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PREFACE

This workbook was designed to accompany the software package ODE Ar-
chitect, and that's why we call it @ompanion Each of the 13 Companion
chapters corresponds to a multimedia module in the Architect and provides
background and opportunities for you to extend the ideas contained in the
module. Each chapter ends with several problem sets, called Explorations,
related to the chapter and module topics. The Explorations are designed so
that you can write in answers and derivations, and, since they are printed on
perforated pages, they can be removed and handed-in along with printouts
of graphs produced by the Architect. There is also a notepad facility in the
Architect which, with the cut and paste features, makes it possible to write
reports.

ODE Architect

ODE Architect provides a highly interactive environment for constructing and
exploring your own mathematical models of real-world phenomena, whether
they lead to linear or nonlinear systems of ODEs. The Architect’'s multime-
dia front end guides you through experiments to build and explore your own
ODEs. The software has numerical solvers, 2- and 3-D graphics, and the
ability to build physical representations of systems such as pendulums and
spring-mass systems as well as the ability to animate them. Together with its
library of ODEs, the ODE Architect brings a wealth of opportunities to gain
insights about solutions to ODEs.

The overall guiding feature is for the software to be easy to use. Nav-
igational paths are clearly marked and simple to follow. When starting the
software, you are presented with a title screen followed by a main menu al-
lowing selection of a specific module. You may prefer to go directly to the
Architect Tool to run your own experiments. At any place in the software, you
will be able to call up the contents menus and access the material in any order.
We expect that most will work though the multimedia modules. Let’s look at
each of the three principal parts of the ODE Architect in more detail: The
Multimedia ODE Architect, The ODE Architect Tool, and the ODE Library.



Multimedia ODE Architect

C-ODEE members and colleagues have authored the multimedia modules,
each with its own theme. The modeling process is detailed, supported by
highly interactive simulations. You can explore the problem-solving process
via “what-if” scenarios and exercises. They are guided to build their own
ODEs and solve them numerically and graphically, and compare the predicted
results to empirical data when appropriate.

Each module has up to four submodules, and they range from the straight-
forward to the advanced. The animations are often funny, the voice-overs
and text informal, but the modeling and the mathematics are the real thing.
Most submodules go through a model building process and several experi-
ment screens, and then end with some questions (Things-to-Think-About, or
TTAs). These questions extend the topics of the submodule and take you to
the solver tool to produce solution curves and orbits, write a report connecting
the mathematics, the models and the pictures. When you open the Tool using
a TTA link, the pertinent equations and parameter settings will automatically
be entered into the equation quadrant of the Tool. You are then poised to think
about, and without constraint, explore the model introduced in the submodule.

ODE Architect Tool

The ODE Architect Tool is a first-rate, research-quality numerical ODE solver
and graphics package. The ODE Architect Tool employs a graphical user
interface to enter and edit equations, control solver settings and features, anc
to create and edit a wide variety of graphics. A second mode of operation, the
Expert Mode, provides access to more advanced features.

The Tool is the heart of the software, and it is a workspace where you
can:

e Construct, solve and explore ODEs
e Input data tables

e Graph and animate solution curves, phase plane graphs, 3D graphs,
Poinca¥g sections, discrete maps, direction fields, etc.

e Build, analyze, and animate physical representations of dynamical sys-
tems.

The robust Tool will solve systems of up to 10 first-order ODEs which
can be entered using a simple, natural scripting language. Auxiliary func-
tions involving the state variables can be defined. A solver/grapher feature
for discrete dynamical systems is also available from the Tool. A variety of
engineering functions such as square waves, sawtooth waves and step func
tions are included in the Tool function library. Two and three dimensional
graphics are supported, as well as time and parameter animations of solution
data. Initial conditions can be entered by clicking in a graph window or via
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ODE Library

the keyboard. Graph scales can be set automatically or manually. Numer-
ical values of solutions can be viewed in tabular form. Parameter-sensitive
analysis is made easy with a built-in parameter-sweep tool. You can do pa-
rameter and initial-value sweeps to see the effects of data changes on orbits
and solution curves. Graphs are editable and you can scale and label axes,
mark equidistant-in-time orbital points, color the graphs, change line styles,
overlay graphs of functions and solution curves for different ODEs—all with
no programming or special commands to remember.

The solvers in the ODE Architect are state-of-the-art numerical solvers
based on those developed by Dr. L.F. Shampine and Dr. I. Gladwell at South-
ern Methodist University. For a delightfully readable account on using nu-
merical ODE solvers in teaching ODEs, please refer to their paper:

Shampine, L.F., and Gladwell, I., “Teaching Numerical Methods in
ODE Courses”

in the bookDifferential Equations for the Next Millenniyradited by Michael
J. Kallaher in the MAA Notes series.

Module 1, “Modeling with the ODE Architect” is an on-line tutorial for
many of the features of the Tool. The Architect also has help facilities and the
multimedia side is self documenting.

The ODE Library has dozens of pre-programmed, editable, and interactive
ODE files covering a wide range of topics from mathematics, physics, chem-
istry, population biology, and epidemiology. There are also many ODEs to

illustrate points such as data compression, ODEs with singular coefficients,
bifurcations, limit cycles, and so on. Each Library file has explanatory text

along with the equations and includes an illustrative graph or graphs. The Li-
brary files are organized into folders by topic and they have descriptive titles
to facilitate browsing. These files also provide a marvelous way to learn how
to use the tool.
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Overview

INFORMATION
ABOUT MODULES/CHAPTERS

Modules/Chapters 1-3are all introductory modules for first order ODEs
and simple systems of ODEs. Any of these modules/chapters can be
used at the beginning of an ODE course, or at appropriate places in
elementary calculus courses.

Modules/Chapters 4—9involve higher order ODEs and systems and their ap-
plications. Once students understand how to deal with two-dimensional
systems graphically, any of these modules/chapters is easily accessible.

Modules/Chapters 10—12apply two-dimensional systems to models that il-
lustrate more advanced techniques and theory; the multimedia approach
makes them nevertheless quite accessible. The modules are intended to
enable students to get much further with the technical aspects explained
in the chapters than would be otherwise possible.

Module/Chapter 13 treats discrete dynamical systems in an introductory fash-
ion that could be used in a course in ODEs, calculus, or even a non-
calculus course.

A Multimedia appendix on numerical methods gives insight into the ways
in which numerical solutions are constructed.

Description/Prerequisites for Individual Modules/Chapters

We list below for each Module/Chapter its prerequisites and some comments
on its level and goals. In general, each module progresses from easier to
harder submodules, but the first section of nearly every module is at an intro-
ductory level.

The modules can be accessed in different orders. It is not expected that
they will be assigned in numerical order. Consequently, we have tried to ex-
plain each concept wherever it appears, or to indicate where an explanation
is provided. For example, Newton’s second ld&\= ma, is described every
time it is invoked.

There is far more material in ODE Architect than could possibly fit into a
single course.



Module/Chapter 1: Modeling with the ODE Architect
Assumed concepts: Precalculus; derivative as a rate of change

This module is unlike all the others in that it is not divided into submod-
ules, and it provides a tutorial for learning how to navigate ODE Architect. It
carries that tutorial process along in tandem with an introduction to modeling
that assumes very little background.

Module/Chapter 2: Introduction to ODEs
Assumed concepts: Derivatives; slopes; slope fields

The module begins with some simple first-order ODEs and their solutions
and continues with slope fields (and a slope filed game).

The Juggler and the Sky Diver submodules use second-order differential
equations, but both the chapter and the module explain the transformation to
systems of two first-order differential equations.

Module/Chapter 3: Some Cool ODEs

Assumed concepts: Basic concepts of first-order ODEs, solutions, and
solution curves

Newton’s law of cooling, and solving the resulting ODEs by separation
of variables or as linear equations with integrating factors, are presented thor-
oughly enough that there need be no prerequisites.

The submodule for Cooling a House extends Newton'’s law of cooling to
real world cases that are easily handled by ODE Architect (and not so easily
by traditional methods). This section makes the point that rate equations and
numerical solutions are often a much smarter way to go than to trudge toward
a solution formula.

Module/Chapter 4: Second-Order Linear Equations
Assumed concepts: Euler's formula for complex exponentials

The module and chapter treat only constant coefficient ODEs. The chap-
ter begins by demonstrating how to treat a second-order ODE as a system
of first-order ODEs which can be entered in ODE Architect. Both the first
submodule and the chapter explain from scratch all the traditional details of
an oscillating system such as amplitude, period, frequency, damping, forcing,
and beats.

