attain?

10. A woman bails out of an airplane at an altitude of 10,000
ft, falls freely for 20 s, then opens her parachute. How
long will it take her to reach the ground? Assume lin-
ear air resistance ρv ft/s2, taking ρ = 0.15 without the
parachute and ρ = 1.5 with the parachute. (Suggestion:
First determine her height above the ground and velocity
when the parachute opens.)

11. According to a newspaper account, a paratrooper survived
a training jump from 1200 ft when his parachute failed to
open but provided some resistance by flapping unopened
in the wind. Allegedly he hit the ground at 100 mi/h after
falling for 8 s. Test the accuracy of this account. (Sugges-
tion: Find ρ in Eq. (4) by assuming a terminal velocity
of 100 mi/h. Then calculate the time required to fall 1200
ft.)

12. It is proposed to dispose of nuclear wastes—in drums with
weight W = 640 lb and volume 8 ft3—by dropping them
into the ocean (v0 = 0). The force equation for a drum
falling through water is

m
dv

dt
= −W + B + FR,

where the buoyant force B is equal to the weight (at 62.5
lb/ft3) of the volume of water displaced by the drum
(Archimedes’ principle) and FR is the force of water re-
sistance, found empirically to be 1 lb for each foot per
second of the velocity of a drum. If the drums are likely
to burst upon an impact of more than 75 ft/s, what is the
maximum depth to which they can be dropped in the ocean
without likelihood of bursting?

13. Separate variables in Eq. (12) and substitute u = v
√

ρ/g
to obtain the upward-motion velocity function given in
Eq. (13) with initial condition v(0) = v0.

14. Integrate the velocity function in Eq. (13) to obtain the
upward-motion position function given in Eq. (14) with
initial condition y(0) = y0.

15. Separate variables in Eq. (15) and substitute u = v
√

ρ/g
to obtain the downward-motion velocity function given in
Eq. (16) with initial condition v(0) = v0.

16. Integrate the velocity function in Eq. (16) to obtain the
downward-motion position function given in Eq. (17) with
initial condition y(0) = y0.
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2.3 Acceleration–Velocity Models 109

17. Consider the crossbow bolt of Example 3, shot straight
upward from the ground (y = 0) at time t = 0 with initial
velocity v0 = 49 m/s. Take g = 9.8 m/s2 and ρ = 0.0011
in Eq. (12). Then use Eqs. (13) and (14) to show that
the bolt reaches its maximum height of about 108.47 m in
about 4.61 s.

18. Continuing Problem 17, suppose that the bolt is now
dropped (v0 = 0) from a height of y0 = 108.47 m. Then
use Eqs. (16) and (17) to show that it hits the ground about
4.80 s later with an impact speed of about 43.49 m/s.

19. A motorboat starts from rest (initial velocity v(0) = v0 =
0). Its motor provides a constant acceleration of 4 ft/s2,
but water resistance causes a deceleration of v2/400 ft/s2.
Find v when t = 10 s, and also find the limiting velocity
as t → +∞ (that is, the maximum possible speed of the
boat).

20. An arrow is shot straight upward from the ground with an
initial velocity of 160 ft/s. It experiences both the decel-
eration of gravity and deceleration v2/800 due to air resis-
tance. How high in the air does it go?

21. If a ball is projected upward from the ground with initial
velocity v0 and resistance proportional to v2, deduce from
Eq. (14) that the maximum height it attains is

ymax = 1

2ρ
ln

(
1 + ρv2

0

g

)
.

22. Suppose that ρ = 0.075 (in fps units, with g = 32 ft/s2)
in Eq. (15) for a paratrooper falling with parachute open.
If he jumps from an altitude of 10,000 ft and opens his
parachute immediately, what will be his terminal speed?
How long will it take him to reach the ground?

23. Suppose that the paratrooper of Problem 22 falls freely for
30 s with ρ = 0.00075 before opening his parachute. How
long will it now take him to reach the ground?

24. The mass of the sun is 329,320 times that of the earth and
its radius is 109 times the radius of the earth. (a) To what
radius (in meters) would the earth have to be compressed
in order for it to become a black hole—the escape velocity
from its surface equal to the velocity c = 3 × 108 m/s of
light? (b) Repeat part (a) with the sun in place of the
earth.

25. (a) Show that if a projectile is launched straight upward
from the surface of the earth with initial velocity v0 less
than escape velocity

√
2GM/R, then the maximum dis-

tance from the center of the earth attained by the projectile
is

rmax = 2GMR

2GM − Rv2
0

,

where M and R are the mass and radius of the earth, re-
spectively. (b) With what initial velocity v0 must such a
projectile be launched to yield a maximum altitude of 100
kilometers above the surface of the earth? (c) Find the
maximum distance from the center of the earth, expressed
in terms of earth radii, attained by a projectile launched
from the surface of the earth with 90% of escape velocity.

26. Suppose that you are stranded—your rocket engine has
failed—on an asteroid of diameter 3 miles, with density
equal to that of the earth with radius 3960 miles. If you

have enough spring in your legs to jump 4 feet straight up
on earth while wearing your space suit, can you blast off
from this asteroid using leg power alone?

27. (a) Suppose a projectile is launched vertically from the
surface r = R of the earth with initial velocity
v0 = √

2GM/R so v2
0 = k2/R where k2 = 2GM.

Then solve the differential equation dr/dt = k/
√

r
(from Eq. (23) in this section) explicitly to deduce that
r(t) → ∞ as t → ∞.

(b) If the projectile is launched vertically with initial ve-
locity v0 >

√
2GM/R, deduce that

dr

dt
=

√
k2

r
+ α >

k√
r
.

Why does it again follow that r(t) → ∞ as t → ∞?
28. (a) Suppose that a body is dropped (v0 = 0) from a dis-

tance r0 > R from the earth’s center, so its acceleration
is dv/dt = −GM/r 2. Ignoring air resistance, show that it
reaches the height r < r0 at time

t =
√

r0

2G M

(√
rr0 − r 2 + r0 cos−1

√
r

r0

)
.

(Suggestion: Substitute r = r0 cos2 θ to evaluate∫ √
r/(r0 − r) dr .) (b) If a body is dropped from a height

of 1000 km above the earth’s surface and air resistance
is neglected, how long does it take to fall and with what
speed will it strike the earth’s surface?

29. Suppose that a projectile is fired straight upward from the
surface of the earth with initial velocity v0 <

√
2GM/R.

Then its height y(t) above the surface satisfies the initial
value problem

d2 y

dt2
= − G M

(y + R)2
; y(0) = 0, y′(0) = v0.

Substitute dv/dt = v(dv/dy) and then integrate to obtain

v2 = v2
0 − 2GMy

R(R + y)

for the velocity v of the projectile at height y. What maxi-
mum altitude does it reach if its initial velocity is 1 km/s?

30. In Jules Verne’s original problem, the projectile launched
from the surface of the earth is attracted by both the earth
and the moon, so its distance r(t) from the center of the
earth satisfies the initial value problem

d2r

dt2
= −GMe

r 2
+ GMm

(S − r)2
; r(0) = R, r ′(0) = v0

where Me and Mm denote the masses of the earth and
the moon, respectively; R is the radius of the earth and
S = 384,400 km is the distance between the centers of
the earth and the moon. To reach the moon, the projectile
must only just pass the point between the moon and earth
where its net acceleration vanishes. Thereafter it is “under
the control” of the moon, and falls from there to the lunar
surface. Find the minimal launch velocity v0 that suffices
for the projectile to make it “From the Earth to the Moon.”
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110 Chapter 2 Mathematical Models and Numerical Methods

2.3 Application Rocket Propulsion

Suppose that the rocket of Fig. 2.3.5 blasts off straight upward from the surface ofy

c

F

v

FIGURE 2.3.5. An ascending
rocket.

the earth at time t = 0. We want to calculate its height y and velocity v = dy/dt at
time t . The rocket is propelled by exhaust gases that exit (rearward) with constant
speed c (relative to the rocket). Because of the combustion of its fuel, the mass
m = m(t) of the rocket is variable.

To derive the equation of motion of the rocket, we use Newton’s second law
in the form

dP

dt
= F (1)

where P is momentum (the product of mass and velocity) and F denotes net external
force (gravity, air resistance, etc.). If the mass m of the rocket is constant so m ′(t) ≡
0—when its rockets are turned off or burned out, for instance—then Eq. (1) gives

F = d(mv)

dt
= m

dv

dt
+ dm

dt
v = m

dv

dt
,

which (with dv/dt = a) is the more familiar form F = ma of Newton’s second law.
But here m is not constant. Suppose m changes to m + �m and v to v + �v

during the short time interval from t to t + �t . Then the change in the momentum
of the rocket itself is

�P ≈ (m + �m)(v + �v) − mv = m �v + v �m + �m �v.

But the system also includes the exhaust gases expelled during this time interval,
with mass −�m and approximate velocity v − c. Hence the total change in mo-
mentum during the time interval �t is

�P ≈ (m �v + v �m + �m �v) + (−�m)(v − c)

= m �v + c �m + �m �v.

Now we divide by �t and take the limit as �t → 0, so �m → 0, assuming
continuity of m(t). The substitution of the resulting expression for dP/dt in (1)
yields the rocket propulsion equation

m
dv

dt
+ c

dm

dt
= F. (2)

If F = FG + FR, where FG = −mg is a constant force of gravity and FR = −kv is
a force of air resistance proportional to velocity, then Eq. (2) finally gives

m
dv

dt
+ c

dm

dt
= −mg − kv. (3)

Constant Thrust

Now suppose that the rocket fuel is consumed at the constant “burn rate” β during
the time interval [0, t1], during which time the mass of the rocket decreases from m0

to m1. Thus

m(0) = m0, m(t1) = m1,

m(t) = m0 − βt,
dm

dt
= −β for t ≤ t1,

(4)

with burnout occurring at time t = t1.
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2.3 Acceleration–Velocity Models 111

PROBLEM 1 Substitute the expressions in (4) into Eq. (3) to obtain the differential
equation

(m − βt)
dv

dt
+ kv = βc − (m0 − βt)g. (5)

Solve this linear equation for

v(t) = v0 Mk/β + βc

k
(1 − Mk/β) + gm0

β − k
(1 − Mk/β), (6)

where v0 = v(0) and

M = m(t)

m0
= m0 − βt

m0

denotes the rocket’s fractional mass at time t .

No Resistance

PROBLEM 2 For the case of no air resistance, set k = 0 in Eq. (5) and integrate
to obtain

v(t) = v0 − gt + c ln
m0

m0 − βt
. (7)

Because m0 −βt1 = m1, it follows that the velocity of the rocket at burnout (t = t1)
is

v1 = v(t1) = v0 − gt1 + c ln
m0

m1
. (8)

PROBLEM 3 Start with Eq. (7) and integrate to obtain

y(t) = (v0 + c)t − 1

2
gt2 − c

β
(m0 − βt) ln

m0

m0 − βt
. (9)

It follows that the rocket’s altitude at burnout is

y1 = y(t1) = (v0 + c)t1 − 1

2
gt2

1 − cm1

β
ln

m0

m1
. (10)

PROBLEM 4 The V-2 rocket that was used to attack London in World War II had
an initial mass of 12,850 kg, of which 68.5% was fuel. This fuel burned uniformly
for 70 seconds with an exhaust velocity of 2 km/s. Assume it encounters air resis-
tance of 1.45 N per m/s of velocity. Then find the velocity and altitude of the V-2 at
burnout under the assumption that it is launched vertically upward from rest on the
ground.
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112 Chapter 2 Mathematical Models and Numerical Methods

PROBLEM 5 Actually, our basic differential equation in (3) applies without qual-
ification only when the rocket is already in motion. However, when a rocket is
sitting on its launch pad stand and its engines are turned on initially, it is observed
that a certain time interval passes before the rocket actually “blasts off” and begins
to ascend. The reason is that if v = 0 in (3), then the resulting initial acceleration

dv

dt
= c

m

dm

dt
− g

of the rocket may be negative. But the rocket does not descend into the ground;
it just “sits there” while (because m is decreasing) this calculated acceleration in-
creases until it reaches 0 and (thereafter) positive values so the rocket can begin to
ascend. With the notation introduced to described the constant-thrust case, show
that the rocket initially just “sits there” if the exhaust velocity c is less than m0g/β,
and that the time tB which then elapses before actual blastoff is given by

tB = m0g − βc

βg
.

Free Space

Suppose finally that the rocket is accelerating in free space, where there is neither
gravity nor resistance, so g = k = 0. With g = 0 in Eq. (8) we see that, as the mass
of the rocket decreases from m0 to m1, its increase in velocity is

�v = v1 − v0 = c ln
m0

m1
. (11)

Note that �v depends only on the exhaust gas speed c and the initial-to-final mass
ratio m0/m1, but does not depend on the burn rate β. For example, if the rocket
blasts off from rest (v0 = 0) and c = 5 km/s and m0/m1 = 20, then its velocity at
burnout is v1 = 5 ln 20 ≈ 15 km/s. Thus if a rocket initially consists predominantly
of fuel, then it can attain velocities significantly greater than the (relative) velocity
of its exhaust gases.

