\qquad

Box in your answer to each question. Please fold your exam into the test booklet. Good luck.

1. Consider the differential equation

$$
\frac{d x}{d t}=-x(x-2)^{2}
$$

You are not expected to solve this DE explicitly (nor should you), in order to answer the questions below.
(a) Find the critical points of this DE
$x=0,2$ are the two c.p.'s; Only $x=0$ is stable.
(b) Sketch the phase line for this DE
(c) Determine the stability of the critical points
(d) Carefully sketch the 4 solution curves $x=x(t)$ for the initial conditions $x(0)=0, x(0)=2$, $x(0)=3, x(0)=4$.
(e) With the help of the phase line, and the solution curves above, determine the $\lim x(t)$ as $t \rightarrow \infty$ if $x(0)=3$.
$\lim x(t)=2$.
2. Solve the IVP

$$
x^{\prime \prime}+4 x^{\prime}+8 x=0 ; \quad x(0)=0, x^{\prime}(0)=2
$$

Char Poly $\left(r^{2}+4 r+8\right)=0$ has $r=-2 \pm 2 i$ as roots. So, $x(t)=e^{-2 t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)$. IC's imply $c_{1}=0, c_{2}=1$, and thus $x(t)=e^{-2 t} \sin 2 t$
3. Given the initial value problem

$$
\frac{d y}{d x}=-x y+y^{2}, y(0)=1 .
$$

Use Euler's numerical algorithm with step size $h=0.1$ to estimate $y(0.1)$ and $y(0.2)$.
$y(0.1) \approx y(0)+(0.1) f(0,1)=1+(.1) 1=1.1=y_{1}$, Since $f\left(x_{1}, y_{1}\right)=f(.1,1.1)=-.11+1.21=$ 1.1, then $y(0.2) \approx y_{2}=y_{1}+0.1 f\left(x_{1}, y_{1}\right)=1.1+(.1) 1.1=1.21$.
4. Suppose that the population $P(t)$ (in millions) of a country satisfies the differential equation

$$
\frac{d P}{d t}=k P(200-P)
$$

with k constant. Its population in 1940 was 100 million and was then growing at a rate of 1 million per year. In which year will the population exceed 160 million?
At $t=0, P^{\prime}(0)=1=k P(0)(200-P(0))=k 10^{4}$, giving $k=10^{-4}$. Thus $\frac{d p}{P(200-P)}=10^{-4} d t$. Since $\frac{1}{P(200-P)}=(1 / 200)\left[\frac{1}{P}+\frac{1}{200-P}\right]$, we have $(1 / 200)[\ln P-\ln (200-P)]=10^{-4} t+C$. Setting $P(0)=100$, yields $C=0$. Solving for $t=50 \ln \frac{P}{200-P}$. Thus $P=160$ when $t=50 \ln 4 \approx 69.14$. Thus early in the year 2009, the population will exceed 160 million for the first time.
5. Consider the following differential equations for $u(t)$ the displacement of a spring from its relaxed length at time t.
\qquad
(a) The unforced spring satisfies the homogenous DE

$$
u^{\prime \prime}+u^{\prime}+4 u=0
$$

Find the solution for the unforced spring.
$u=e^{-t / 2}\left[c_{1} \cos (\sqrt{15} t / 2)+c_{2} \sin (\sqrt{15} t / 2)\right]$
(b) A motor is turned on and drives the spring so that u satisfies

$$
u^{\prime \prime}+u^{\prime}+4 u=\sin t
$$

Verify that $u_{p}(t)=(-1 / 10) \cos t+(3 / 10) \sin t$ is a particular solution to this forced spring system.
(c) Write down the general solution to forced spring system

$$
\begin{gathered}
u^{\prime \prime}+u^{\prime}+4 u=\sin t . \\
u=e^{-t / 2}\left[c_{1} \cos (\sqrt{15} t / 2)+c_{2} \sin (\sqrt{15} t / 2)\right]-(1 / 10) \cos t+(3 / 10) \sin t
\end{gathered}
$$