The Seismograph submodule is a real world application. The derivation
of the equation of motion is not simple, but the multimedia module gives in-
sight into the workings of a seismograph, and it is not necessary to understand
the details of the derivation to use and explore the modeling ODE.



Xi

Module/Chapter 5: Models of Motion
Assumed concepts: Newton’s second law of motion

This module’s collection of models of motion in one and two dimensions
is supported by a chapter that gives background on vectors, forces, Newton'’s
laws, and the details of the specific submodules; so it stands on its own without
further prerequisites.

Module/Chapter 6: First-Order Linear Systems
Assumed concepts: Basic matrix notation and operations (multiplication,
determinants); complex numbers; Euler’s formula

This unit introduces all of the basic notions, both algebraic (emphasized
in the chapter) and geometric (emphasized in the module), for linear systems.
The central roles of eigenvalues and eigenvectors are explained. The Tool can
be used to calculate eigenvalues and eigenvectors.

The Explorations bring in coupled tank problems (Chapter 8 introduces
compartment models) and small motions of a double pendulum (which are
extended in Chapter 7).

Module/Chapter 7: Nonlinear Systems
Assumed concepts: Equilibrium points; phase plane and component plots;
matrices; eigenvalues and eigenvectors

The goal is to use graphical solutions to make handling nonlinear sys-
tems as easy (almost) as linear systems. Linearization of a nonlinear ODE
is introduced as a basic concept, and the chapter goes on to elaborate per-
turbations and bifurcations. The Tool can be used to find equilibrium points,
calculate the Jacobian matrix and its eigenvalues/eigenvectors at each equi-
librium point. The predator-prey and saxophone reed models are introduced
and explained in the module while the spinning bodies and double pendulum
models are treated in the chapter and also in the Library with an animated
model linked to the ODE.

Module/Chapter 8: Compartment Models
Assumed concepts: Systems of ODEs

Both the module and the chapter use 1D, 2D, 3D, and 4D applications
(in sequence) to illustrate principles of the Balance Law and interpretations
of solutions. The final submodule introduces Hopf bifurcations and the inter-
esting behavior of chemical reactions in an autocatalator. Three of the models
are linear, the last is nonlinear.

Module/Chapter 9: Population Models
Assumed concepts: Systems of ODEs

The module and chapter introduce simple 1D, 2D, and 3D nonlinear mod-
els, and give a discussion of the biology behind the models.
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Module/Chapter 10: The Pendulum and Its Friends

Assumed concepts: Systems of ODEs; the first submodule of Module 4;
the arctangent function; parametric curves on a surface

The pendulum submodule explores all the traditional aspects of a pendu-
lum, using integrals of motion. Child on a Swing and Geodesics on a Torus
give new extensions of pendulum analysis; supporting detail is given in the
chapter. The approach to modeling is a little different in this chapter—for ex-
ample, how to invent functions that behave as needed (Child on a Swing), or
how to exploit part of an ODE that looks familiar (Geodesics on a Torus).

Module/Chapter 11: Applications of Series Solutions

Assumed concepts: Systems of ODES; acquaintance with infinite series
and convergence; the first submodule of Module 4

The module introduces the techniques and limitations of series solutions
of second-order linear ODEs. The Robot and Egg provides motivation for the
subject and Aging Springs illustrates Bessel functions. The chapter contains
information about the mathematics of series solutions.

Module/Chapter 12: Chaos and Control

Assumed concepts: The pendulum ODEs of Module 10; systems of ODEs;
experience with Poincarsections and/or discrete dynamical systems (Chap-
ter 13) is helpful

The three submodules of this unit tell a story, and in the process illus-
trate a theorem from current research. This module uses sensitivity to initial
conditions and the Poincarsection to assist with the analysis. Sinks, sad-
dles, basins, and stability are described. Finally, the elusive boundaries of the
Tangled Basin provide a mechanism for control of the chaotically wandering
pendulum. The module ends in a fascinating control game that is both fun to
play and illuminates the theorem mentioned above.

Module/Chapter 13: Discrete Dynamical Systems

Assumed concepts: Acquaintance with complex numbers and the ideas of
equilibrium and stability are helpful

The module provides a gentle introduction to an increasingly important
subject. The chapter fills in the technical and mathematical background.

This module could be used successfully in a liberal arts course for stu-
dents with no calculus.
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Level-of-Difficulty of Modules

The chart below is a handy reference for the levels of the submodules.

Elementary Intermediate Advanced
1
2.1,2.2 2.3,2.4
3.1 3.3 3.2
4.1 4.2
5.1 5.2 5.3
6.1 6.2 6.3
7.1 7.2 7.3
8.1 8.2 8.3 84
9.1 9.2 9.3
10.1 10.2 10.3
11.1 11.2
12.1 12.2,12.3
13.1 13.2 13.3

In constructing this chart we have used the following criteria:

Elementary: Straightforward, self-contained, can be used as a unit in any
introductory calculus or ODE course.

Intermediate: Builds on some proir experience, including earlier submodules
and chapters.

Advanced: More challenging models or mathematics, especially suitable for
term or group projects.
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Modeling with the
ODE Architect
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Pacific sardine population and harvest.

Overview In the two decades from 1932 to 1951, the Pacific sardine fishery completely
collapsed. In this chapter you will learn to use the ODE Architect to construct
a mathematical model which describes this event rather well. This will have two
purposes: it will familiarize you with the menus and features of the ODE Architect,
and it will acquaint you with the principles of mathematical modeling.

First we’ll construct a model for the Pacific sardine population during the
years 1930-1950 as if it were unharvested. Then we will focus on the harvesting
that actually took place and see how it contributed greatly to the destruction of
the sardine population.

Key words Modeling; Pacific sardine; population model; initial conditions; exponential growth;
carrying capacity; logistic equation; harvesting

See also Chapter 9 for more on population models.



Chapter 1

[ Building a Model of the Pacific Sardine Population

D In this chapter we will
build a model for the sardine
fishery in California and also
introduce features of the ODE
Architect Tool for solving
differential equations. Consult
the User’s Guidefor a full
description of all features of the
tool.

D Problem statement.

Step 1: State the problem and its context

The Pacific sardineSardinops sagax caerulghas historically experienced
long-range cycles of abundance and depletion off the West Coast of Califor-
nia. It was during one of the abundant periods, 1920 through 1951, that a huge
sardine fishing and canning industry developed. The total catch for the Cal-
ifornia coastline reached a peak of 726,124 tons during the 1936—-37 season
(June through the following May). The Pacific sardine population then began
a serious decline during the 1940s until, as one estimate has it, by 1959 the
sardine biomass was 5% (0.2 million tons) of the 1934 level (4 million tons).
(The biomasds the amount of a particular organism in its habitat.) There is
general agreement that heavy harvesting played a role in the decimation of the
Pacific sardine during that period. The fishing industry had a serious decline
after the 1950-51 season: increasing numbers of fishermen went bankrupt or
moved to other fisheries. Undoubtedly the canneries were also affected.

After 50 years of fishing for the Pacific sardine, a moratorium was im-
posed by the California legislature in 1967. The Pacific sardine seems to be
making a comeback as of the mid-1980s, though the numbers are not yet nea
the abundant levels of the 1930s.

Here are the goals of your model:

1. Determine the extent to which the precipitous decline of the Pacific sar-
dine population was due to over-harvesting from 1941 to 1951.

2. Ascertain an optimal harvest rate that would stabilize and sustain the
sardine population during that time period.

Step 2: Identify and assign variables

Assigning the variables in a mathematical model is a a skill that requires some
practice. Doing some background reading and studying the context of the
problem and the problem statement helps to clarify which are the most impor-
tant features of the system you wish to model.

It turns out that there tend to be long-range cycles of Pacific sardine abun-
dance and scarcity. These cycles are not yet completely understood, but it is
certain that factors such as ocean temperature, nutrient upwelling from deep
waters, currents that aid fish migration, predator populations of larger fish and
sea lions, and, of course, fishing, play a vital role in the cycles. In this model
we will focus on a period when the harvesting of the sardine was very heavy.
Due to the large magnitude of the harvesting, its effect is dominant for the pe-
riod of time we will model, 1941-1951, so we will neglect the other factors.
That the other factors still operate on the population is evidenced by the dif-
ficulty in getting the model to match the data perfectly. Nevertheless, you'll
see how modeling, while not always explaining every aspect, provides insight
into the dynamics of an otherwise very complex biological relationship.
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|:| Sardine biomass is a state
variable, the other quantities are
parameters.

|:| Graphical representation
of the problem.