2.4 Numerical Approximation: Euler's Method

It is the exception rather than the rule when a differential equation of the general
form

dy

dx
= f (x, y)➤

can be solved exactly and explicitly by elementary methods like those discussed in
Chapter 1. For example, consider the simple equation

dy

dx
= e−x2

. (1)

A solution of Eq. (1) is simply an antiderivative of e−x2
. But it is known that every

antiderivative of f (x) = e−x2
is a nonelementary function—one that cannot be

expressed as a finite combination of the familiar functions of elementary calculus.
Hence no particular solution of Eq. (1) is finitely expressible in terms of elementary
functions. Any attempt to use the symbolic techniques of Chapter 1 to find a simple
explicit formula for a solution of (1) is therefore doomed to failure.
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2.4 Numerical Approximation: Euler's Method 113

As a possible alternative, an old-fashioned computer plotter—one that uses an
ink pen to draw curves mechanically—can be programmed to draw a solution curve
that starts at the initial point (x0, y0) and attempts to thread its way through the slope
field of a given differential equation y′ = f (x, y). The procedure the plotter carries
out can be described as follows.

• The plotter pen starts at the initial point (x0, y0) and moves a tiny distance
along the slope segment though (x0, y0). This takes it to the point (x1, y1).

• At (x1, y1) the pen changes direction, and now moves a tiny distance along
the slope segment through this new starting point (x1, y1). This takes it to the
next starting point (x2, y2).

• At (x2, y2) the pen changes direction again, and now moves a tiny distance
along the slope segment through (x2, y2). This takes it to the next starting
point (x3, y3).

Figure 2.4.1 illustrates the result of continuing in this fashion—by a sequence

x

y

Solution
curve

(x0, y0) (x1, y1)
(x2, y2)

(x3, y3)

FIGURE 2.4.1. The first few
steps in approximating a solution
curve.

of discrete straight-line steps from one starting point to the next. In this figure we
see a polygonal curve consisting of line segments that connect the successive points
(x0, y0), (x1, y1), (x2, y2), (x3, y3), . . . . However, suppose that each “tiny distance”
the pen travels along a slope segment—before the midcourse correction that sends
it along a fresh new slope segment—is so very small that the naked eye cannot
distinguish the individual line segments constituting the polygonal curve. Then the
resulting polygonal curve looks like a smooth, continuously turning solution curve
of the differential equation. Indeed, this is (in essence) how most of the solution
curves shown in the figures of Chapter 1 were computer generated.

Leonhard Euler—the great 18th-century mathematician for whom so many
mathematical concepts, formulas, methods, and results are named—did not have a
computer plotter, and his idea was to do all this numerically rather than graphically.
In order to approximate the solution of the initial value problem

dy

dx
= f (x, y), y(x0) = y0, (2)➤

we first choose a fixed (horizontal) step size h to use in making each step from
one point to the next. Suppose we’ve started at the initial point (x0, y0) and after
n steps have reached the point (xn, yn). Then the step from (xn, yn) to the next
point (xn+1, yn+1) is illustrated in Fig. 2.4.2. The slope of the direction segment

Slope

(xn, yn)

(xn+1, yn+1)

f (xn, yn) f (xn, yn)h

(xn+1, yn)h

FIGURE 2.4.2. The step from
(xn, yn) to (xn+1, yn+1).

through (xn, yn) is m = f (xn, yn). Hence a horizontal change of h from xn to
xn+1 corresponds to a vertical change of m · h = h · f (xn, yn) from yn to yn+1.
Therefore the coordinates of the new point (xn+1, yn+1) are given in terms of the old
coordinates by

xn+1 = xn + h, yn+1 = yn + h · f (xn, yn).

Given the initial value problem in (2), Euler’s method with step size h con-
sists of starting with the initial point (x0, y0) and applying the formulas

x1 = x0 + h y1 = y0 + h · f (x0, y0)

x2 = x1 + h y2 = y1 + h · f (x1, y1)

x3 = x2 + h y3 = y2 + h · f (x2, y2)
...

...
...

...
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114 Chapter 2 Mathematical Models and Numerical Methods

to calculate successive points (x1, y1), (x2, y2), (x3, y3), . . . on an approximate so-
lution curve.

However, we ordinarily do not sketch the corresponding polygonal approxi-
mation. Instead, the numerical result of applying Euler’s method is the sequence of
approximations

y1, y2, y3, . . . , yn, . . .

to the true values
y(x1), y(x2), y(x3), . . . , y(xn), . . .

at the points x1, x2, x3, . . . , xn, . . . of the exact (though unknown) solution y(x) of
the initial value problem. These results typically are presented in the form of a table
of approximate values of the desired solution.

ALGORITHM The Euler Method
Given the initial value problem

dy

dx
= f (x, y), y(x0) = y0, (2)➤

Euler’s method with step size h consists of applying the iterative formula

yn+1 = yn + h · f (xn, yn) (n ≥ 0) (3)➤

to calculate successive approximations y1, y2, y3, . . . to the [true] values y(x1),
y(x2), y(x3), . . . of the [exact] solution y = y(x) at the points x1, x2, x3, . . . ,
respectively.

The iterative formula in (3) tells us how to make the typical step from yn to
yn+1 and is the heart of Euler’s method. Although the most important applications
of Euler’s method are to nonlinear equations, we first illustrate the method with a
simple initial value problem whose exact solution is available, just for the purpose
of comparison of approximate and actual solutions.

Example 1 Apply Euler’s method to approximate the solution of the initial value problem

dy

dx
= x + 1

5
y, y(0) = −3, (4)

(a) first with step size h = 1 on the interval [0, 5],
(b) then with step size h = 0.2 on the interval [0, 1].

Solution (a) With x0 = 0, y0 = −3, f (x, y) = x + 1
5 y, and h = 1 the iterative formula in

(3) yields the approximate values

y1 = y0 + h · [x0 + 1
5 y0] = (−3) + (1)[0 + 1

5 (−3)] = −3.6,

y2 = y1 + h · [x1 + 1
5 y1] = (−3.6) + (1)[1 + 1

5 (−3.6)] = −3.32,

y3 = y2 + h · [x2 + 1
5 y2] = (−3.32) + (1)[2 + 1

5 (−3.32)] = −1.984,

y4 = y3 + h · [x3 + 1
5 y3] = (−1.984) + (1)[3 + 1

5 (−1.984)] = 0.6192, and

y5 = y4 + h · [x4 + 1
5 y4] = (0.6912) + (1)[4 + 1

5 (0.6912)] ≈ 4.7430
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2.4 Numerical Approximation: Euler's Method 115

at the points x1 = 1, x2 = 2, x3 = 3, x4 = 4, and x5 = 5. Note how the result of
each calculation feeds into the next one. The resulting table of approximate values
is

x 0 1 2 3 4 5

Approx. y −3 −3.6 −3.32 −1.984 0.6912 4.7430

Figure 2.4.3 shows the graph of this approximation, together with the graphs
of the Euler approximations obtained with step sizes h = 0.2 and 0.05, as well as
the graph of the exact solution

y(x) = 22ex/5 − 5x − 25

that is readily found using the linear-equation technique of Section 1.5. We see that
decreasing the step size increases the accuracy, but with any single approximation,
the accuracy decreases with distance from the initial point.

x

Exact solution

h = 0.05

y

50 1 2 3 4
−5

−3

10

5

0

h = 0.2
h = 1

FIGURE 2.4.3. Graphs of Euler approximations with step sizes
h = 1, h = 0.2, and h = 0.05.

(b) Starting afresh with x0 = 0, y0 = −3, f (x, y) = x + 1
5 y, and h = 0.2, we get

the approximate values

y1 = y0 + h · [x0 + 1
5 y0] = (−3) + (0.2)[0 + 1

5 (−3)] = −3.12,

y2 = y1 + h · [x1 + 1
5 y1] = (−3.12) + (0.2)[0.2 + 1

5 (−3.12)] ≈ −3.205,

y3 = y2 + h · [x2 + 1
5 y2] ≈ (−3.205) + (0.2)[0.4 + 1

5 (−3.205)] ≈ −3.253,

y4 = y3 + h · [x3 + 1
5 y3] ≈ (−3.253) + (0.2)[0.6 + 1

5 (−3.253)] ≈ −3.263,

y5 = y4 + h · [x4 + 1
5 y4] ≈ (−3.263) + (0.2)[0.8 + 1

5 (−3.263)] ≈ −3.234

at the points x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8, and x5 = 1. The resulting
table of approximate values is

x 0 0.2 0.4 0.6 0.8 1

Approx. y −3 −3.12 −3.205 −3.253 −3.263 −3.234

Pearson Custom Publishing

Not For Resale
Or

Distribution



116 Chapter 2 Mathematical Models and Numerical Methods

High accuracy with Euler’s method usually requires a very small step size and
hence a larger number of steps than can reasonably be carried out by hand. The
application material for this section contains calculator and computer programs for
automating Euler’s method. One of these programs was used to calculate the table
entries shown in Fig. 2.4.4. We see that 500 Euler steps (with step size h = 0.002)
from x = 0 to x = 1 yield values that are accurate to within 0.001.

Approx y Approx y Approx y Actual
x with h = 0.2 with h = 0.02 with h = 0.002 value of y

0

0.2

0.4

0.6

0.8

1

−3.000

−3.120

−3.205

−3.253

−3.263

−3.234

−3.000

−3.104

−3.172

−3.201

−3.191

−3.140

−3.000

−3.102

−3.168

−3.196

−3.184

−3.130

−3.000

−3.102

−3.168

−3.195

−3.183

−3.129

FIGURE 2.4.4. Euler approximations with step sizes h = 0.2, h = 0.02, and h = 0.002.

Example 2 Suppose the baseball of Example 3 in Section 1.3 is simply dropped (instead of
being thrown downward) from the helicopter. Then its velocity v(t) after t seconds
satisfies the initial value problem

dv

dt
= 32 − 0.16v, v(0) = 0. (5)

We use Euler’s method with h = 1 to track the ball’s increasing velocity at 1-second
intervals for the first 10 seconds of fall. With t0 = 0, v0 = 0, F(t, v) = 32 − 0.16v,
and h = 1 the iterative formula in (3) yields the approximate values

v1 = v0 + h · [32 − 0.16v0] = (0) + (1)[32 − 0.16(0)] = 32,

v2 = v1 + h · [32 − 0.16v1] = (32) + (1)[32 − 0.16(32)] = 58.88,

v3 = v2 + h · [32 − 0.16v2] = (58.88) + (1)[32 − 0.16(58.88)] ≈ 81.46,

v4 = v3 + h · [32 − 0.16v3] = (81.46) + (1)[32 − 0.16(81.46)] ≈ 100.43, and

v5 = v4 + h · [32 − 0.16v4] = (100.43) + (1)[32 − 0.16(100.43)] ≈ 116.36.

Continuing in this fashion, we complete the h = 1 column of v-values shown in the
table of Fig. 2.4.5—where we have rounded off velocity entries to the nearest foot
per second. The values corresponding to h = 0.1 were calculated using a computer,
and we see that they are accurate to within about 1 ft/s. Note also that after 10
seconds the falling ball has attained about 80% of its limiting velocity of 200 ft/s.

Local and Cumulative Errors

There are several sources of error in Euler’s method that may make the approxima-
tion yn to y(xn) unreliable for large values of n, those for which xn is not sufficiently
close to x0. The error in the linear approximation formula

y(xn+1) ≈ yn + h · f (xn, yn) = yn+1 (6)

Pearson Custom Publishing

Not For Resale
Or

Distribution
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Approx v Approx v Actual
t with h = 1 with h = 0.1 value of v

1

2

3

4

5

6

7

8

9

10

32

59

81

100

116

130

141

150

158

165

30

55

77

95

111

124

135

145

153

160

30

55

76

95

110

123

135

144

153

160

FIGURE 2.4.5. Euler approximations in Example 2 with step
sizes h = 1 and h = 0.1.

is the amount by which the tangent line at (xn, yn) departs from the solution curve
through (xn, yn), as illustrated in Fig. 2.4.6. This error, introduced at each step in
the process, is called the local error in Euler’s method.

The local error indicated in Fig. 2.4.6 would be the total error in yn+1 if the
starting point yn in (6) were an exact value, rather than merely an approximation
to the actual value y(xn). But yn itself suffers from the accumulated effects of all
the local errors introduced at the previous steps. Thus the tangent line in Fig. 2.4.6
is tangent to the “wrong” solution curve—the one through (xn, yn) rather than the
actual solution curve through the initial point (x0, y0). Figure 2.4.7 illustrates this
cumulative error in Euler’s method; it is the amount by which the polygonal step-
wise path from (x0, y0) departs from the actual solution curve through (x0, y0).

x

y

xn xn + 1

(xn + 1, yn + 1)
(xn , yn)

Local error

FIGURE 2.4.6. The local error
in Euler’s method.

x0 x1 x2 x3 xn

Exact values

Approximate
values

x

y

(x0, y0)

(x1, y1)

(xn, yn)

Cumulative error

FIGURE 2.4.7. The cumulative error in Euler’s method.
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y with y with y with y with Actual
x h = 0.1 h = 0.02 h = 0.005 h = 0.001 y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1000

1.2200

1.3620

1.5282

1.7210

1.9461

2.1974

2.4872

2.8159

3.1875

1.1082

1.2380

1.3917

1.5719

1.7812

2.0227

2.2998

2.6161

2.9757

3.3832

1.1098

1.2416

1.3977

1.5807

1.7933

2.0388

2.3205

2.6422

3.0082

3.4230

1.1102

1.2426

1.3993

1.5831

1.7966

2.0431

2.3261

2.6493

3.0170

3.4238

1.1103

1.2428

1.3997

1.5836

1.7974

2.0442

2.3275

2.6511

3.0192

3.4266

FIGURE 2.4.8. Approximating the solution of dy/dx = x + y, y(0) = 1 with
successively smaller step sizes.

The usual way of attempting to reduce the cumulative error in Euler’s method
is to decrease the step size h. The table in Fig. 2.4.8 shows the results obtained in
approximating the exact solution y(x) = 2ex − x − 1 of the initial value problem

dy

dx
= x + y, y(0) = 1,

using the successively smaller step sizes h = 0.1, h = 0.02, h = 0.005, and
h = 0.001. We show computed values only at intervals of �x = 0.1. For instance,
with h = 0.001, the computation required 1000 Euler steps, but the value yn is
shown only when n is a multiple of 100, so that xn is an integral multiple of 0.1.

By scanning the columns in Fig. 2.4.8 we observe that, for each fixed step size
h, the error yactual − yapprox increases as x gets farther from the starting point x0 = 0.
But by scanning the rows of the table we see that for each fixed x , the error decreases
as the step size h is reduced. The percentage errors at the final point x = 1 range
from 7.25% with h = 0.1 down to only 0.08% with h = 0.001. Thus the smaller
the step size, the more slowly does the error grow with increasing distance from the
starting point.

The column of data for h = 0.1 in Fig. 2.4.8 requires only 10 steps, so Euler’s
method can be carried out with a hand-held calculator. But 50 steps are required
to reach x = 1 with h = 0.02, 200 steps with h = 0.005, and 1000 steps with
h = 0.001. A computer is almost always used to implement Euler’s method when
more than 10 or 20 steps are required. Once an appropriate computer program has
been written, one step size is—in principle—just as convenient as another; after all,
the computer hardly cares how many steps it is asked to carry out.

Why, then, do we not simply choose an exceedingly small step size (such as
h = 10−12), with the expectation that very great accuracy will result? There are two
reasons for not doing so. The first is obvious: the time required for the computation.
For example, the data in Fig. 2.4.8 were obtained using a hand-held calculator that
carried out nine Euler steps per second. Thus it required slightly over one second
to approximate y(1) with h = 0.1 and about 1 min 50 s with h = 0.001. But with
h = 10−12 it would require over 3000 years!

The second reason is more subtle. In addition to the local and cumulative er-
rors discussed previously, the computer itself will contribute roundoff error at each
stage because only finitely many significant digits can be used in each calculation.
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2.4 Numerical Approximation: Euler's Method 119

An Euler’s method computation with h = 0.0001 will introduce roundoff errors
1000 times as often as one with h = 0.1. Hence with certain differential equations,
h = 0.1 might actually produce more accurate results than those obtained with
h = 0.0001, because the cumulative effect of roundoff error in the latter case might
exceed combined cumulative and roundoff error in the case h = 0.1.

The “best” choice of h is difficult to determine in practice as well as in theory.
It depends on the nature of the function f (x, y) in the initial value problem in (2), on
the exact code in which the program is written, and on the specific computer used.
With a step size that is too large, the approximations inherent in Euler’s method
may not be sufficiently accurate, whereas if h is too small, then roundoff errors may
accumulate to an unacceptable degree or the program may require too much time to
be practical. The subject of error propagation in numerical algorithms is treated in
numerical analysis courses and textbooks.

The computations in Fig. 2.4.8 illustrate the common strategy of applying a
numerical algorithm, such as Euler’s method, several times in succession, beginning
with a selected number n of subintervals for the first application, then doubling n for
each succeeding application of the method. Visual comparison of successive results
often can provide an “intuitive feel” for their accuracy. In the next two examples we
present graphically the results of successive applications of Euler’s method.

Example 3 The exact solution of the logistic initial value problem

dy

dx
= 1

3 y(8 − y), y(0) = 1

is y(x) = 8/(1 + 7e−8x/3). Figure 2.4.9 shows both the exact solution curve and
approximate solution curves obtained by applying Euler’s method on the interval
0 � x � 5 with n = 5, n = 10, and n = 20 subintervals. Each of these “curves” ac-
tually consists of line segments joining successive points (xn, yn) and (xn+1, yn+1).
The Euler approximation with 5 subintervals is poor, and the approximation with 10
subintervals also overshoots the limiting value y = 8 of the solution before leveling
off, but with 20 subintervals we obtain fairly good qualitative agreement with the
actual behavior of the solution.

3 4 50 1 2
x

y

0

12

Exact

2

4

6

8

10

n = 5

n = 10

n = 20

FIGURE 2.4.9. Approximating a logistic
solution using Euler’s method with n = 5,
n = 10, and n = 20 subintervals.
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Example 4 The exact solution of the initial value problem

dy

dx
= y cos x, y(0) = 1

is the periodic function y(x) = esin x . Figure 2.4.10 shows both the exact solution
Exact

n = 50

n = 100

n = 400
n = 200

0 5 10 15
x

y

3

2

1

0

FIGURE 2.4.10. Approximating
the exact solution y = esin x using
Euler’s method with 50, 100, 200,
and 400 subintervals.

curve and approximate solution curves obtained by applying Euler’s method on the
interval 0 � x � 6π with n = 50, n = 100, n = 200, and n = 400 subintervals.
Even with this many subintervals, Euler’s method evidently has considerable diffi-
culty keeping up with the oscillations in the actual solution. Consequently, the more
accurate methods discussed in succeeding sections are needed for serious numerical
investigations.

A Word of Caution

The data shown in Fig. 2.4.8 indicate that Euler’s method works well in approximat-
ing the solution of dy/dx = x + y, y(0) = 1 on the interval [0, 1]. That is, for each
fixed x it appears that the approximate values approach the actual value of y(x) as
the step size h is decreased. For instance, the approximate values in the rows corre-
sponding to x = 0.3 and x = 0.5 suggest that y(0.3) ≈ 1.40 and y(0.5) ≈ 1.80, in
accord with the actual values shown in the final column of the table.

Example 5, in contrast, shows that some initial value problems are not so well
behaved.

Example 5 Use Euler’s method to approximate the solution of the initial value problem

dy

dx
= x2 + y2, y(0) = 1 (7)

on the interval [0, 1].

Solution Here f (x, y) = x2 + y2, so the iterative formula of Euler’s method is

yn+1 = yn + h · (x2
n + y2

n). (8)

With step size h = 0.1 we obtain

y1 = 1 + (0.1) · [(0)2 + (1)2] = 1.1,

y2 = 1.1 + (0.1) · [(0.1)2 + (1.1)2] = 1.222,

y3 = 1.222 + (0.1) · [(0.2)2 + (1.222)2] ≈ 1.3753,

and so forth. Rounded to four decimal places, the first ten values obtained in this
manner are

y1 = 1.1000 y6 = 2.1995

y2 = 1.2220 y7 = 2.7193

y3 = 1.3753 y8 = 3.5078

y4 = 1.5735 y9 = 4.8023

y5 = 1.8371 y10 = 7.1895

But instead of naively accepting these results as accurate approximations, we
decided to use a computer to repeat the computations with smaller values of h. The
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y with y with y with
x h = 0.1 h = 0.02 h = 0.005

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1000

1.2220

1.3753

1.5735

1.8371

2.1995

2.7193

3.5078

4.8023

7.1895

1.1088

1.2458

1.4243

1.6658

2.0074

2.5201

3.3612

4.9601

9.0000

30.9167

1.1108

1.2512

1.4357

1.6882

2.0512

2.6104

3.5706

5.5763

12.2061

1502.2090

FIGURE 2.4.11. Attempting to approximate the
solution of dy/dx = x2 + y2, y(0) = 1.

2.01.00.0
x

y

8

−4

−2

−2.0 −1.0

0
(0, 1)

x = 0.97

2

4

6

FIGURE 2.4.12. Solution of
dy/dx = x2 + y2, y(0) = 1.

table in Fig. 2.4.11 shows the results obtained with step sizes h = 0.1, h = 0.02,
and h = 0.005. Observe that now the “stability” of the procedure in Example 1 is
missing. Indeed, it seems obvious that something is going wrong near x = 1.

Figure 2.4.12 provides a graphical clue to the difficulty. It shows a slope field
for dy/dx = x2 + y2, together with a solution curve through (0, 1) plotted using
one of the more accurate approximation methods of the following two sections.
It appears that this solution curve may have a vertical asymptote near x = 0.97.
Indeed, an exact solution using Bessel functions (see Problem 16 in Section 8.6) can
be used to show that y(x) → +∞ as x → 0.969811 (approximately). Although
Euler’s method gives values (albeit spurious ones) at x = 1, the actual solution
does not exist on the entire interval [0, 1]. Moreover, Euler’s method is unable to
“keep up” with the rapid changes in y(x) that occur as x approaches the infinite
discontinuity near 0.969811.

The moral of Example 5 is that there are pitfalls in the numerical solution of
certain initial value problems. Certainly it’s pointless to attempt to approximate a
solution on an interval where it doesn’t even exist (or where it is not unique, in which
case there’s no general way to predict which way the numerical approximations will
branch at a point of nonuniqueness). One should never accept as accurate the results
of applying Euler’s method with a single fixed step size h. A second “run” with
smaller step size (h/2, say, or h/5, or h/10) may give seemingly consistent results,
thereby suggesting their accuracy, or it may—as in Example 5—reveal the presence
of some hidden difficulty in the problem. Many problems simply require the more
accurate and powerful methods that are discussed in the final two sections of this
chapter.

2.4 Problems

In Problems 1 through 10, an initial value problem and its ex-
act solution y(x) are given. Apply Euler’s method twice to ap-
proximate to this solution on the interval [0, 1

2 ], first with step
size h = 0.25, then with step size h = 0.1. Compare the three-
decimal-place values of the two approximations at x = 1

2 with
the value y( 1

2 ) of the actual solution.

1. y′ = −y, y(0) = 2; y(x) = 2e−x

2. y′ = 2y, y(0) = 1
2 ; y(x) = 1

2 e2x

3. y′ = y + 1, y(0) = 1; y(x) = 2ex − 1
4. y′ = x − y, y(0) = 1; y(x) = 2e−x + x − 1
5. y′ = y − x − 1, y(0) = 1; y(x) = 2 + x − ex

6. y′ = −2xy, y(0) = 2; y(x) = 2e−x2
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122 Chapter 2 Mathematical Models and Numerical Methods

7. y′ = −3x2 y, y(0) = 3; y(x) = 3e−x3

8. y′ = e−y , y(0) = 0; y(x) = ln(x + 1)

9. y′ = 1
4 (1 + y2), y(0) = 1; y(x) = tan 1

4 (x + π)

10. y′ = 2xy2, y(0) = 1; y(x) = 1

1 − x2

Note: The application following this problem set lists illus-
trative calculator/computer programs that can be used in the
remaining problems.

A programmable calculator or a computer will be useful for
Problems 11 through 16. In each problem find the exact so-
lution of the given initial value problem. Then apply Euler’s
method twice to approximate (to four decimal places) this so-
lution on the given interval, first with step size h = 0.01, then
with step size h = 0.005. Make a table showing the approxi-
mate values and the actual value, together with the percentage
error in the more accurate approximation, for x an integral
multiple of 0.2. Throughout, primes denote derivatives with
respect to x.

11. y′ = y − 2, y(0) = 1; 0 � x � 1
12. y′ = 1

2 (y − 1)2, y(0) = 2; 0 � x � 1
13. yy′ = 2x3, y(1) = 3; 1 � x � 2
14. xy′ = y2, y(1) = 1; 1 � x � 2
15. xy′ = 3x − 2y, y(2) = 3; 2 � x � 3
16. y2 y′ = 2x5, y(2) = 3; 2 � x � 3

A computer with a printer is required for Problems 17 through
24. In these initial value problems, use Euler’s method with
step sizes h = 0.1, 0.02, 0.004, and 0.0008 to approximate to
four decimal places the values of the solution at ten equally
spaced points of the given interval. Print the results in tabular
form with appropriate headings to make it easy to gauge the
effect of varying the step size h. Throughout, primes denote
derivatives with respect to x.

17. y′ = x2 + y2, y(0) = 0; 0 � x � 1
18. y′ = x2 − y2, y(0) = 1; 0 � x � 2
19. y′ = x + √

y, y(0) = 1; 0 � x � 2
20. y′ = x + 3

√
y, y(0) = −1; 0 � x � 2

21. y′ = ln y, y(1) = 2; 1 � x � 2
22. y′ = x2/3 + y2/3, y(0) = 1; 0 � x � 2
23. y′ = sin x + cos y, y(0) = 0; 0 � x � 1

24. y′ = x

1 + y2
, y(−1) = 1; −1 � x � 1

25. You bail out of the helicopter of Example 2 and immedi-
ately pull the ripcord of your parachute. Now k = 1.6
in Eq. (5), so your downward velocity satisfies the initial
value problem

dv

dt
= 32 − 1.6v, v(0) = 0

(with t in seconds and v in ft/sec). Use Euler’s method
with a programmable calculator or computer to approx-
imate the solution for 0 � t � 2, first with step size
h = 0.01 and then with h = 0.005, rounding off approx-
imate v-values to one decimal place. What percentage of
the limiting velocity 20 ft/sec has been attained after 1
second? After 2 seconds?