Given the information we have at this point we need the following vari-
ables and parameters in our model:

1. Sardine biomass (in units of million tons)

2. Growth rate for the Pacific sardine (in units of million tons/year)
3. Maximum biomass, ararrying capacity(in units of million tons)
4. Sardine harvesting (in units of million tons/year)

Note that we opted to define sardine biomass in million tons, rather than num-
bers of fish, to be consistent with the data and estimates used.

It's good practice to introduce as few parameters as necessary into a
model at first. Additional parameters can be added if they are needed to im-
prove the accuracy of the model. The model may be refined until the desired
level of accuracy is achieved.

With the variables and parameters identified, the next step is to construct
an equation for the rate of change of the state variable in terms of the state
variable itself, the model's parameters, and possibly also time. This equation
is known as a differential equation (abbreviated ODE). When an ODE is en-
tered into ODE Architect along with an initial value of the state variable, the
Architect Tool displays a graphical representation of the solution.

Figure 1.1 represents the estimated Pacific sardine biomass and harvest
during the period 1941-1951. Note again the use of sardine biomass in million
tons, rather than numbers of fish.

Sardine Biomass (upper), Harvest (lower)

1.2 H

0 T T
1941 1943

Millions of tons

T T
1945 1947 1949 1951
t

Figure 1.1: Sardine biomass and harvest.
Our first task is to use ODE Architect to build a mathematical model

to simulate the growth and decline of the Pacific sardine biomass without
harvesting. Then we can explore the impact of harvesting on that biomass.
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Chapter 1

D Click on the spinning orb
to go directly to the Architect
Tool.

Place the ODE Architect CD-ROM in your computer and start the ODE
Architect Tool. Four quadrants will be displayed on the screen (see Fig-
ure 1.2). The upper left quadrant is the equation quadrant; it should be empty
now. The two right-hand quadrants should be empty. These are plot quad-
rants that will display 2- or 3-dimensional plots when you solve differential
equations. The lower left quadrant currently shows the initial conditiks (
display. Notice that it is selectable using the four talas, Sweep Solver,
Equilibrium ) on the lower edge of the quadrant. For now leiveselected.

4 ODE Architect Tool [ (=] x]
File Edit Search Equations Solutions Tools Help
B0 «3F ¢ B Be 5 &7
[
1] X
SEHIEI ‘ Su\ve Swssp Exlend | ():',5
Initial Canditior: Integration
Interval
# Points
E\eal;}f'

4 S weep S okeer {E quilibrium

| Eriter an equation set and press the enter button. | | 1:1

Figure 1.2: ODE Architect tool screen

Step 3: State the relationships that govern the variables

We begin by simulating the unchecked growth (no harvesting) of the Pacific
sardine population, which we will designate as the state varsstiine Ba-

sic biology suggests that it is reasonable to assume that the rate of biomass
growth (i.e., the derivativd(sardine /dt) at a given time is proportionalto

the quantity of sardines (the size of the biomass) present at that.time

Step 4: Translate the laws into equations
Sincesardiné is a common notation for the derivative (rate of change) of
sardine we can write

sardiné = r x sardine

wherer is a proportionality factor that we will refer to as tlggowth rate
factor.
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|:| Entering differential
equations.

|:| Setting initial conditions.

|:| Setting the time interval.

|:| Starting the solution.

Fishery and biomass data collected over the period 1932-1958 indicate
that the Pacific sardine population has had a volatile history. The Pacific sar-
dine biomass, if not manipulated or constrained, can grow at a rate of between
10% and 40% per year. We will assume a moderate position and set the growth
rate factor at = 0.20. A modeler often has to make assumptions and guess
parameter values to get a model started; you can refine the assumptions later.

Step 5: Solve the resulting differential equations
Point and click the cursor in the equation quadrant and type in

sardiné = r x sardine 1)

using an apostrophe for the prime, and an asterisk for multiplicatioiRdhit
turn (or Enter) and assign the value 0.20 to the parametgy typing in

r=0.20

Now click the cursor on the box marké&thter just below the equation quad-
rant. Notice that this causes scales to appear in the two plot quadrants.

Now go to the lower left quadrant to set the initial conditions. Double
click in the appropriate box to select a variable; then type in the new value.
Sett (time) to start at 1930 and seardine to be 1 (unit of million tons).
We’'ll go back later and put in a more realistic estimate gardine In the
Integration panel, set the solve time to 20 by inserting the number 20 in the
Interval box. Leave the default value of 100 in thd>oints box.

Click the Solveicon and notice that the right arrow is automatically se-
lected. Your screen will look something like this (Figure 1.3):
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Figure 1.3: Exponentially growing sardine population.
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D Unbounded growth.

D Introduce a carrying
capacity.

Step 6: Interpret and test the solutions in context

There is now a classical exponential growth curve in the upper right quadrant.
This implies that the sardine biomass grows without bound, which can't be
true as there is not enough room on the planet! The exponential growth must
be limited by factors like available food supplies, disease, predators, and so
on; therefore we have to modify our model to reflect this fact. We learned
earlier that the sardine biomass has been as large as 4 million tons, but we
don’t truly know the maximum sustainable biomasarfying capacity, so

to start let's assume a carrying capacity of 6 million tons. We can refine this
guess later if we have trouble fitting the model to actual data. As we said
before, it's not uncommon to have to make informed guesses for values that
are not known or available. Then the values can perhaps be deduced by “fine
tuning” (refining) the model in subsequent iterations to conform to reality.

Step 7: Refine the model to predict the empirical data
The following differential equation is sometimes used to exhibit maximum
carrying capacity behavior in a population:

sardiné = r (capacity— sardine

This equation says that the growth rate at any time is proportional to the “room
to grow” factorcapacity— sardine Now click the cursor in the equations
region. Using our assumed growth rate constantf0.20 per year and a
carrying capacity of 6 million tons, we modify the sardine growth to be

sardiné = r * (6 — sardine 2

Before entering the new sardine ODE, clear the graphics screens by clicking
on Clear at the lower left and choosin@lear All Runs. A “confirmation”
window will pop up; click onYes. Now click in the equation region, make the
corrections to your equation, and then click on the box maEkater. Click

on theSolveicon and notice in the plot window that the graph of the sardine
biomass climbs and levels out at the assumed carrying capacity of 6 million
tons.

O “Check” your understanding by comparing this curve with the earlier
one and notice some significant differences: (1.) The first curve was concave
up; this one is concave down. Why is that significant? (2.) The first curve
grew without bound and had no asymptotes; the second curve has a horizonta
asymptote. Explain why.

Examine the two graphs carefully at early valueg,afay the first five
years. Recall that the slope of a line tangent to the solution curve is the growth
rate of the biomass at that time. How do the two curves differ in this regard?
When is the rate of change of the biomass the greatest? Is it realistic for a
biomass to exhibit its greatest rate of increase when the population is small-
est? The answer to these questions is not as simple as you might think. For
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|:| Exceed carrying capacity.

|:| To set scaling of axes.

many biological populations, rate of change is proportional to the size of the
population. The solution of ODE (1) exhibits this proportionality but it is un-
constrained and so it’s not useful over its whole domain. The solution curve of
ODE (2) doesn't exhibit the proportional growth property. Which of the two
is most appropriate for the Pacific sardine? We'll come back to that question
after a little exploration with ODE (2).

Now let’s see if ODE (2) will allow us to exceed the carrying capacity for
any length of time. Change the initial biomass to 12 million tons of sardines
in the IC window. Click on theéSolveicon. Notice that the vertical scale in
the graph changes to accommodate the revised values and that both the old
(lower) and the new (upper) curves are displayed on the graph. Observe what
happened to the “overstocked” sardine population. How does this compare to
what happened when the initial sardine biomass was 1 million tons? If you
examine the two plots closely, you'll see that both plots stabilize at a level of
about 6 million tons (see Figure 1.4).
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| Equation set successfully solved. | |

Figure 1.4: Sardine populations approach carrying capacity.

Sometimes it's advantageous to change the scales of the axes to make
graphs easier to read and interpolate, so we'd like to show you how to reset
the vertical and horizontal scales. (The default setting for scales for ODE
Architect isAuto Scale) Select the upper right graph by placing the cursor
arrow on the graph and clicking tmigght-mostmouse button (or click on the
icon at the upper right corner of the graph). You will see various plot window
options presented. Selegtalesrom the resulting dropdown menu using the
left-mostmouse button. Click oAuto Scaleto toggle it off. (The checkin the
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D You must click theOK
button to enter changes.

D Sweeping a variable.