26. Suppose the deer population P(t) in a small forest initially
numbers 25 and satisfies the logistic equation

dP

dt
= 0.0225P − 0.0003P2

(with t in months). Use Euler’s method with a pro-
grammable calculator or computer to approximate the so-
lution for 10 years, first with step size h = 1 and then
with h = 0.5, rounding off approximate P-values to in-
tegral numbers of deer. What percentage of the limiting
population of 75 deer has been attained after 5 years? Af-
ter 10 years?

Use Euler’s method with a computer system to find the desired
solution values in Problems 27 and 28. Start with step size
h = 0.1, and then use successively smaller step sizes until suc-
cessive approximate solution values at x = 2 agree rounded
off to two decimal places.

27. y′ = x2 + y2 − 1, y(0) = 0; y(2) = ?
28. y′ = x + 1

2 y2, y(−2) = 0; y(2) = ?
29. Consider the initial value problem

7x
dy

dx
+ y = 0, y(−1) = 1.

(a) Solve this problem for the exact solution

y(x) = − 1

x1/7
,

which has an infinite discontinuity at x = 0. (b) Apply
Euler’s method with step size h = 0.15 to approximate
this solution on the interval −1 � x � 0.5. Note that,
from these data alone, you might not suspect any difficulty
near x = 0. The reason is that the numerical approxima-
tion “jumps across the discontinuity” to another solution
of 7xy′ + y = 0 for x > 0. (c) Finally, apply Euler’s
method with step sizes h = 0.03 and h = 0.006, but still
printing results only at the original points x = −1.00,
−0.85, −0.70, . . . , 1.20, 1.35. and 1.50. Would you now
suspect a discontinuity in the exact solution?

30. Apply Euler’s method with successively smaller step sizes
on the interval [0, 2] to verify empirically that the solution
of the initial value problem

dy

dx
= x2 + y2, y(0) = 0

has a vertical asymptote near x = 2.003147. (Contrast
this with Example 2, in which y(0) = 1.)

31. The general solution of the equation

dy

dx
= (1 + y2) cos x

is y(x) = tan(C + sin x). With the initial condition
y(0) = 0 the solution y(x) = tan(sin x) is well behaved.
But with y(0) = 1 the solution y(x) = tan

(
1
4 π + sin x

)
has a vertical asymptote at x = sin−1(π/4) ≈ 0.90334.
Use Euler’s method to verify this fact empirically.
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2.4 Numerical Approximation: Euler's Method 123

2.4 Application Implementing Euler's Method

Construction of a calculator or computer program to implement a numerical algo-
rithm can sharpen one’s understanding of the algorithm. Figure 2.4.13 lists TI-85
and BASIC programs implementing Euler’s method to approximate the solution of
the initial value problem

dy

dx
= x + y, y(0) = 1

considered in this section. The comments provided in the final column should make
these programs intelligible even if you have little familiarity with the BASIC and
TI calculator programming languages. Indeed, the BASIC language is no longer
widely used for programming computers but is still useful (as in Fig. 2.4.13 and sub-
sequent ones in this text) for brief description of mathematical algorithms in a trans-
parent form intermediate between English and higher programming languages. (Ap-
propriately, the name BASIC is an acronym describing the Beginner’s All-purpose
Symbolic Instruction Code introduced in 1963, intially for instructional use at Dart-
mouth College.)

TI-85 BASIC Comment

PROGRAM:EULER

:10→N
:0→X
:1→Y
:1→X1
:(X1-X)/N→H
:For(I,1,N)

:X+Y→F
:Y+H*F→Y
:X+H→X
:Disp X,Y

:End

Program EULER

N = 10

X = 0

Y = 1

X1 = 1

H = (X1-X)/N

FOR I=1 TO N

F = X + Y

Y = Y + H*F

X = X + H

PRINT X,Y

NEXT I

Program title

Number of steps

Initial x

Initial y

Final x

Step size

Begin loop

Function value

Euler iteration

New x

Display results

End loop

FIGURE 2.4.13. TI-85 and BASIC Euler’s method programs.

To increase the number of steps (and thereby decrease the step size) you need
only change the value of N specified in the first line of the program. To apply Euler’s
method to a different equation dy/dx = f (x, y), you need change only the single
line that calculates the function value F.

Any other procedural programming language (such as FORTRAN or Pascal)
would follow the pattern illustrated by the parallel lines of TI-85 and BASIC code in
Fig. 2.4.13. Some of the modern functional programming languages mirror standard
mathematical notation even more closely. Figure 2.4.14 shows a MATLAB imple-
mentation of Euler’s method. The euler function takes as input the initial value x,
the initial value y, the final value x1 of x , and the desired number n of subintervals.
For instance, the MATLAB command

[X, Y] = euler(0, 1, 1, 10)

then generates the xn- and yn-data shown in the first two columns of the table of Fig.
2.4.8.
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function yp = f(x,y)
yp = x + y; % yp = y’

function [X,Y] = euler(x,y,x1,n)
h = (x1 - x)/n; % step size
X = x; % initial x
Y = y; % initial y
for i = 1:n % begin loop

y = y + h*f(x,y); % Euler iteration
x = x + h; % new x
X = [X;x]; % update x-column
Y = [Y;y]; % update y-column
end % end loop

FIGURE 2.4.14. MATLAB implementation of Euler’s method.

You should begin this project by implementing Euler’s method with your own
calculator or computer system. Test your program by first applying it to the initial
value problem in Example 1, then to some of the problems for this section.

Famous Numbers Investigation

The following problems describe the numbers e ≈ 2.71828, ln 2 ≈ 0.69315, and
π ≈ 3.14159 as specific values of solutions of certain initial value problems. In
each case, apply Euler’s method with n = 50, 100, 200, . . . subintervals (doubling
n each time). How many subintervals are needed to obtain—twice in succession—
the correct value of the target number rounded to three decimal places?

1. The number e = y(1), where y(x) is the solution of the initial value problem
dy/dx = y, y(0) = 1.

2. The number ln 2 = y(2), where y(x) is the solution of the initial value prob-
lem dy/dx = 1/x , y(1) = 0.

3. The number π = y(1), where y(x) is the solution of the initial value problem
dy/dx = 4/(1 + x2), y(0) = 0.

Also explain in each problem what the point is—why the indicated famous
number is the expected numerical result.

2.5 A Closer Look at the Euler Method

The Euler method as presented in Section 2.4 is not often used in practice, mainly
because more accurate methods are available. But Euler’s method has the advantage
of simplicity, and a careful study of this method yields insights into the workings of
more accurate methods, because many of the latter are extensions or refinements of
the Euler method.

To compare two different methods of numerical approximation, we need some
way to measure the accuracy of each. Theorem 1 tells what degree of accuracy we
can expect when we use Euler’s method.

Pearson Custom Publishing

Not For Resale
Or

Distribution



2.5 A Closer Look at the Euler Method 125

THEOREM 1 The Error in the Euler Method

Suppose that the initial value problem

dy

dx
= f (x, y), y(x0) = y0 (1)

has a unique solution y(x) on the closed interval [a, b] with a = x0, and assume
that y(x) has a continuous second derivative on [a, b]. (This would follow from
the assumption that f, fx , and fy are all continuous for a � x � b and c � y � d,
where c � y(x) � d for all x in [a, b].) Then there exists a constant C such that
the following is true: If the approximations y1, y2, y3, . . . , yk to the actual values
y(x1), y(x2), y(x3), . . . , y(xk) at points of [a, b] are computed using Euler’s
method with step size h > 0, then

|yn − y(xn)| � Ch (2)

for each n = 1, 2, 3, . . . , k.

Remark: The error

yactual − yapprox = y(xn) − yn

in (2) denotes the [cumulative] error in Euler’s method after n steps in the approxi-
mation, exclusive of roundoff error (as though we were using a perfect machine that
made no roundoff errors). The theorem can be summarized by saying that the error
in Euler’s method is of order h; that is, the error is bounded by a [predetermined]
constant C multiplied by the step size h. It follows, for instance, that (on a given
closed interval) halving the step size cuts the maximum error in half; similarly, with
step size h/10 we get 10 times the accuracy (that is, 1/10 the maximum error) as
with step size h. Consequently, we can—in principle—get any degree of accuracy
we want by choosing h sufficiently small.

We will omit the proof of this theorem, but one can be found in Chapter 7 of
G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 4th ed. (New York:
John Wiley, 1989). The constant C deserves some comment. Because C tends to
increase as the maximum value of |y′′(x)| on [a, b] increases, it follows that C must
depend in a fairly complicated way on y, and actual computation of a value of C
such that the inequality in (2) holds is usually impractical. In practice, the following
type of procedure is commonly employed.

1. Apply Euler’s method to the initial value problem in (1) with a reasonable
value of h.

2. Repeat with h/2, h/4, and so forth, at each stage halving the step size for the
next application of Euler’s method.

3. Continue until the results obtained at one stage agree—to an appropriate num-
ber of significant digits—with those obtained at the previous stage. Then the
approximate values obtained at this stage are considered likely to be accurate
to the indicated number of significant digits.
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126 Chapter 2 Mathematical Models and Numerical Methods

Example 1 Carry out this procedure with the initial value problem

dy

dx
= − 2xy

1 + x2
, y(0) = 1 (3)

to approximate accurately the value y(1) of the solution at x = 1.

Solution Using an Euler method program, perhaps one of those listed in Figs. 2.4.13 and
2.4.14, we begin with a step size h = 0.04 requiring n = 25 steps to reach x = 1.
The table in Fig. 2.5.1 shows the approximate values of y(1) obtained with succes-
sively smaller values of h. The data suggest that the true value of y(1) is exactly 0.5.
Indeed, the exact solution of the initial value problem in (3) is y(x) = 1/(1 + x2),
so the true value of y(1) is exactly 1

2 .

h Approximate y(1) Actual y(1) |Error|/ h

0.04

0.02

0.01

0.005

0.0025

0.00125

0.000625

0.0003125

0.50451

0.50220

0.50109

0.50054

0.50027

0.50013

0.50007

0.50003

0.50000

0.50000

0.50000

0.50000

0.50000

0.50000

0.50000

0.50000

0.11

0.11

0.11

0.11

0.11

0.10

0.11

0.10

FIGURE 2.5.1. Table of values in Example 1.

The final column of the table in Fig. 2.5.1 displays the ratio of the magnitude
of the error to h; that is, |yactual − yapprox|/h. Observe how the data in this column
substantiate Theorem 1—in this computation, the error bound in (2) appears to hold
with a value of C slightly larger than 0.1.

An Improvement in Euler's Method

As Fig. 2.5.2 shows, Euler’s method is rather unsymmetrical. It uses the predicted
slope k = f (xn, yn) of the graph of the solution at the left-hand endpoint of the
interval [xn, xn + h] as if it were the actual slope of the solution over that entire
interval. We now turn our attention to a way in which increased accuracy can easily
be obtained; it is known as the improved Euler method.

Given the initial value problem

dy

dx
= f (x, y), y(x0) = y0, (4)

suppose that after carrying out n steps with step size h we have computed the ap-
proximation yn to the actual value y(xn) of the solution at xn = x0 + nh. We can
use the Euler method to obtain a first estimate—which we now call un+1 rather than
yn+1—of the value of the solution at xn+1 = xn + h. Thus

x

y

x x + h

(x + h, y (x + h))

Error

Predicted
y -value

Slope y' (x)

Solution
y = y (x)

FIGURE 2.5.2. True and
predicted values in Euler’s
method.

un+1 = yn + h · f (xn, yn) = yn + h · k1.➤
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2.5 A Closer Look at the Euler Method 127

Now that un+1 ≈ y(xn+1) has been computed, we can take

k2 = f (xn+1, un+1)➤

as a second estimate of the slope of the solution curve y = y(x) at x = xn+1.
Of course, the approximate slope k1 = f (xn, yn) at x = xn has already been

calculated. Why not average these two slopes to obtain a more accurate estimate of
the average slope of the solution curve over the entire subinterval [xn, xn+1]? This
idea is the essence of the improved Euler method. Figure 2.5.3 shows the geometry
behind this method.

x

y

Euler point (xn + 1, un + 1)

Improved Euler point
(xn + 1, yn + 1)

xn

(xn, yn)

xn + 1 xn + 2

Slope k1 = f(xn, yn)

Slope k2 = f(xn + 1, un + 1)

(k1 + k2)Slope 1
2

FIGURE 2.5.3. The improved Euler method: Average the slopes of the tangent lines
at (xn, yn) and (xn+1, un+1).