D If the # Pointsis set ton,
you'll get n overlayed graphs.

box will disappear.) To change other values, double click in the box to select
the value and just type to make a change. Orki{&calemenu seMinimum

= 1930; Maximum = 1950; Number of Ticks = 10; andLabel every = 2.
(Adjust the number of ticks by clicking on the down arrow and selecting, or
by double clicking the box and typing in the new value.) Make &imear is
selected (notog). Now select ther-Scalemenu (at the top): click thAuto
Scaleto toggle it off; setMinimum = 0; Maximum = 12; Number of Ticks

=10; and_abel every= 2, and check that thHeinear button is selected. Your
screen should have a window that looks like Figure 1.5:

#-Scale | Y-5cale
Seale —Eormat
Minimum IU | | General j|

b axinmum Digits E
I~ Auto Scale Precizion E

Tick: ~Type

Murmber of E & Linear Scales
Label everyE ~ Log Scales

|s 0K ||. Eancell

Figure 1.5: Plot scales window.

Click on OK to cause the graph to be rescaled. (In this particular case, it
turns out that the scale did not change from the automatically selected value.)

Now click on theClear box in thelntegration panel and choosElear
All Runs. What has changed? Next click on thelveicon again. Notice that
you got only the most recent curve (carrying capacity exceeded); you cleared
the previous solution.

We can extend the ease of making comparisons by sweeping through sev-
eral possible initial values f@ardineand displaying them all on one graph.
Click on theClear box and choos€lear All Runs. Now notice theSweep
tab beneath thimitial Conditions panel; click onSweep Click onSinglefor
type of sweep. We will chooseweep 1to be a sweep (multi-plot) of various
initial values ofsardine In the Sweep 1box, click on the down arrow and
selectsardine. SetStart = 1; Stop = 7; and# Points= 3. Now click on the
Sweepbox next to theSolveicon (hotthe Sweeptab). (Figure 1.6).

Notice that ODE Architect makes several runs. Notice also that the initial
value forsardinelocated in the IC window was ignored and the values we
entered in the sweep conditions were used instead.

To better see these results, let’s rescale the vertical ®@&éle to Min-
imum =1 andMaximum = 7. Look back at page 7 if you do not recall how to
do this. Figure 1.7 shows that multiple runs are easily comparable in this for-
mat. Which initial value fossardinecreated the most stable or flattest curve?
Does the population always stabilize around the same biomass?
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Figure 1.6: Setting up the sweep for sardine.
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Figure 1.7: Sweeping and solving gives plots with initial sardine tonnages of
1, 4, 7 (in millions).
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Do the resulting curves accurately represent the growth you'd expect over
the whole range of values fo? Growth is usually proportional to population
size when well below the carrying capacity. However, when you look at your
graph notice that for small populations of sardines, the growth rate is rather
steep. As the sardine population approaches the carrying capacity the biomas:
should level off, which the preceding curves do reflect.

Now we'll examine the properties of the model we created in ODE (2).
The growth rate is proportional t@apacity— sardine and so for small sar-
dine biomass, the biomass grows at a nearly constant rate. Near the carrying
capacity, the factofcapacity— sardine causes a leveling off (see Figure 1.7):
the factor forces growth to be proportional to the distance from capacity.

[0 The Logistic Equation

D Changing the equation.

D Try various initial values.
As before, use &ingle sweep.

Combining the elements of the proportional growth model given by ODE (1)
and the restricted growth model given by ODE (2) leads to what is called
thelogistic equation for growtlior theVerhulst equatiopafter the nineteenth
century Belgian mathematician and biologist P. F. Verhulst):

sardiné =r sardinees_%rdlne 3)

Notice that for values o$ardinevery near zero, the factorx sardinedomi-

nates the computation, causing the behavior to approximate exponential growtl

This is because the factgé — sardine /6 has a value very near 1. For val-

ues ofsardinenear 6 (the carrying capacity), the fact@ — sardine /6 is

near zero, and so growth slows to approach zero. Therefore we can expect

exponential growth for small biomass with growth tapering off as the biomass

approaches carrying capacity. Let’s see if this refinement improves the model.
Click on thelC tab to clear the graph and enter a new equation. After

clicking on theClear box, and choosin@lear All Runs, click in the equa-

tions quadrant and modify the growth ODE to read:

sardiné = r * sardinex (6 — sardine /6 4)

Don't forget to click the box labeleBnter. Reset the initial sardine biomass
to 1. Finally, click on theSolveicon. Your screen should look something like
Figure 1.8.

Notice that the graph now displays a mathematical representation more
like what we expect of the sardine biomass over the long term. It is an elon-
gatedS-shaped curve with slow growth for small biomass, maximum growth
near the midrange, and slow growth near the carrying capacity.

Use the sweep feature now to see how the logistic growth curve responds
for various initial conditions for the variabkardine Sweep 1sardine Start
= 1; Stop = 7; # points = 4. Click on Sweep Figure 1.9 shows the four
solution curves.
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O Does the model respond to your initial conditions in a reasonable man-
ner? Do you think that this is a good population model to use for modeling
the biomass of the Pacific sardine?

Let's now use the model given in equation (3) to explore the harvesting that
took place in the years 1941-1951.

[0 Introducing Harvesting via Landing Data

D Defining the harvest.

D Using the2D custom tab.

In Figure 1.1 you saw a graph of the Pacific sardine harvest and the resulting
biomass decline during the years 1941-51. We have not yet taken into account
this harvest (otanding) data in our model; so our model does not yet reflect
the collapse of the sardine fishery that occurred. We’ll now incorporate the
landing data into our model in the form of a lookup table.

The tutorial in Module 1 provides you with landing data for the Pacific
sardine over the time period 1941-1951 in the form of a table with 11 rows
and 2 columns (tutorial steps 13 and 14). This data can be enterdocdcip
tablenamed HTABLE by following these directions (which also appear in the
tutorial):

e Start by clicking on th&quations entry on the menu bar and choosing
Lookup Tablesto display the lookup table manager window.

e Double click on<Create New Table- to display the new table win-
dow. Enter the name HTABLE, and specify 11 rows and 2 columns in
the appropriate boxes. Then click th button. An array of empty
cells will appear with 11 rows and 2 columns.

e Enter the data (provided in the tutorial window) in the array by clicking
on cell [1 1] to start. When all of the data is entered, click D&
button.

e Close the lookup table manager window.

Now you have a lookup table called HTABLE.
Go to the equation quadrant and, on a new line, add the following

harvest= lookupvatHTABLE, 1, t, 2)

Be sure to click thé&nter box. The value returned by lookupval is the data in
column 2 of HTABLE corresponding to thtevalue of the data in column 1.
(This value is computed by linear interpolation.)

Let’'s now look at this harvest data. Sinbarvestis not an ODE state
variable, the Architect does not automatically generate a plot tab; we will
have to make it by hand. Click on ti2® tab at the lower right to select what
we want to plot on each of the two axes. Place the cursor on the lower right
plot quadrant, and after clicking thight-mostmouse button, sele&idit with
theleft-mostmouse button. Leave thé Axis variable set td. For theY-Axis
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|:| Including harvestin the
sardine model.

click on the down arrow aftet. <None> and selecharvest Now click on
Titles at the top of the edit window and type in tl&aph Title box: Harvest.
In the X-axis Title box type: Year; and in th&-axis Title box: Harvest.
See Figure 1.10. ClicK. Using theright-mostmouse button again on the
lower graph, seleckcales Set theX-Scaleas follows: deselecuto Scale
setMinimum = 1940; Maximum = 1955; Number of Ticks = 3; Label
every = 2. Select ther-Scale deselecuto Scale and set:Minimum = 0;
Maximum = 1; Number of Ticks = 5; andLabel every=1. Click OK.
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Figure 1.10: Plots and Titles panels for 2D tab.

Click on theSolveicon. Notice that a graphical representation of the
Pacific sardine landings appears in the lower graph but the upper graph has
not been affected. That's because we have not included harvest (landings)
in the sardine model yet. (Note: the two graphs have different vertical axis
scales.)

After clicking onClear and choosinglear All Runs, go to the equation
quadrant and modify theardineODE as follows:

sardiné = r * sardinex (6 — sardine /6 — harvest 5)

You may have to scroll the equations quadrant (on some computers) in order
to see the whole equation. (You can also move the dividing line between
the right and left quadrants, at the slight expense of the graphing resolution.)
Click the Enter box. Before we run the model, we must change the initial
conditions to reflect the reality of the Pacific sardine population at that time.
In the literature, the most reliable data for the Pacific sardine biomass starts
in 1941. Thus set thiC for t to 1941 and théC for sardineto 2.71. Reset
Interval to 10. Now click theSolveicon and note the results. For best viewing

of the top right graph window choose teScale deselectAuto Scale set
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D Fishery collapse.

D Analysis.
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Figure 1.11: Model sardine biomass (upper), actual sardine biomass (lower).

Minimum = 1940;Maximum = 1955;Number of Ticks = 3; Label every
= 2. Rescale th¥-Scaleaxis to: Minimum = 0; Maximum = 3; Number of
Ticks = 3; Label every= 1. See Figure 1.11 for the graphs.

How do these model results compare with the expected behavior at the
beginning of the chapter? While the overall behavior is captured in general
terms by the model, it is unusual to have a model match the estimated data
exactly.

O What are your thoughts about the model as it relates to historical behav-
ior? Explain any discrepancies.

Step 8: Interpret the implications of the model

It is now clear that while over-exploitation of the sardine landings was not the
sole factor, it played a very large role in the collapse of the California fishery
in the early 1950s. Since we now have a functioning model of that ten-year
period in time, you have the amazing power to use your computer to revise
history and attempt to save the fishing industry. What limit on the landings
would have allowed a sizable sardine harvésit not a collapse of the fishery?

IHistorical note: A limit to the total catch of sardines at between 200,000 and 300,000 tons was
recommended as early as 1929, and repeatedly over the next several years.
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|:| You may find a computer
algebra system or atable of
integrals helpful!
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Figure 3.2: Eggs at initial temperatures of 180, 150, 120, and 90°F cool in a
room whose temperature oscillates sinusoidally about 70°F for k= 0.03 min—1,
Do the initial temperatures matter in the long term?

Finally, letting T(0) = To and integrating from O to t, we get the solution

t
T(t) =e ™™ ( / KTout(S)€X5ds + T0> (7
0

It may be possible to evaluate theintegral (7) analytically, but it is easier
to use ODE Architect right from the start. See Figure 3.2 for egg temperatures
in aroom whose temperature oscill ates between hot and cold.

O Show that if Toy isaconstant, then formula (7) reducesto formula(3).

O Useequation (7) tofind aformulafor T(t) if

2w (t+3)
24

Use atable of integralsto carry out the integration.

[0 Air Conditioning a Room

Now let’s build a model that describes a room cooled by an air conditioner.
Without air conditioning, we can model the change in temperature using
ODE (1). When the air conditioner is running, its coils remove heat energy at
arate proportional to the difference between T;, the room temperature, and the
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D Newton’s law of cooling

D Timet is measured in

D The modeling here is more
advanced than you have seen up
to this point. You may want to
just use the equations and skim

D The Step function is one of
the engineering functions. You
can find them by going to ODE
Architect and clicking on Help,
Topic Search, and Engineering

temperature T, of the coils. So, using Newton’'s law of cooling for the tem-
perature change due to both the air outside the room and the air conditioner
coils, our model ODE is

dT,
d_'[r = k(Tout - Tr) + kac(Tac - Tr)

where Toy: isthe temperature of the outside air and k and k. are the appropri-
ate cooling coefficients. If the unit isturned off, then kyc = 0 and this equation
reducesto ODE (1).

Let's assumethat the initial temperature of the room is 60°F and the out-
side temperature is a constant 100°F. The air conditioner operates with a coil
temperature of 40°F, switches on when the room reaches 80°F, and switches
off at 70°F. Initially, the unit is off and the change in the room temperatureis
modeled by

dT;

i 0.03(100—T;), T:(0)=160 (8)
where we have taken the cooling coefficient k = 0.03 min—1. As we expect,
the temperature in the room will rise as time passes. At some time tq, the
room’s temperature will reach 80°F and the air conditioner will switch on. If
Kac = 0.1 min~2, then for t > to, the temperature is modeled by the VP

dT,

d—tf =0.03(100—T;) +0.1(40—T,), T, (ton) = 80 (9)

whichisvalid until the room coolsto 70°F at sometimetyss. Thenfor t > tofs
the room temperature satisfies the IVP (8) but with the new initial condition
T (toff ) = 70. Each time the unit turns on or off the ODE alternates between
thetwo formsgivenin (8) and (9).

Solving the problem by hand in the manner just described is very tedious.
However, we can use ODE Architect to change the ODE automatically and
without having to find ton and to;s. The key is to define kyc to be a function
of temperature by using a step function; here's how we do it. In the equation
quadrant of ODE Architect write the ODE as

Tr’ = 0.03% (100 — Tr) + kac (40 — Tr)
Now define k,¢ as follows:
kac = 0.1 Step(Tr, Tc)
where
Tc=75+5%xB
Here T, is the control temperature and
B=2xStep(Tr’,0)—1

Note that B = +1 when T/ > 0 (the room is warming) and B = —1 when
T/ < 0 (theroomis cooling). This causes T to change from 80°F to 70°F (or
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Figure 3.3: Air conditioning keeps the room temperature in the comfort zone,
70°F < T, < 80°F.

the reverse) depending on whether the room is warming or cooling. Finally,
kac is zero (the air conditioner is off) when T, < T, and ke = 0.1 (the air
conditionerison) when T, > T..

The overall effect isthat the air conditioner switches on only if the room
temperature is above 80°F, then it runs until the room is cooled to 70°F, and
then it switches off. The room temperature rises again to 80°F, and the pro-
cess repeats. The temperature-vs.-time plot is shown in Figure 3.3. The ac-
companying screen image shows that we have set the maximum time step to
0.1 (under the Solver tab). If the interna time steps are not kept small, the
Architect will not correctly notice when the step functions turn on and off.

[0 The Case of the Melting Showman

It is difficult to model the melting of a snowman because of its complicated
geometry: alarge roundish ball of snow with another smaller mound on top.
So let's simplify the model by treating the snowman as a single spherical ball
of snow. The rate at which the snowman melts is proportional to the rate at
which it gainsthermal energy from the surrounding air, and it is given by
dv _ | dE
dt dt
where V isthe ball’svolume, E isthermal energy, and h is apositive constant.

(10)
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D Remember that the

snowman’s temperature is always

32°F.

D Thisis the snowman's law

of melting.

References

Our snowman will gain thermal energy only at its surface, where it is
exposed to the warm air. So, it is reasonable to assume that the energy gain
is proportional to both the surface area of the snowman and the temperature
difference between the air and the snow:

dE
gt = “ANV) (Tou — 32) (11)

where « is a positive constant, and A(V) is the surface area of a sphere of
volume V.
If we combine equations (10) and (11) and take k = «h, we abtain

dv

9 —KAV) (Tout — 32) 12)
O The volume of a sphere of radiusr isV = gnr3 and its surface area is
A = 472, Eliminater between these two formulas to express A as afunction
of V. (You will need this soon.)

Note that ODE (12) is separable even when the outside temperature Toy
is a function of time. Separating the variables and integrating we find the
formula

1

which defines V implicitly as a function of t. We can find the constant of
integration C from the volume of the snowman at a specific time. However,
expressionsfor the integralsin formula (13) may be hard to find. Once again
ODE Architect comes to the rescue and solves ODE (12) numerically, given
formulasfor A(V), Tout (1), and theinitial volume.

O If k= 0.1451ft/(hr °F), the original volume of the snowmanis 10 ft3, and
the outside temperature is 40°F, how many hours does it take the snowman’s
volume to shrink to 5 ft3?

Nagle, R.K., and S&ff, E.B., Fundamentals of Differential Equations, 3rd ed.
(1993: Addison-Wesley)

Farlow, S.J., An Introduction to Differential Equationsand their Applications,
(1994 McGraw-Hill)
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Exploration 3.1. Cooling Bodies

1. Too hot to handle.
When eating an egg, you don’'t want it to betoo hot! If an egg with aninitia
temperature of 15°C isboiled and reaches 95°C after 5 minutes, how long will
you have to wait until it coolsto 70°C?

2. Adead body, methinks.
In forensic science, it is important to be able to estimate the time of death if
the circumstances are suspicious. Assume that a corpse cools according to
Newton’slaw of cooling. Suppose the victim has atemperature of 72°F when
it is found in a 40°F walk-in refrigerator. However, it has cooled to 66.8°F

two hours later when the forensic pathologist arrives. Estimate the time of
death.!

1From “Estimating the Time of Death” by T.K. Marshall and F.E. Hoare, Journal of Forensic
Sciences, Jan. 1962.
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In hot water.

Heat a pan of water to 120°F and measure its temperature at five-minute in-
tervals as it cools. Plot a graph of temperature vs. time. For various values
of the constant k in Newton's law of cooling, use ODE Architect to solve the
rate equation for the water temperature. What value of k gives you a graph
that most closely fits your experimental data?