ALGORITHM The Improved Euler Method
Given the initial value problem

dy

dx
= f (x, y), y(x0) = y0,

the improved Euler method with step size h consists in applying the iterative
formulas

k1 = f (xn, yn),

un+1 = yn + h · k1,

k2 = f (xn+1, un+1),

yn+1 = yn + h · 1
2 (k1 + k2)

(5)

to compute successive approximations y1, y2, y3, . . . to the [true] values y(x1),
y(x2), y(x3), . . . of the [exact] solution y = y(x) at the points x1, x2, x3, . . . ,
respectively.
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128 Chapter 2 Mathematical Models and Numerical Methods

Remark: The final formula in (5) takes the “Euler form”

yn+1 = yn + h · k

if we write

k = k1 + k2

2
for the approximate average slope on the interval [xn, xn+1].

The improved Euler method is one of a class of numerical techniques known
as predictor-corrector methods. First a predictor un+1 of the next y-value is com-
puted; then it is used to correct itself. Thus the improved Euler method with step
size h consists of using the predictor

un+1 = yn + h · f (xn, yn) (6)➤

and the corrector

yn+1 = yn + h · 1
2

[
f (xn, yn) + f (xn+1, un+1)

]
(7)➤

iteratively to compute successive approximations y1, y2, y2, . . . to the values y(x1),
y(x2), y(x3), . . . of the actual solution of the initial value problem in (4).

Remark: Each improved Euler step requires two evaluations of the func-
tion f (x, y), as compared with the single function evaluation required for an ordi-
nary Euler step. We naturally wonder whether this doubled computational labor is
worth the trouble.

Answer: Under the assumption that the exact solution y = y(x) of the
initial value problem in (4) has a continuous third derivative, it can be proved—see
Chapter 7 of Birkhoff and Rota—that the error in the improved Euler method is
of order h2. This means that on a given bounded interval [a, b], each approximate
value yn satisfies the inequality

|y(xn) − yn| � Ch2, (8)➤

where the constant C does not depend on h. Because h2 is much smaller than h if
h itself is small, this means that the improved Euler method is more accurate than
Euler’s method itself. This advantage is offset by the fact that about twice as many
computations are required. But the factor h2 in (8) means that halving the step size
results in 1/4 the maximum error, and with step size h/10 we get 100 times the
accuracy (that is, 1/100 the maximum error) as with step size h.

Example 2 Figure 2.4.8 shows results of applying Euler’s method to the initial value problem

dy

dx
= x + y, y(0) = 1 (9)

with exact solution y(x) = 2ex − x − 1. With f (x, y) = x + y in Eqs. (6) and (7),
the predictor-corrector formulas for the improved Euler method are

un+1 = yn + h · (xn + yn),

yn+1 = yn + h · 1
2

[
(xn + yn) + (xn+1 + un+1)

]
.
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2.5 A Closer Look at the Euler Method 129

With step size h = 0.1 we calculate

u1 = 1 + (0.1) · (0 + 1) = 1.1,

y1 = 1 + (0.05) · [(0 + 1) + (0.1 + 1.1)] = 1.11,

u2 = 1.11 + (0.1) · (0.1 + 1.11) = 1.231,

y2 = 1.11 + (0.05) · [(0.1 + 1.11) + (0.2 + 1.231)] = 1.24205,

and so forth. The table in Fig. 2.5.4 compares the results obtained using the im-
proved Euler method with those obtained previously using the “unimproved” Euler
method. When the same step size h = 0.1 is used, the error in the Euler approxi-
mation to y(1) is 7.25%, but the error in the improved Euler approximation is only
0.24%.

Euler Method, Euler Method, Improved Euler,
h = 0.1 h = 0.005 h = 0.1 Actual

x Values of y Values of y Values of y y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1000

1.2200

1.3620

1.5282

1.7210

1.9431

2.1974

2.4872

2.8159

3.1875

1.1098

1.2416

1.3977

1.5807

1.7933

2.0388

2.3205

2.6422

3.0082

3.4230

1.1100

1.2421

1.3985

1.5818

1.7949

2.0409

2.3231

2.6456

3.0124

3.4282

1.1103

1.2428

1.3997

1.5836

1.7974

2.0442

2.3275

2.6511

3.0192

3.4366

FIGURE 2.5.4. Euler and improved Euler approximations to the solution of
dy/dx = x + y, y(0) = 1.

Indeed, the improved Euler method with h = 0.1 is more accurate (in this
example) than the original Euler method with h = 0.005. The latter requires 200
evaluations of the function f (x, y), but the former requires only 20 such evalua-
tions, so in this case the improved Euler method yields greater accuracy with only
about one-tenth the work.

Figure 2.5.5 shows the results obtained when the improved Euler method is
applied to the initial value problem in (9) using step size h = 0.005. Accuracy of
five significant figures is apparent in the table. This suggests that, in contrast with
the original Euler method, the improved Euler method is sufficiently accurate for
certain practical applications—such as plotting solution curves.

An improved Euler program (similar to the ones listed in the project material
for this section) was used to compute approximations to the exact value y(1) = 0.5
of the solution y(x) = 1/(1 + x2) of the initial value problem

dy

dx
= − 2xy

1 + x2
, y(0) = 1 (3)

of Example 1. The results obtained by successively halving the step size appear in

Improved
Euler,

Approximate Actual
x y y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.00000

1.11034

1.24280

1.39971

1.58364

1.79744

2.04423

2.32749

2.65107

3.01919

3.43654

1.00000

1.11034

1.24281

1.39972

1.58365

1.79744

2.04424

2.32751

2.65108

3.01921

3.43656

FIGURE 2.5.5. Improved Euler
approximation to the solution of
Eq. (9) with step size h = 0.005.

the table in Fig. 2.5.6. Note that the final column of this table impressively cor-
roborates the form of the error bound in (8), and that each halving of the step size
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Improved Euler
Approximation

h to y(1) Error |Error|/ h2

0.04

0.02

0.01

0.005

0.0025

0.00125

0.000625

0.0003125

0.500195903

0.500049494

0.500012437

0.500003117

0.500000780

0.500000195

0.500000049

0.500000012

−0.000195903

−0.000049494

−0.000012437

−0.000003117

−0.000000780

−0.000000195

−0.000000049

−0.000000012

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

FIGURE 2.5.6. Improved Euler approximation to y(1) for
dy/dx = −2xy/(1 + x2), y(0) = 1.

reduces the error by a factor of almost exactly 4, as should happen if the error is
proportional to h2.

In the following two examples we exhibit graphical results obtained by em-
ploying this strategy of successively halving the step size, and thus doubling the
number of subintervals of a fixed interval on which we are approximating a solu-
tion.

Example 3 In Example 3 of Section 2.4 we applied Euler’s method to the logistic initial value
problem

dy

dx
= 1

3 y(8 − y), y(0) = 1.

Figure 2.4.9 shows an obvious difference between the exact solution y(x) =
8/(1 + 7e−8x/3) and the Euler approximation on 0 � x � 5 using n = 20 subin-
tervals. Figure 2.5.7 shows approximate solution curves plotted using the improved
Euler’s method.

The approximation with five subintervals is still bad—perhaps worse! It ap-
pears to level off considerably short of the actual limiting population M = 8. You
should carry out at least the first two improved Euler steps manually to see for
yourself how it happens that, after increasing appropriately during the first step, the
approximate solution decreases in the second step rather than continuing to increase
(as it should). In the project for this section we ask you to show empirically that the
improved Euler approximate solution with step size h = 1 levels off at y ≈ 4.3542.

In contrast, the approximate solution curve with n = 20 subintervals tracks
the exact solution curve rather closely, and with n = 40 subintervals the exact
and approximate solution curves are indistinguishable in Fig. 2.5.7. The table in
Fig. 2.5.8 indicates that the improved Euler approximation with n = 200 subinter-
vals is accurate rounded to three decimal places (that is, four significant digits) on
the interval 0 � x � 5. Because discrepancies in the fourth significant digit are
not visually apparent at the resolution of an ordinary computer screen, the improved
Euler method (using several hundred subintervals) is considered adequate for many
graphical purposes.

3 4 50 1 2
x

y

0

12

Exact

2

4

6

8

10

n = 5

n = 10

n = 40
n = 20

FIGURE 2.5.7. Approximating
a logistic solution using the
improved Euler method with
n = 5, n = 10, n = 20, and
n = 40 subintervals.
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Improved Euler
x Actual y(x) with n = 200

0

1

2

3

4

5

1.0000

5.3822

7.7385

7.9813

7.9987

7.9999

1.0000

5.3809

7.7379

7.9812

7.9987

7.9999

FIGURE 2.5.8. Using the improved Euler
method to approximate the actual solution of the
initial value problem in Example 3.

Example 4 In Example 4 of Section 2.4 we applied Euler’s method to the initial value problem

dy

dx
= y cos x, y(0) = 1.

Figure 2.4.10 shows obvious visual differences between the periodic exact solution
Exact n = 50

n = 100n = 200

0 5 10 15
x

y

3

2

1

0

FIGURE 2.5.9. Approximating
the exact solution y = esin x using
the improved Euler method with
n = 50, 100, and 200 subintervals.

y(x) = esin x and the Euler approximations on 0 � x � 6π with as many as n = 400
subintervals.

Figure 2.5.9 shows the exact solution curve and approximate solution curves
plotted using the improved Euler method with n = 50, n = 100, and n = 200
subintervals. The approximation obtained with n = 200 is indistinguishable from
the exact solution curve, and the approximation with n = 100 is only barely distin-
guishable from it.

Although Figs. 2.5.7 and 2.5.9 indicate that the improved Euler method can
provide accuracy that suffices for many graphical purposes, it does not provide the
higher-precision numerical accuracy that sometimes is needed for more careful in-
vestigations. For instance, consider again the initial value problem

dy

dx
= − 2xy

1 + x2
, y(0) = 1

of Example 1. The final column of the table in Fig. 2.5.6 suggests that, if the im-
proved Euler method is used on the interval 0 � x � 1 with n subintervals and step
size h = 1/n, then the resulting error E in the final approximation yn ≈ y(1) is
given by

E = |y(1) − yn| ≈ (0.12)h2 = 0.12

n2
.

If so, then 12-place accuracy (for instance) in the value y(1) would require that
(0.12)n−2 < 5 × 10−13, which means that n � 489,898. Thus, roughly half a
million steps of length h ≈ 0.000002 would be required. Aside from the possi-
ble impracticality of this many steps (using available computational resources), the
roundoff error resulting from so many successive steps might well overwhelm the
cumulative error predicted by theory (which assumes exact computations in each
separate step). Consequently, still more accurate methods than the improved Euler
method are needed for such high-precision computations. Such a method is pre-
sented in Section 2.6.
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132 Chapter 2 Mathematical Models and Numerical Methods

2.5 Problems

A hand-held calculator will suffice for Problems 1 through 10,
where an initial value problem and its exact solution are given.
Apply the improved Euler method to approximate this solution
on the interval [0, 0.5] with step size h = 0.1. Construct a
table showing four-decimal-place values of the approximate
solution and actual solution at the points x = 0.1, 0.2, 0.3,
0.4, 0.5.

1. y′ = −y, y(0) = 2; y(x) = 2e−x

2. y′ = 2y, y(0) = 1
2 ; y(x) = 1

2 e2x

3. y′ = y + 1, y(0) = 1; y(x) = 2ex − 1
4. y′ = x − y, y(0) = 1; y(x) = 2e−x + x − 1
5. y′ = y − x − 1, y(0) = 1; y(x) = 2 + x − ex

6. y′ = −2xy, y(0) = 2; y(x) = 2e−x2

7. y′ = −3x2 y, y(0) = 3; y(x) = 3e−x3

8. y′ = e−y , y(0) = 0; y(x) = ln(x + 1)

9. y′ = 1
4 (1 + y2), y(0) = 1; y(x) = tan 1

4 (x + π)

10. y′ = 2xy2, y(0) = 1; y(x) = 1

1 − x2

Note: The application following this problem set lists illustra-
tive calculator/computer programs that can be used in Prob-
lems 11 through 24.

A programmable calculator or a computer will be useful for
Problems 11 through 16. In each problem find the exact so-
lution of the given initial value problem. Then apply the im-
proved Euler method twice to approximate (to five decimal
places) this solution on the given interval, first with step size
h = 0.01, then with step size h = 0.005. Make a table showing
the approximate values and the actual value, together with the
percentage error in the more accurate approximations, for x
an integral multiple of 0.2. Throughout, primes denote deriva-
tives with respect to x.

11. y′ = y − 2, y(0) = 1; 0 � x � 1
12. y′ = 1

2 (y − 1)2, y(0) = 2; 0 � x � 1
13. yy′ = 2x3, y(1) = 3; 1 � x � 2
14. xy′ = y2, y(1) = 1; 1 � x � 2
15. xy′ = 3x − 2y, y(2) = 3; 2 � x � 3
16. y2 y′ = 2x5, y(2) = 3; 2 � x � 3

A computer with a printer is required for Problems 17 through
24. In these initial value problems, use the improved Euler
method with step sizes h = 0.1, 0.02, 0.004, and 0.0008 to
approximate to five decimal places the values of the solution
at ten equally spaced points of the given interval. Print the
results in tabular form with appropriate headings to make it
easy to gauge the effect of varying the step size h. Throughout,
primes denote derivatives with respect to x.

17. y′ = x2 + y2, y(0) = 0; 0 � x � 1
18. y′ = x2 − y2, y(0) = 1; 0 � x � 2
19. y′ = x + √

y, y(0) = 1; 0 � x � 2
20. y′ = x + 3

√
y, y(0) = −1; 0 � x � 2

21. y′ = ln y, y(1) = 2; 1 � x � 2
22. y′ = x2/3 + y2/3, y(0) = 1; 0 � x � 2

23. y′ = sin x + cos y, y(0) = 0; 0 � x � 1

24. y′ = x

1 + y2
, y(−1) = 1; −1 � x � 1

25. As in Problem 25 of Section 2.4, you bail out of a he-
licopter and immediately open your parachute, so your
downward velocity satisfies the initial value problem

dv

dt
= 32 − 1.6v, v(0) = 0

(with t in seconds and v in ft/s). Use the improved Eu-
ler method with a programmable calculator or computer
to approximate the solution for 0 � t � 2, first with step
size h = 0.01 and then with h = 0.005, rounding off
approximate v-values to three decimal places. What per-
centage of the limiting velocity 20 ft/s has been attained
after 1 second? After 2 seconds?

26. As in Problem 26 of Section 2.4, suppose the deer popu-
lation P(t) in a small forest initially numbers 25 and sat-
isfies the logistic equation

dP

dt
= 0.0225P − 0.0003P2

(with t in months). Use the improved Euler method with a
programmable calculator or computer to approximate the
solution for 10 years, first with step size h = 1 and then
with h = 0.5, rounding off approximate P-values to three
decimal places. What percentage of the limiting popula-
tion of 75 deer has been attained after 5 years? After 10
years?

Use the improved Euler method with a computer system to find
the desired solution values in Problems 27 and 28. Start with
step size h = 0.1, and then use successively smaller step sizes
until successive approximate solution values at x = 2 agree
rounded off to four decimal places.

27. y′ = x2 + y2 − 1, y(0) = 0; y(2) = ?
28. y′ = x + 1

2 y2, y(−2) = 0; y(2) = ?
29. Consider the crossbow bolt of Example 2 in Section 2.3,

shot straight upward from the ground with an initial veloc-
ity of 49 m/s. Because of linear air resistance, its velocity
function v(t) satisfies the initial value problem

dv

dt
= −(0.04)v − 9.8, v(0) = 49

with exact solution v(t) = 294e−t/25 − 245. Use a calcu-
lator or computer implementation of the improved Euler
method to approximate v(t) for 0 � t � 10 using both
n = 50 and n = 100 subintervals. Display the results
at intervals of 1 second. Do the two approximations—
each rounded to two decimal places—agree both with
each other and with the exact solution? If the exact so-
lution were unavailable, explain how you could use the
improved Euler method to approximate closely (a) the
bolt’s time of ascent to its apex (given in Section 2.3 as
4.56 s) and (b) its impact velocity after 9.41 s in the air.

Pearson Custom Publishing

Not For Resale
Or

Distribution



2.5 A Closer Look at the Euler Method 133

30. Consider now the crossbow bolt of Example 3 in Section
2.3. It still is shot straight upward from the ground with
an initial velocity of 49 m/s, but because of air resistance
proportional to the square of its velocity, its velocity func-
tion v(t) satisfies the initial value problem

dv

dt
= −(0.0011)v|v| − 9.8, v(0) = 49.

The symbolic solution discussed in Section 2.3 required
separate investigations of the bolt’s ascent and its descent,
with v(t) given by a tangent function during ascent and
by a hyperbolic tangent function during descent. But

the improved Euler method requires no such distinction.
Use a calculator or computer implementation of the im-
proved Euler method to approximate v(t) for 0 � t � 10
using both n = 100 and n = 200 subintervals. Dis-
play the results at intervals of 1 second. Do the two
approximations—each rounded to two decimal places—
agree with each other? If an exact solution were un-
available, explain how you could use the improved Euler
method to approximate closely (a) the bolt’s time of as-
cent to its apex (given in Section 2.3 as 4.61 s) and (b) its
impact velocity after 9.41 s in the air.

2.5 Application Improved Euler Implementation

Figure 2.5.10 lists TI-85 and BASIC programs implementing the improved Euler
method to approximate the solution of the initial value problem

dy

dx
= x + y, y(0) = 1

considered in Example 2 of this section. The comments provided in the final column
should make these programs intelligible even if you have little familiarity with the
BASIC and TI programming languages.

TI-85 BASIC Comment

PROGRAM:IMPEULER

:F=X+Y

:10→N
:0→X
:1→Y
:1→X1
:(X1-X)/N→H
:For(I,1,N)

:Y→Y0
:F→K1
:Y0+H*K1→Y
:X+H→X
:F→K2
:(K1+K2)/2→K
:Y0+H*K→Y
:Disp X,Y

:End

Program IMPEULER

DEF FN F(X,Y) = X + Y

N = 10

X = 0

Y = 1

X1 = 1

H = (X1-X)/N

FOR I=1 TO N

Y0 = Y

K1 = FNF(X,Y)

Y = Y0 + H*K1

X = X + H

K2 = FNF(X,Y)

K = (K1 + K2)/2

Y = Y0 + H*K

PRINT X,Y

NEXT I

Program title

Define function f

No. of steps

Initial x

Initial y

Final x

Step size

Begin loop

Save previous y

First slope

Predictor

New x

Second slope

Average slope

Corrector

Display results

End loop

FIGURE 2.5.10. TI-85 and BASIC improved Euler programs.

To apply the improved Euler method to a differential equation dy/dx =
f (x, y), one need only change the initial line of the program, in which the func-
tion f is defined. To increase the number of steps (and thereby decrease the step
size) one need only change the value of N specified in the second line of the program.
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134 Chapter 2 Mathematical Models and Numerical Methods

Figure 2.5.11 exhibits one MATLAB implementation of the improved Euler
method. The impeuler function takes as input the initial value x, the initial value
y, the final value x1 of x , and the desired number n of subintervals. As output it
produces the resulting column vectors X and Y of x- and y-values. For instance, the
MATLAB command

[X, Y] = impeuler(0, 1, 1, 10)

then generates the first and fourth columns of data shown in Fig. 2.5.4.

function yp = f(x,y)
yp = x + y; % yp = y’

function [X,Y] = impeuler(x,y,x1,n)
h = (x1 - x)/n; % step size
X = x; % initial x
Y = y; % initial y
for i = 1:n; % begin loop

k1 = f(x,y); % first slope
k2 = f(x+h,y+h*k1); % second slope
k = (k1 + k2)/2;; % average slope
x = x + h; % new x
y = y + h*k; % new y
X = [X;x]; % update x-column
Y = [Y;y]; % update y-column
end % end loop

FIGURE 2.5.11. MATLAB implementation of improved Euler method.

You should begin this project by implementing the improved Euler method
with your own calculator or computer system. Test your program by applying it
first to the initial value problem of Example 1, then to some of the problems for this
section.

Famous Numbers Revisited

The following problems describe the numbers e ≈ 2.7182818, ln 2 ≈ 0.6931472,
and π ≈ 3.1415927 as specific values of certain initial value problems. In each case,
apply the improved Euler method with n = 10, 20, 40, . . . subintervals (doubling n
each time). How many subintervals are needed to obtain—twice in succession—the
correct value of the target number rounded to five decimal places?

1. The number e = y(1), where y(x) is the solution of the initial value problem
dy/dx = y, y(0) = 1.

2. The number ln 2 = y(2), where y(x) is the solution of the initial value prob-
lem dy/dx = 1/x , y(1) = 0.

3. The number π = y(1), where y(x) is the solution of the initial value problem
dy/dx = 4/(1 + x2), y(0) = 0.

Logistic Population Investigation

Apply your improved Euler program to the initial value problem dy/dx = 1
3 y(8−y),

y(0) = 1 of Example 3. In particular, verify (as claimed) that the approximate
solution with step size h = 1 levels off at y ≈ 4.3542 rather than at the limiting
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2.6 The Runge–Kutta Method 135

value y = 8 of the exact solution. Perhaps a table of values for 0 � x � 100 will
make this apparent.

For your own logistic population to investigate, consider the initial value prob-
lem

dy

dx
= 1

n
y(m − y), y(0) = 1,

where m and n are (for instance) the largest and smallest nonzero digits in your
student ID number. Does the improved Euler approximation with step size h = 1
level off at the “correct” limiting value of the exact solution? If not, find a smaller
value of h so that it does.

Periodic Harvesting and Restocking

The differential equation

dy

dt
= ky(M − y) − h sin

(
2π t

P

)

models a logistic population that is periodically harvested and restocked with period
P and maximal harvesting/restocking rate h. A numerical approximation program
was used to plot the typical solution curves for the case k = M = h = P = 1 that
are shown in Fig. 2.5.12. This figure suggests—although it does not prove—the
existence of a threshold initial population such that

y

− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
t

FIGURE 2.5.12. Solution curves
of dy/dt = y(1 − y) − sin 2π t .

• Beginning with an initial population above this threshold, the population os-
cillates (perhaps with period P?) around the (unharvested) stable limiting
population y(t) ≡ M , whereas

• The population dies out if it begins with an initial population below this thresh-
old.

Use an appropriate plotting utility to investigate your own logistic population with
periodic harvesting and restocking (selecting typical values of the parameters k, M ,
h, and P). Do the observations indicated here appear to hold for your population?

2.6 The Runge–Kutta Method

We now discuss a method for approximating the solution y = y(x) of the initial
value problem

dy

dx
= f (x, y), y(x0) = y0 (1)

that is considerably more accurate than the improved Euler method and is more
widely used in practice than any of the numerical methods discussed in Sections 2.4
and 2.5. It is called the Runge–Kutta method, after the German mathematicians who
developed it, Carl Runge (1856–1927) and Wilhelm Kutta (1867–1944).

With the usual notation, suppose that we have computed the approximations
y1, y2, y3, . . . , yn to the actual values y(x1), y(x2), y(x3), . . . , y(xn) and now want
to compute yn+1 ≈ y(xn+1). Then

y(xn+1) − y(xn) =
∫ xn+1

xn

y′(x) dx =
∫ xn+h

xn

y′(x) dx (2)
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136 Chapter 2 Mathematical Models and Numerical Methods

by the fundamental theorem of calculus. Next, Simpson’s rule for numerical inte-
gration yields

y(xn+1) − y(xn) ≈ h

6

[
y′(xn) + 4y′

(
xn + h

2

)
+ y′(xn+1)

]
. (3)

Hence we want to define yn+1 so that

yn+1 ≈ yn + h

6

[
y′(xn) + 2y′

(
xn + h

2

)
+ 2y′

(
xn + h

2

)
+ y′(xn+1)

]
; (4)

we have split 4y′ (xn + 1
2 h

)
into a sum of two terms because we intend to approxi-

mate the slope y′ (xn + 1
2 h

)
at the midpoint xn + 1

2 h of the interval [xn, xn+1] in two
different ways.

On the right-hand side in (4), we replace the [true] slope values y′(xn),
y′ (xn + 1

2 h
)
, y′ (xn + 1

2 h
)
, and y′(xn+1), respectively, with the following estimates.

k1 = f (xn, yn) (5a)➤

• This is the Euler method slope at xn .

k2 = f
(
xn + 1

2 h, yn + 1
2 hk1

)
(5b)➤

• This is an estimate of the slope at the midpoint of the interval [xn, xn+1] using
the Euler method to predict the ordinate there.

k3 = f
(
xn + 1

2 h, yn + 1
2 hk2

)
(5c)➤

• This is an improved Euler value for the slope at the midpoint.

k4 = f (xn+1, yn + hk3) (5d)➤

• This is the Euler method slope at xn+1, using the improved slope k3 at the
midpoint to step to xn+1.

When these substitutions are made in (4), the result is the iterative formula

yn+1 = yn + h

6
(k1 + 2k2 + 2k3 + k4). (6)➤

The use of this formula to compute the approximations y1, y2, y3, . . . successively
constitutes the Runge–Kutta method. Note that Eq. (6) takes the “Euler form”

yn+1 = yn + h · k

if we write

k = 1

6
(k1 + 2k2 + 2k3 + k4) (7)

for the approximate average slope on the interval [xn, xn+1].
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2.6 The Runge–Kutta Method 137

The Runge–Kutta method is a fourth-order method—it can be proved that the
cumulative error on a bounded interval [a, b] with a = x0 is of order h4. (Thus the
iteration in (6) is sometimes called the fourth-order Runge–Kutta method because
it is possible to develop Runge–Kutta methods of other orders.) That is,

|y(xn) − yn| � Ch4, (8)➤

where the constant C depends on the function f (x, y) and the interval [a, b], but
does not depend on the step size h. The following example illustrates this high
accuracy in comparison with the lower-order accuracy of our previous numerical
methods.

Example 1 We first apply the Runge–Kutta method to the illustrative initial value problem

dy

dx
= x + y, y(0) = 1 (9)

that we considered in Fig. 2.4.8 of Section 2.4 and again in Example 2 of Section
2.5. The exact solution of this problem is y(x) = 2ex − x − 1. To make a point we
use h = 0.5, a larger step size than in any previous example, so only two steps are
required to go from x = 0 to x = 1.