More hot water.
In Problem 3 you may have found it difficult to find a suitable value of k. Here
isthe preferred way to determine k. The solution to ODE (1) is

T() = Tou+ (To — Tow)e ™™

where in this context To is the room temperature. We can measure T and
the initial temperature, To. Rearranging and taking the natural logarithm of
both sides gives

In |T(t) - Tout| = In|T0 - Tout| — kt

Using the data of Problem 3, plot In|T(t) — Tow| against t. What would you
expect the graph to look like? Use your graph to estimate k, then use ODE
Architect to check your results.
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Exploration 3.2. Keeping Your Cool

1. Onagain, off again.
When a room is cooled by an air conditioner, the unit switches on and off

periodically, causing the temperature in the room to oscillate. How does the
period of oscillation depend on the following factors?

e The upper and lower settings of the control temperature
e The outside temperature
e The coil temperature, T;c
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Keeping your cool for less.
The cost of operating an air conditioner depends on how much it runs. Which
is the most economical way of cooling aroom over a given time period?

e Set asmall difference between the control temperatures, so that the tem-
peratureis always close to the average.

e Allow alarge difference between the control temperatures so that the
unit switches on and off less frequently.

Make surethe average of the control temperaturesisthe samein all your tests.
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Exploration 3.3. The Return of the Melting Showman

1. The half-life of a snowman.

Use ODE Architect to plot volume vs. time for several different initial snow-
man volumes between 5 and 25 ft3, assuming that k = 0.1451 ft/(hr °F) and
Tout = 40°F. For each initial volume Use the Explore feature of ODE Archi-
tect to find the time it takes the snowman to melt to half of itsoriginal sizeand
make aplot of this“half-life’ vs. initial volume. Any conclusions? [To access
the Explore feature, click on Solutions on the menu bar and choose Explore.
This will bring up a dialog box and a pair of crosshairsin the graphics win-
dow. Move the crosshairs to the appropriate point on the solution curve and
read the coordinates of that point from the dialog box. Note that the Index
entry givesthe corresponding linein the Data table.]

2. Sensitivity to outside temperature.
Now fix the snowman’sinitial volume at 10 ft and use ODE Architect to plot
agraph of volumevs. time for several different outside temperatures between
35°F and 45°F, with k = 0.1451 ft/(hr °F). Find the time it takes the snowman
to melt to 5 ft® for each outside temperature used and plot that time against
temperature. Describe the shape of the graph.
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Exploration 3.3

Other snowmen.

In developing our snowman model, we assumed that the snowman could be
modeled as a sphere. Sometimes snowmen are built by rolling the snow in
away that makes the body cylindrical. How would you model a cylindrical
snowman? Which type of snowman meltsfaster, giventhe sameinitial volume
and air temperature?
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The phenomenon of besats.

Second-order linear differential equations, especially those with constant coeffi-
cients, have a host of important applications. In this chapter we explore some
phenomena involving mechanical and electrical oscillations. The first submodule
deals with some basic features common to oscillations of all sorts. The second
submodule applies some of these results to seismographs, which are instruments
used for recording earthquake data.

Oscillation; period; frequency; amplitude; phase; simple harmonic motion; viscous
damping; underdamping; overdamping; critical damping; transient; steady-state
solution; forced oscillation; seismograph; Kirchhoff’s laws

Chapter 5 for more on vectors and damping, Chapters 6 and 10 for more on oscil-
lations, and Chapter 12 for more on forced oscillations.
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[0 Second-Order ODEs and the Architect

D ODE Architect only
accepts ODEsin normal form;
for example, write 2X + x =6 as
X = x/2+ 3 with the X term
alone on the left.

ODE Architect will accept only first-order ODEs, so how can we use it to
solve a second-order ODE? There is a neat trick that does the job, and an
example will show how. Suppose we want to use ODE Architect to study the
behavior of theinitial value problem (or IVP):

u’+3U +10u=5cos(2t), u@ =1 Uu(@O© =0 (D

Let'swritev = U, then
/ d d / 4
v —a(v)—a(u)—u
but
U’ = —10u — 3u’ + 5cos(2t)

so VP (1) becomes
uU=v u0=1
v =—10u—3v+5cos(2t), v(0)=0

ODE Architect won't accept 1VP (1), but it will accept the equivalent IVP (2).
The components u and v give the solution of 1VP (1) and its first derivative
U = v. Therefore, if we use ODE Architect to solve and plot the component
curve u(t) of system (2), we are simultaneously plotting the solution u(t) of
IVP ().

@

O “Check” your understanding by converting the IVP
22U —2u 4+3u=—sin4t), u0=-1, U0 =2

to an equivaent IV P involving a system of two normalized first-order ODEs.

[0 Undamped Oscillations

Second-order differential equations arise naturally in physical situations; for
example, the motion of an object is described by Newton’s second law, F =
ma. Here, a isthe acceleration, which is the second derivative of the object’s
position. Many of these differential equations lead to oscillations or vibra-
tions. Many oscillating systems can be modeled by a system consisting of a
mass attached to a spring where the motion takes place in a horizontal direc-
tionon atable. Thissimplifiesthe derivation of the equation of motion, but the
same eguation also describes the up-and-down motion of a mass suspended
by avertical spring.

Let's assume an ideal situation: thereis no friction between the mass and
the table, thereisno air resistance, and thereis no dissipation of energy in the
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[[] Thisisalsocalled Hooke's
law restoring force.

|:| See the first two references
for derivations of formula (5).

|:| Theterm “circular
frequency” is only used with
trigonometric functions.

|:| Thismotion is called
simple harmonic motion. See
Screeen 1.3 of Module 4 for

graphs.

spring or anywhere else in the system. The differential equation describing
the motion of the massis
d?u
mW = —ku (©)]
where u(t) isthe position of the mass mrelativeto its equilibrium and k isthe
spring constant. The natural tendency of the spring to return to its equilibrium
position is represented by the restoring force —ku. Two initial conditions,

u(0) = uo, u'(0) =vo (4)

where ug and vg are theinitia position and velocity of the mass, respectively,
determine the position of the mass uniquely. ODE (3) together with the ini-
tial conditions (4) constitute a well-formulated initial value problem whose
solution predicts the position of the mass at any future time.

The general solution of ODE (3) is

u(t) = Cy cos(wgt) + Cy sin(wot) 5)

where C; and C; are arbitrary constants and w3 = k/m. Applying the initial
conditions (4), wefind that C; = up and C, = vg/wo. Thusthe solution of the
IVP(3), (4) is

u(t) = ugcos(wot) + (vo/wg) Sin(wot)

(6)

The corresponding motion of the massis periodic, which meansthat it repeats
itself after the passage of atimeinterval T caled the period. If we measure
time in seconds, then the quantity wg is the natural (circular) frequency in
radiang/sec, and T is given by

T =2n/wo (7

The reciprocal of T, or wo/27, is the frequency of the oscillations measured
in cycles per second, or hertz. Notice that since wg = +/k/m, the frequency
and the period depend only on the mass and the spring constant and not on the
initial dataug and vg.

By using atrigonometric identity, the solution (6) can be rewritten in the
amplitude-phase form as a single cosine term:

u(t) = Acos(wot — 98) 8
where A and § are expressed in terms of ug and vo/wg by the equations
A= JU+ (vo/wo)?, tans= —2 9)
Uowo

The quantity A determines the magnitude or amplitude of the oscillation (8),
and é, called the phase (or phase shift), measures the time trandlation from a
standard cosine curve.

O Show that (8) is equivalent to (6) when A and § are defined by (9).
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[0 The Effect of Damping

D The viscous damping
forceis —cdu/dt.

[] Check that this equation
gives a solution of ODE (10).

D Solutions of an
underdamped ODE oscillate with
circular frequency w and an
exponentially decaying
amplitude.

Equation (8) predictsthat the periodic oscillation will continueindefinitely. A
more realistic model of an oscillating spring must include damping. A simple,
useful model resultsif we represent the damping force by asingletermthat is
proportional to the velocity of the mass. This model is known as the viscous
damping model; it leads to the differential equation
2
m%%—c%Jrku:o (10)

where the positive constant ¢ is the viscous damping coefficient.

The behavior of the solutions of ODE (10) is determined by the rootsr;
and r, of the characteristic polynomial equation,

mrl+cr+k=0

Using the quadratic formula, we find that the characteristicrootsr, andr; are

—C++/c? — 4mk —C—+/C%2 — 4mk
r= o , T2= o (11)

The nature of the solutions of ODE (10) depends on the sign of the discrimi-
nant c® — 4mk. If ¢ # 4mk, thenr 4 = r, and the general solution of ODE (10)
is
U= Ce't 4+ Ce?t (12)
where C, and C, are arhitrary constants.
The most important caseis underdamping and occurswhen ¢ — 4mk < 0,

which means that the damping is relatively small. In the underdamped case,
the characteristic rootsr, andr, in formula (11) are the complex numbers

ry = _§n +ip, r2= _% —ip, wherep = 742;_ ¢ #0 (13)
Euler'sformulaimplies that
e @+t — e (cosBt + i sin Bt)
for any real numbers« and 8, so
et = e 2Mcosut +isinut), €2 =eY2Mcosut—isinut) (14)

Now, using the initial conditions together with equations (12) and (14), we
find that the solution of the IVP

d’u  du ,
m_dt2 + Ca +ku=0, u(Q) =ug, U0 =g (15)
isgiven by
u= eCt/zm{uo cos(ut) + [@ + %} sin(ut)} (16)
wo 2mp
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|:| Take alook at Screen 1.6
of Module 4.

t-u

2 _—
0 10 20 30 40 50
t

Figure 4.1: A solution curve of the
underdamped spring-mass ODE,
u"+0.1250 +u=0.

Figure 4.2: Solution curves of the
overdamped spring-mass ODE, u” +
21u +u=0.

O Verify that u(t) defined in formula (16) isa solution of IVP (15).

The solution (16) represents an oscillation with circular frequency u and
an exponentially decaying amplitude (see Figure 4.1). From the formula
in (13) we see that © < wo, Where wg = /k/m, but the difference is small
for small c.

If the damping is large enough so that ¢ — 4mk > 0O, then we have over-
damping and the solution of IVP (15) decays exponentially to the equilibrium
position but does not oscillate (see Figure 4.2). The transition from oscilla-
tory to nonoscillatory motion occurs when ¢? — 4mk = 0. The corresponding
value of ¢, given by co = 2+/mk, is called critical damping.

[0 Forced Oscillations

[] Fisasocaled the
input, or driving term; solutions
u(t) are the responsesto the
input and the initial data.

Now let's see what happens when an external forceis applied to the oscillat-
ing mass described by ODE (10). If F(t) represents the external force, then
ODE (10) becomes

d’u  du
Someinteresting things happen if F(t) isperiodic, so wewill look at the ODE
d’u du

+cC

mw ot + ku = Fgcos(wt) (18)
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[[] Check that this formula
gives solutions of ODE (18).

where Iy and w are the amplitude and circular frequency, respectively, of the
external force F. Then, in the underdamped case, the general solution of
ODE (18) hastheform

u(t) = e 2MC; cos(ut) + Cosin(ut)] + acos(wt) + bsin(wt)  (19)

where a and b are constants determined so that acos(wt) + bsin(wt) is a
solution of ODE (18). The constants a and b depend on m, ¢, k, Fg, and w of
ODE (18), but not on the initial data. The constants C; and C, can be chosen
so that u(t) given by formula (19) satisfies given initial conditions.

The first term on the right side of the solution (19) approaches zero as
t — +o0; thisis called the transient term. The remaining two terms do not
diminish as t increases, and their sum is called the steady-state solution (or
the forced oscillation), here denoted by us(t). Since the steady-state solution
persists forever with constant amplitude, it is frequently the most interesting
solution. Notice that it oscillates with the circular frequency » of the driving
force F. It can be written in the amplitude-phase form (8) as

us(t) = Acos(wt — §) (20
where A and § are now given by
A= Fo Lt = ——a— (1)
\/mz(a)g — w?)? + CPw? m(wg — @)

Figure 4.3 shows a graphical example of solutions that tend to a forced oscil-
lation.

For an underdamped system with fixed c, k, and m, the amplitude A of
the steady-state solution depends upon the frequency of the driving force. It

15 Input, three responses

=
o
|

(&)
|

Input F (dashed), u (solid)
& o
| \

=
o
|

-15 ‘ ‘ ‘ ‘ ‘ ‘

Figure 4.3: Solutions of u” + 0.3u' 4+ u = 10cos2t approach a unique forced
oscillation with the circular frequency 2 of the input.
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|:| Recall that the natural
circular frequency ay is the value

wp = JKk/m.

[J Beats

isimportant to know whether thereis avaue w = w, for which the amplitude
is maximized. If so, then driving the system at the circular frequency w;
produces the greatest response. Using methods of calculus, it can be shown
that if ¢ < 2mk then w, is given by

2 2 c?
Wi = wj (l — m) (22
The corresponding maximum value A, of the amplitude when o = wy is
F
A = s (23)

 Cwoy/1— (CZ/4mk)

O Does A have amaximum value when 2mk < ¢ < 4mk?

0 Find theforced oscillation for the ODE of Figure 4.3.

Let's polish the table and streamline the mass so that damping is negligible.
Then we apply a forcing function whose frequency is close to the natural
frequency of the spring-mass system, and watch the response. We can model
this by the IVP

U’ + wiu = % cos(wt), u@) =0, U0 =0 (24)

where |wg — w| issmall (but not zero). The solutionis

F
u(t) = — i o [cos(wt) — cos(wot)]
_ 2F . [y — W . (wo+w
= [m(wg_wz)sm< > t)]sm(—z t) (25)

where trigonometric identities have been used to get from the first form of the
solution to the second. The term in sgquare brackets in formula (25) can be
viewed as a varying amplitude for the sinusoid term sin[ (wo + w)/2]t. Since
|wo — w| is small, the circular frequency (wg + w)/2 is much higher than the
low circular frequency (wo — w)/2 of the varying amplitude. Therefore we
have a rapid oscillation with a slowly varying amplitude. This is the beat
phenomenon illustrated on the chapter cover figure for the IVP

u” 4+ 25u=2cos(4.5t), u@ =0, U0 =0

If you try this out with adriven masson aspring you will seerapid oscillations
whose amplitude slowly grows and then diminishes in a repeating pattern.
This phenomenon can actually be heard when a pair of tuning forks which
have nearly egqual frequencies are struck simultaneously. We hear the “ beats”

as each acts as adriving force for the other.
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[0 Electrical Oscillations: An Analogy

R

+¢
E® 1M )L

Cc

000/

[0 Seismographs

D Look at “ Earthquakes and
the Richter Scale” in Module 4.

Linear differential equations with constant coefficients are important because
they arisein so many different physical contexts. For example, an ODE sim-
ilar to ODE (17) can be used to model charge oscillations in an electrical
circuit. Suppose an electrical circuit contains a resistor, an inductor, and a
capacitor connected in series. The current | in the circuit and the charge Q
on the capacitor are functions of time t. Let’s assume we know the resistance
R, theinductance L, and the capacitance C. By Kirchhoff’s voltage law for a
closed circuit, the applied voltage E(t) isequal to the sum of the voltage drops
through the various elements of the circuit. Observations of circuits suggests
that these voltage drops are as follows:

e The voltage drop through the resistor is RI (Ohm’s law);
e The voltage drop through the inductor is L(d1 /dt) (Faraday’slaw);
e The voltage drop through the capacitor is Q/C (Coulomb’s law).

Thus, by Kirchhoff’s law, we obtain the differential equation
dl Q

La + RI + c= E(t) (26)
Since | = dQ/dt, we can write ODE (26) entirely in terms of Q,
¢?Q  ,dQ Q
LW + RE + c= E(t) (27

ODE (27) modelsthe charge Q(t) on the capacitor of what is called the simple
RLC circuit with voltage source E(t). ODE (27) is equivalent to ODE (17),
except for the symbols and their interpretations. Therefore we can also apply
conclusions about our spring-mass system to electrica circuits. For exam-
ple, we can interpret the ODE u” + 0.3u + u = 10cos2t, whose solutions are
graphed in Figure 4.3, as amodel either for the oscillations of a damped and
driven spring-mass system, or the charge on the capacitor of a driven RLC
circuit. We see that a mathematical model can have many interpretations, and
any mathematical conclusions about the model apply to every interpretation.

0 What substitutions of parameters and variables would you have to make
in ODE (27) to transform it to ODE (17)?

Seismographs are instruments that record the displacement of the ground asa
function of time, and a seismometer isthe part of a seismograph that responds
to the motion. Seismographs comein two generic types. Matt’s friend Seismo
is a horizontal -component seismograph, which records one of the horizontal
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|:| If you're queasy about
Ccross products or approximating
functions (aswedo in

formula (29)) you may prefer to
skip directly to ODE (33) or
ODE (34).

components of the earth’s local motion. Of course, two horizontal compo-
nents are required to specify fully horizontal motion, usually by means of
north-south and east-west components. The other type of seismograph records
the vertical component of motion. Both of these instruments are based on pen-
dulumsthat respond to the motion of the ground relative to the seismograph.