In the first step we use the formulas in (5) and (6) to calculate

k1 = 0 + 1 = 1,

k2 = (0 + 0.25) + (1 + (0.25) · (1)) = 1.5,

k3 = (0 + 0.25) + (1 + (0.25) · (1.5)) = 1.625,

k4 = (0.5) + (1 + (0.5) · (1.625)) = 2.3125,

and then

y1 = 1 + 0.5

6
[1 + 2 · (1.5) + 2 · (1.625) + 2.3125] ≈ 1.7969.

Similarly, the second step yields y2 ≈ 3.4347.
Figure 2.6.1 presents these results together with the results (from Fig. 2.5.4)

of applying the improved Euler method with step size h = 0.1. We see that even
with the larger step size, the Runge–Kutta method gives (for this problem) four to
five times the accuracy (in terms of relative percentage errors) of the improved Euler
method.

Improved Euler Runge–Kutta
x y with h = 0.1 Percent Error y with h = 0.5 Percent Error Actual y

0.0

0.5

1.0

1.0000

1.7949

3.4282

0.00%

0.14%

0.24%

1.0000

1.7969

3.4347

0.00%

0.03%

0.05%

1.0000

1.7974

3.4366

FIGURE 2.6.1. Runge–Kutta and improved Euler results for the initial value problem
dy/dx = x + y, y(0) = 1.
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138 Chapter 2 Mathematical Models and Numerical Methods

It is customary to measure the computational labor involved in solving
dy/dx = f (x, y) numerically by counting the number of evaluations of the func-
tion f (x, y) that are required. In Example 1, the Runge–Kutta method required
eight evaluations of f (x, y) = x + y (four at each step), whereas the improved
Euler method required 20 such evaluations (two for each of 10 steps). Thus the
Runge–Kutta method gave over four times the accuracy with only 40% of the labor.

Computer programs implementing the Runge–Kutta method are listed in the
project material for this section. Figure 2.6.2 shows the results obtained by applying
the improved Euler and Runge–Kutta methods to the problem dy/dx = x + y,
y(0) = 1 with the same step size h = 0.1. The relative error in the improved Euler
value at x = 1 is about 0.24%, but for the Runge–Kutta value it is 0.00012%. In this
comparison the Runge–Kutta method is about 2000 times as accurate, but requires
only twice as many function evaluations, as the improved Euler method.

x Improved Euler y Runge–Kutta y Actual y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1100

1.2421

1.3985

1.5818

1.7949

2.0409

2.3231

2.6456

3.0124

3.4282

1.110342

1.242805

1.399717

1.583648

1.797441

2.044236

2.327503

2.651079

3.019203

3.436559

1.110342

1.242806

1.399718

1.583649

1.797443

2.044238

2.327505

2.651082

3.019206

3.436564

FIGURE 2.6.2. Runge–Kutta and improved Euler results for the initial value
problem dy/dx = x + y, y(0) = 1, with the same step size h = 0.1.

The error bound

|y(xn) − yn| � Ch4 (8)

for the Runge–Kutta method results in a rapid decrease in the magnitude of errors
when the step size h is reduced (except for the possibility that very small step sizes
may result in unacceptable roundoff errors). It follows from the inequality in (8) that
(on a fixed bounded interval) halving the step size decreases the absolute error by

a factor of
(

1
2

)4 = 1
16 . Consequently, the common practice of successively halving

the step size until the computed results “stabilize” is particularly effective with the
Runge–Kutta method.

2.01.00.0
x

y

8

−4

−2

−2.0 −1.0

0
(0, 1)

x = 0.97

2

4

6

FIGURE 2.6.3. Solutions of
dy/dx = x2 + y2, y(0) = 1.

Example 2 In Example 5 of Section 2.4 we saw that Euler’s method is not adequate to approx-
imate the solution y(x) of the initial value problem

dy

dx
= x2 + y2, y(0) = 1 (10)

as x approaches the infinite discontinuity near x = 0.969811 (see Fig. 2.6.3). Now
we apply the Runge–Kutta method to this initial value problem.

Figure 2.6.4 shows Runge–Kutta results on the interval [0.0, 0.9], computed
with step sizes h = 0.1, h = 0.05, and h = 0.025. There is still some difficulty near
x = 0.9, but it seems safe to conclude from these data that y(0.5) ≈ 2.0670.
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2.6 The Runge–Kutta Method 139

x y with h = 0.1 y with h = 0.05 y with h = 0.025

0.1

0.3

0.5

0.7

0.9

1.1115

1.4397

2.0670

3.6522

14.0218

1.1115

1.4397

2.0670

3.6529

14.2712

1.1115

1.4397

2.0670

3.6529

14.3021

FIGURE 2.6.4. Approximating the solution of the initial value problem in Eq. (10).

We therefore begin anew and apply the Runge–Kutta method to the initial
value problem

dy

dx
= x2 + y2, y(0.5) = 2.0670. (11)

Figure 2.6.5 shows results on the interval [0.5, 0.9], obtained with step sizes h =
0.01, h = 0.005, and h = 0.0025. We now conclude that y(0.9) ≈ 14.3049.

x y with h = 0.01 y with h = 0.005 y with h = 0.0025

0.5

0.6

0.7

0.8

0.9

2.0670

2.6440

3.6529

5.8486

14.3048

2.0670

2.6440

3.6529

5.8486

14.3049

2.0670

2.6440

3.6529

5.8486

14.3049

FIGURE 2.6.5. Approximating the solution of the initial value problem in Eq. (11).

Finally, Fig. 2.6.6 shows results on the interval [0.90, 0.95] for the initial value
problem

dy

dx
= x2 + y2, y(0.9) = 14.3049, (12)

obtained using step sizes h = 0.002, h = 0.001, and h = 0.0005. Our final
approximate result is y(0.95) ≈ 50.4723. The actual value of the solution at x =
0.95 is y(0.95) ≈ 50.471867. Our slight overestimate results mainly from the fact
that the four-place initial value in (12) is (in effect) the result of rounding up the
actual value y(0.9) ≈ 14.304864; such errors are magnified considerably as we
approach the vertical asymptote.

x y with h = 0.002 y with h = 0.001 y with h = 0.0005

0.90

0.91

0.92

0.93

0.94

0.95

14.3049

16.7024

20.0617

25.1073

33.5363

50.4722

14.3049

16.7024

20.0617

25.1073

33.5363

50.4723

14.3049

16.7024

20.0617

25.1073

33.5363

50.4723

FIGURE 2.6.6. Approximating the solution of the initial value problem in Eq. (12).
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140 Chapter 2 Mathematical Models and Numerical Methods

Example 3 A skydiver with a mass of 60 kg jumps from a helicopter hovering at an initial
altitude of 5 kilometers. Assume that she falls vertically with initial velocity zero
and experiences an upward force FR of air resistance given in terms of her velocity
v (in meters per second) by

FR = (0.0096)(100v + 10v2 + v3)

(in newtons, and with the coordinate axis directed downward so that v > 0 during
her descent to the ground). If she does not open her parachute, what will be her
terminal velocity? How fast will she be falling after 5 s have elapsed? After 10 s?
After 20 s?

Solution Newton’s law F = ma gives

m
dv

dt
= mg − FR;

that is,

60
dv

dt
= (60)(9.8) − (0.0096)(100v + 10v2 + v3) (13)

because m = 60 and g = 9.8. Thus the velocity function v(t) satisfies the initial
value problem

dv

dt
= f (v), v(0) = 0, (14)

where
f (v) = 9.8 − (0.00016)(100v + 10v2 + v3). (15)

The skydiver reaches her terminal velocity when the forces of gravity and air

0 40 806020 100−40−20−60

60

0

− 60

20

− 40

40

− 20

f(
  )

FIGURE 2.6.7. Graph of f (v) =
9.8−(0.00016)(100v+10v2 +v3).

resistance balance, so f (v) = 0. We can therefore calculate her terminal velocity
immediately by solving the equation

f (v) = 9.8 − (0.00016)(100v + 10v2 + v3) = 0. (16)

Figure 2.6.7 shows the graph of the function f (v) and exhibits the single real so-
lution v ≈ 35.5780 (found graphically or by using a calculator or computer Solve
procedure). Thus the skydiver’s terminal speed is approximately 35.578 m/s, about
128 km/h (almost 80 mi/h).

Figure 2.6.8 shows the results of Runge–Kutta approximations to the solution
of the initial value problem in (14); the step sizes h = 0.2 and h = 0.1 yield the
same results (to three decimal places). Observe that the terminal velocity is effec-
tively attained in only 15 s. But the skydiver’s velocity is 91.85% of her terminal
velocity after only 5 s, and 99.78% after 10 s.

The final example of this section contains a warning: For certain types of
initial value problems, the numerical methods we have discussed are not nearly so
successful as in the previous examples.

t (s) v (m/s) t (s) v (m/s)

0

1

2

3

4

5

6

7

8

9

10

0

9.636

18.386

25.299

29.949

32.678

34.137

34.875

35.239

35.415

35.500

11

12

13

14

15

16

17

18

19

20

35.541

35.560

35.569

35.574

35.576

35.577

35.578

35.578

35.578

35.578

FIGURE 2.6.8. The skydiver’s
velocity data.

Example 4 Consider the seemingly innocuous initial value problem

dy

dx
= 5y − 6e−x , y(0) = 1 (17)

whose exact solution is y(x) = e−x . The table in Fig. 2.6.9 shows the results ob-
tained by applying the Runge–Kutta method on the interval [0, 4] with step sizes
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2.6 The Runge–Kutta Method 141

Runge–Kutta y Runge–Kutta y Runge–Kutta y
x with h = 0.2 with h = 0.1 with h = 0.05 Actual y

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

0.66880

0.43713

0.21099

−0.46019

−4.72142

−35.53415

−261.25023

−1,916.69395

−14059.35494

−103,126.5270

0.67020

0.44833

0.29376

0.14697

−0.27026

−2.90419

−22.05352

−163.25077

−1205.71249

−8903.12866

0.67031

0.44926

0.30067

0.19802

0.10668

−0.12102

−1.50367

−11.51868

−85.38156

−631.03934

0.67032

0.44933

0.30199

0.20190

0.13534

0.09072

0.06081

0.04076

0.02732

0.01832

FIGURE 2.6.9. Runge–Kutta attempts to solve numerically the initial value problem in
Eq. (17).

h = 0.2, h = 0.1, and h = 0.05. Obviously these attempts are spectacularly un-
successful. Although y(x) = e−x → 0 as x → +∞, it appears that our numerical
approximations are headed toward −∞ rather than zero.

The explanation lies in the fact that the general solution of the equation
dy/dx = 5y − 6e−x is

y(x) = e−x + Ce5x . (18)

The particular solution of (17) satisfying the initial condition y(0) = 1 is ob-
tained with C = 0. But any departure, however small, from the exact solution
y(x) = e−x —even if due only to roundoff error—introduces [in effect] a nonzero
value of C in Eq. (18). And as indicated in Fig. 2.6.10, all solution curves of the
form in (18) with C �= 0 diverge rapidly away from the one with C = 0, even if
their initial values are close to 1.

3.02.52.01.51.00.5
x

y = e−x

y

0

2.5

2.0

1.5

1.0

0.5

0.0

−1.0

−0.5

FIGURE 2.6.10. Direction field and
solution curves for dy/dx = 5y − 6e−x .

Difficulties of the sort illustrated by Example 4 sometimes are unavoidable,
but one can at least hope to recognize such a problem when it appears. Approxi-
mate values whose order of magnitude varies with changing step size are a common
indicator of such instability. These difficulties are discussed in numerical analysis
textbooks and are the subject of current research in the field.
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142 Chapter 2 Mathematical Models and Numerical Methods

2.6 Problems

A hand-held calculator will suffice for Problems 1 through 10,
where an initial value problem and its exact solution are given.
Apply the Runge–Kutta method to approximate this solution on
the interval [0, 0.5] with step size h = 0.25. Construct a table
showing five-decimal-place values of the approximate solution
and actual solution at the points x = 0.25 and 0.5.

1. y′ = −y, y(0) = 2; y(x) = 2e−x

2. y′ = 2y, y(0) = 1
2 ; y(x) = 1

2 e2x

3. y′ = y + 1, y(0) = 1; y(x) = 2ex − 1

4. y′ = x − y, y(0) = 1; y(x) = 2e−x + x − 1

5. y′ = y − x − 1, y(0) = 1; y(x) = 2 + x − ex

6. y′ = −2xy, y(0) = 2; y(x) = 2e−x2

7. y′ = −3x2 y, y(0) = 3; y(x) = 3e−x3

8. y′ = e−y , y(0) = 0; y(x) = ln(x + 1)

9. y′ = 1
4 (1 + y2), y(0) = 1; y(x) = tan 1

4 (x + π)

10. y′ = 2xy2, y(0) = 1; y(x) = 1

1 − x2

Note: The application following this problem set lists illus-
trative calculator/computer programs that can be used in the
remaining problems.

A programmable calculator or a computer will be useful for
Problems 11 through 16. In each problem find the exact solu-
tion of the given initial value problem. Then apply the Runge–
Kutta method twice to approximate (to five decimal places) this
solution on the given interval, first with step size h = 0.2, then
with step size h = 0.1. Make a table showing the approxi-
mate values and the actual value, together with the percentage
error in the more accurate approximation, for x an integral
multiple of 0.2. Throughout, primes denote derivatives with
respect to x.

11. y′ = y − 2, y(0) = 1; 0 � x � 1

12. y′ = 1
2 (y − 1)2, y(0) = 2; 0 � x � 1

13. yy′ = 2x3, y(1) = 3; 1 � x � 2

14. xy′ = y2, y(1) = 1; 1 � x � 2

15. xy′ = 3x − 2y, y(2) = 3; 2 � x � 3

16. y2 y′ = 2x5, y(2) = 3; 2 � x � 3

A computer with a printer is required for Problems 17 through
24. In these initial value problems, use the Runge–Kutta
method with step sizes h = 0.2, 0.1, 0.05, and 0.025 to approx-
imate to six decimal places the values of the solution at five
equally spaced points of the given interval. Print the results
in tabular form with appropriate headings to make it easy to
gauge the effect of varying the step size h. Throughout, primes
denote derivatives with respect to x.

17. y′ = x2 + y2, y(0) = 0; 0 � x � 1

18. y′ = x2 − y2, y(0) = 1; 0 � x � 2

19. y′ = x + √
y, y(0) = 1; 0 � x � 2

20. y′ = x + 3
√

y, y(0) = −1; 0 � x � 2

21. y′ = ln y, y(1) = 2; 1 � x � 2
22. y′ = x2/3 + y2/3, y(0) = 1; 0 � x � 2
23. y′ = sin x + cos y, y(0) = 0; 0 � x � 1

24. y′ = x

1 + y2
, y(−1) = 1; −1 � x � 1

25. As in Problem 25 of Section 2.5, you bail out of a he-
licopter and immediately open your parachute, so your
downward velocity satisfies the initial value problem

dv

dt
= 32 − 1.6v, v(0) = 0

(with t in seconds and v in ft/s). Use the Runge–Kutta
method with a programmable calculator or computer to
approximate the solution for 0 � t � 2, first with step
size h = 0.1 and then with h = 0.05, rounding off approx-
imate v-values to three decimal places. What percentage
of the limiting velocity 20 ft/s has been attained after 1
second? After 2 seconds?

26. As in Problem 26 of Section 2.5, suppose the deer popu-
lation P(t) in a small forest initially numbers 25 and sat-
isfies the logistic equation

dP

dt
= 0.0225P − 0.0003P2

(with t in months). Use the Runge–Kutta method with a
programmable calculator or computer to approximate the
solution for 10 years, first with step size h = 6 and then
with h = 3, rounding off approximate P-values to four
decimal places. What percentage of the limiting popula-
tion of 75 deer has been attained after 5 years? After 10
years?

Use the Runge–Kutta method with a computer system to find
the desired solution values in Problems 27 and 28. Start with
step size h = 1, and then use successively smaller step sizes
until successive approximate solution values at x = 2 agree
rounded off to five decimal places.

27. y′ = x2 + y2 − 1, y(0) = 0; y(2) =?
28. y′ = x + 1

2 y2, y(−2) = 0; y(2) =?

Velocity-Acceleration Problems
In Problems 29 and 30, the linear acceleration a = dv/dt
of a moving particle is given by a formula dv/dt = f (t, v),
where the velocity v = dy/dt is the derivative of the function
y = y(t) giving the position of the particle at time t. Suppose
that the velocity v(t) is approximated using the Runge–Kutta
method to solve numerically the initial value problem

dv

dt
= f (t, v), v(0) = v0. (19)

That is, starting with t0 = 0 and v0, the formulas in Eqs. (5)
and (6) are applied—with t and v in place of x and y—to
calculate the successive approximate velocity values v1, v2,
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2.6 The Runge–Kutta Method 143

v3, . . . , vm at the successive times t1, t2, t3, . . . , tm (with
tn+1 = tn + h). Now suppose that we also want to approximate
the distance y(t) traveled by the particle. We can do this by
beginning with the initial position y(0) = y0 and calculating

yn+1 = yn + vnh + 1
2 anh2 (20)

(n = 1, 2, 3, . . . ), where an = f (tn, vn) ≈ v′(tn) is the parti-
cle’s approximate acceleration at time tn. The formula in (20)
would give the correct increment (from yn to yn+1) if the accel-
eration an remained constant during the time interval [tn, tn+1].

Thus, once a table of approximate velocities has been
calculated, Eq. (20) provides a simple way to calculate a table
of corresponding successive positions. This process is illus-
trated in the project for this section, by beginning with the ve-
locity data in Fig. 2.6.8 (Example 3) and proceeding to follow
the skydiver’s position during her descent to the ground.

29. Consider again the crossbow bolt of Example 2 in Sec-
tion 2.3, shot straight upward from the ground with an
initial velocity of 49 m/s. Because of linear air resistance,
its velocity function v = dy/dt satisfies the initial value
problem

dv

dt
= −(0.04)v − 9.8, v(0) = 49

with exact solution v(t) = 294e−t/25−245. (a) Use a cal-
culator or computer implementation of the Runge–Kutta
method to approximate v(t) for 0 � t � 10 using both
n = 100 and n = 200 subintervals. Display the results at
intervals of 1 second. Do the two approximations—each
rounded to four decimal places—agree both with each
other and with the exact solution? (b) Now use the veloc-
ity data from part (a) to approximate y(t) for 0 � t � 10
using n = 200 subintervals. Display the results at inter-
vals of 1 second. Do these approximate position values—
each rounded to two decimal places—agree with the exact

solution

y(t) = 7350
(
1 − e−t/25

) − 245t?

(c) If the exact solution were unavailable, explain how
you could use the Runge–Kutta method to approximate
closely the bolt’s times of ascent and descent and the max-
imum height it attains.

30. Now consider again the crossbow bolt of Example 3 in
Section 2.3. It still is shot straight upward from the ground
with an initial velocity of 49 m/s, but because of air resis-
tance proportional to the square of its velocity, its velocity
function v(t) satisfies the initial value problem

dv

dt
= −(0.0011)v|v| − 9.8, v(0) = 49.

Beginning with this initial value problem, repeat parts (a)
through (c) of Problem 25 (except that you may need
n = 200 subintervals to get four-place accuracy in part
(a) and n = 400 subintervals for two-place accuracy in
part (b)). According to the results of Problems 17 and 18
in Section 2.3, the bolt’s velocity and position functions
during ascent and descent are given by the following for-
mulas.

Ascent:
v(t) = (94.388) tan(0.478837 − [0.103827]t),
y(t) = 108.465

+ (909.091) ln (cos(0.478837 − [0.103827]t)) ;

Descent:
v(t) = −(94.388) tanh(0.103827[t − 4.6119]),
y(t) = 108.465

− (909.091) ln (cosh(0.103827[t − 4.6119])) .

2.6 Application Runge–Kutta Implementation

Figure 2.6.11 lists TI-85 and BASIC programs implementing the Runge–Kutta
method to approximate the solution of the initial value problem

dy

dx
= x + y, y(0) = 1

considered in Example 1 of this section. The comments provided in the final column
should make these programs intelligible even if you have little familiarity with the
BASIC and TI programming languages.

To apply the Runge–Kutta method to a different equation dy/dx = f (x, y),
one need only change the initial line of the program, in which the function f is
defined. To increase the number of steps (and thereby decrease the step size), one
need only change the value of N specified in the second line of the program.
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TI-85 BASIC Comment

PROGRAM:RK

:F=X+Y

:10→N
:0→X
:1→Y
:1→X1
:(X1-X)/N→H
:For(I,1,N)

:X→X0
:Y→Y0
:F→K1
:X0+H/2→X
:Y0+H*K1/2→Y
:F→K2
:Y0+H*K2/2→Y
:F→K3
:X0+H→X
:Y0+H*K3→Y
:F→K4
:(K1+2*K2+2*K3

+K4)/6→K
:Y0+H*K→Y
:Disp X,Y

:End

Program RK

DEF FN F(X,Y) = X + Y

N = 10

X = 0

Y = 1

X1 = 1

H = (X1-X)/N

FOR I=1 TO N

X0 = X

Y0 = Y

K1 = FNF(X,Y)

X = X0 + H/2

Y = Y0 + H*K1/2

K2 = FNF(X,Y)

Y = Y0 + H*K2/2

K3 = FNF(X,Y)

X = X0 + H

Y = Y0 + H*K3

K4 = FNF(X,Y)

K = (K1+2*K2+2*K3

+K4)/6

Y = Y0 + K*K

PRINT X,Y

NEXT I

Program title

Define function f

No. of steps

Initial x

Initial y

Final x

Step size

Begin loop

Save previous x

Save previous y

First slope

Midpoint

Midpt predictor

Second slope

Midpt predictor

Third slope

New x

Endpt predictor

Fourth slope

Average slope

Corrector

Display results

End loop

FIGURE 2.6.11. TI-85 and BASIC Runge–Kutta programs.

Figure 2.6.12 exhibits a MATLAB implementation of the Runge–Kutta
method. Suppose that the function f describing the differential equation y′ =
f (x, y) has been defined. Then the rk function takes as input the initial value x,
the initial value y, the final value x1 of x , and the desired number n of subintervals.
As output it produces the resulting column vectors X and Y of x- and y-values. For
instance, the MATLAB command

[X, Y] = rk(0, 1, 1, 10)

then generates the first and third columns of data shown in the table in Fig. 2.6.2.
You should begin this project by implementing the Runge–Kutta method with

your own calculator or computer system. Test your program by applying it first to
the initial value problem in Example 1, then to some of the problems for this section.

Famous Numbers Revisited, One Last Time

The following problems describe the numbers

e ≈ 2.71828182846, ln 2 ≈ 0.69314718056, and π ≈ 3.14159265359

as specific values of certain initial value problems. In each case, apply the Runge–
Kutta method with n = 10, 20, 40, . . . subintervals (doubling n each time). How
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2.6 The Runge–Kutta Method 145

function yp = f(x,y)
yp = x + y; % yp = y’

function [X,Y] = rk(x,y,x1,n)
h = (x1 - x)/n; % step size
X = x; % initial x
Y = y; % initial y
for i = 1:n % begin loop

k1 = f(x,y); % first slope
k2 = f(x+h/2,y+h*k1/2); % second slope
k3 = f(x+h/2,y+h*k2/2); % third slope
k4 = f(x+h,y+h*k3); % fourth slope
k = (k1+2*k2+2*k3+k4)/6; % average slope
x = x + h; % new x
y = y + h*k; % new y
X = [X;x]; % update x-column
Y = [Y;y]; % update y-column
end % end loop

FIGURE 2.6.12. MATLAB implementation of the Runge–Kutta method.

many subintervals are needed to obtain—twice in succession—the correct value of
the target number rounded to nine decimal places?

1. The number e = y(1), where y(x) is the solution of the initial value problem
dy/dx = y, y(0) = 1.

2. The number ln 2 = y(2), where y(x) is the solution of the initial value prob-
lem dy/dx = 1/x , y(1) = 0.

3. The number π = y(1), where y(x) is the solution of the initial value problem
dy/dx = 4/(1 + x2), y(0) = 0.

The Skydiver's Descent

The following MATLAB function describes the skydiver’s acceleration function in
Example 3.

function vp = f(t,v)
vp = 9.8 - 0.00016∗(100∗v + 10∗v^2 + v^3);

Then the commands

k = 200 % 200 subintervals
[t,v] = rk(0, 20, 0, k); % Runge--Kutta approxima-
tion
[t(1:10:k+1); v(1:10:k+1)] % Display every 10th entry

produce the table of approximate velocities shown in Fig. 2.6.8. Finally, the com-
mands

y = zeros(k+1,1): % initialize y
h = 0.1; % step size
for n = 1:k % for n = 1 to k
a = f(t(n),v(n)): % acceleration
y(n+1) = y(n) + v(n)∗h + 0.5∗a∗h^2; % Equation (20)
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146 Chapter 2 Mathematical Models and Numerical Methods

end % end loop
[t(1:20:k+1),v(1:20:k+1),y(1:20:k+1)] % each 20th entry

carry out the position function calculations described in Eq. (20) in the instruc-
tions for Problems 29 and 30. The results of these calculations are shown in
the table in Fig. 2.6.13. It appears that the skydiver falls 629.866 m during her
first 20 s of descent, and then free falls the remaining 4370.134 meters to the
ground at her terminal speed of 35.578 m/s. Hence her total time of descent is
20 + (4370.134/35.578) ≈ 142.833 s, or about 2 min 23 s.

t (s) v (m/s) y (m)

0

2

4

6

8

10

12

14

16

18

20

0

18.386

29.949

34.137

35.239

35.500

35.560

35.574

35.577

35.578

35.578

0

18.984

68.825

133.763

203.392

274.192

345.266

416.403

487.555

558.710

629.866

FIGURE 2.6.13. The skydiver’s
velocity and position data.

For an individual problem to solve after implementing these methods using
an available computer system, analyze your own skydive (perhaps from a different
height), using your own mass m and a plausible air-resistance force of the form
FR = av + bv2 + cv3.
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