Since Seismo is an animation of a horizontal-component seismograph,
we'll outline the derivation of the ODEs that govern the motion of his arm.
The starting point is the angular form of Newton’s second law of motion, also
known as the angular momentum law:

d

where L is the angular momentum of a mass (Seismo’s arm and hand) about
afixed axis, F is the force acting on the mass, R is the position vector from
the center of mass of Seismo’s arm and hand to the axis, and x is the vector
cross product.

We'll apply this law using an orthogonal xyz-coordinate system which is
illustrated on Screen 2.2 of Module 4. In this system the y-axisis horizontal.
Seismo’s body is parallel to the z-axis and the rest position of Seismo’'s arm
is parallel to the x-axis. The z-axis is not parallel to the local vertical, but
instead isthe axiswhich resultsfrom rotating thelocal vertical through asmall
angle « about the y-axis. Because of this small tilt, the x-axis points sightly
downward and the arm is in a stable equilibrium position when it is parallel
to the x-axis. The seismic disturbanceis assumed to be in the direction of the
y-axis. The xz-planeis called Seismo’srest plane.

Seismo’s hand writes on the paper in the xy-plane, and the angle 6 mea-
sures the angular displacement of his arm from its rest position. Consider an
axis pointing in the z-direction and through the center of mass of Seismo’'sarm
and hand, and let m represent the mass of the arm and hand. The z-component
of the angular momentum about that axis is mr2(do/dt) wherer isthe radius
of gyration of the arm.

To compute the right-hand side of ODE (28), we need to know R, the
position vector from the center of mass of Seismo’sarm and hand to the origin.
Note that

R = —I cosf% — 1 singy

where | is the distance from the center of mass to Seismo’s body, and X and
§ are unit vectors along the positive x- and y-axes. For small 9, we have the
approximations cosf ~ 1 and siné ~ 6, so

R=—-Ix—16y (29)

Using equation (29) in ODE (28) and computing the cross product, we obtain
2

29l _ _jpw +16F® (30)

dt?
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D Thisisviscous friction.

indicating by superscripts the components of the net force F exerted on the
arm and hand.

Now we need expressions for the two components of F in ODE (30). If
the x-component of friction is assumed negligible then the two force compo-
nents acting in the x-direction are the x-component of the gravitational force
and the x-component of the force due to the seismic disturbance. Because
the arm displacement angle 6 and the body inclination angle « are both as-
sumed small, the x-component of the force due to the seismic disturbance can
be shown to be negligible also. Therefore the x-component of the net force,
F(x) isgiven by the simple form

F® ~ mga (31

The right side of equation (31) is the gravity component mgsina approxi-
mated by mga.

In the y-direction, the forces acting are the force due to the seismic dis-
turbance and to friction, the latter assumed to be proportional to the angular
velocity do/dt. The force due to the seismic disturbance can be computed
as follows. Let h be a small ground displacement in the y-direction. Then
the y-coordinate of the center of massis approximately h + 10. Therefore the
force due to the earthquake is approximated by

d? d?h d?6
—(h+10) = m— | —
Mae "= M e
and the net forcein the y-directionis
2 2
FW ~ m@ + ml % — k% (32)

dt? dt? dt
wherek is a positive constant characterizing the effect of friction.

Combining ODE (30) with formulas (31) and (32), we find that the mo-

tions of Seismo’s arm are governed by the ODE

d?  do 2 _ 1 d%h

@t T " Tae
In ODE (33) the quantities w3, L, and ¢ are given by w3 = go/L, where
L= (r>+1%/1, and c = k/(mL). We can interpret the terms in (33) as
follows. Thefirst term on theleft arises from the inertia of Seismo’s hand and
arm. The second term models the frictional force due to the angular motion
of the arm. The third term, arising from gravity and thetilt of the arm, is the
restoring force for the oscillations of the arm and hand. Finally, the term on
the right arises from the effective force of the seismic displacement.

To simplify ODE (33) alittle more, we let h(t) = Hf (t), where H isthe
maximum ground displacement, which means that the maximum value of the
dimensionless ground displacement f (t) isone. Then ODE (33) becomesthe
following equation for the dimensionless arm displacement y(t) = LO(t)/H:

d’y  dy d?f

_— [ 2 —
a2 Tl T T e

(33)

(34)
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|:| A given ODE can model a
variety of phenomena.
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Figure 4.5: The Dual (Matrix) feature produces six solutions for various val-
ues of ¢ and k. We have selected one of them (the highlighted curve) and
used the Explore option to get additional information.



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 4.1. The Damping Coefficient

Assume that Dogmatic’s oscillations satisfy the IVP

U +cud+ku=0, u0=1 u0=0 (35)

1. Let k=1 and use ODE Architect to estimate the smallest value c* of the
damping coefficient ¢ so that |u(t)| < 0.05 for al t > 40. [Suggestion: Fig-
ure 4.4 illustrates one way to estimate ¢* by using the Select feature and the
Datatable]

2. Repeat Problem 1 for other values of k, including k = %, 3, 2, and 4. How
does c* change as k changes? [Suggestion: Figure 4.5 shows the outcome
of using a Dual (Matrix) sweep on the values of ¢ and k, and then using the
Explore feature.]
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3. Letk=10inIVP(35).

(@) Findthevalue of cfor whichtheratio of successive maximain thegraph
of uvs. tis0.75.

(b) Why isthe ratio between successive maxima aways the same?
Note: Since the values of the maxima can be observed experimentally,
this provides a practical way to determine the value of the damping
coefficient ¢, which may be difficult to measure directly.



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 4.2. Response to the Forcing Frequency

1. Supposethat Dogmatic’s oscillations satisfy the differential equation
2u” + U’ + 4u = 2 cos(wt)

Let w = 1. Select your own initial conditions and use ODE Architect to plot
the solution over a long enough time interval that the transient part of the
solution becomes negligible. From the graph, determine the amplitude Ag of
Dogmatic's steady-state solution.

2. Repeat Problem 1 for other values of w. Plot the corresponding pairs w, As
and sketch the graph of Ag vs. w. Estimate the value of w for which Ag is
amaximum. Note: You may want to use the Lookup Table feature of ODE
Architect (see Module 1 and Chapter 1 for details).
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In Problems 1 and 2, the value of the damping coefficient ¢ is 1. Repeat
your calculations for ¢ = 3 and ¢ = . How does the maximum value of Ag

change as the value of ¢ changes? Compare your results with the predictions
of formula (23).
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Exploration 4.3. Low- and High-Frequency Quakes

In experiments with Seismo, you used ODE (34) to find the response of his
arm to different ground displacements of sinusoidal type, f(t) = coswt, when
1 <w < 5. In this exploration you’ll investigate what happens for ground
displacements with frequencies that are lower or higher than these values.

1. Choosec=2and wg= 3in ODE (34), and set theinitia conditions y(0) and
y'(0) to zero. Use f(t) = coswt with @ = 0.5 for the ground displacement.
Use ODE Architect to plot the displacement y(t) determined from ODE (34);
aso plot f(t) on the same graph. How do the features of y(t) compare with
those of f(t)?

2. Repeat Problem 1 for values of w smaller than 0.5. Be sure to plot for along
enough time interval to see the relevant time variations. What do you think is
Seismo’s arm response as w approaches zero? How does this compare with
the corresponding response of a mass on a spring from ODE (18)?
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3. Repeat Problem 1 for values of w larger than 5, such as w = 10 and w = 20.
What do you think is Seismo’s arm response as w becomes very large?
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Exploration 4.4. Different Ground Displacements

In explorations with Seismo, we assumed that the dimensionless ground dis-
placements f(t) are sinusoidal, with a single frequency. Real earthquakes
however, are not so simple: you’ll investigate other possibilities in the fol-
lowing problems. The ODE for Seismo’s dimensionless arm displacement
y(t) is

d’y  dy d? f

2
a2 TS T T (36)

Suppose the ground displacement can be modeled by the function

2
w7 e

How do you interpret this motion? Choose ¢ = 2 and wg = 3, and set y(0) =
y'(0) = 0. Use ODE Architect to find y(t) from ODE (36) for thecase T =
2, and display both y(t) and f(t). Note: d?f/dt?> can be written using a
step function. How do the features of y(t) compare with those of f (t)? For
example, what is the maximum magnitude of y(t), and when doesit occur?
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2. Now supposethat the ground motionisgiven by thefunction f = e~ sin(xt).
Choose some values of a in the range 0 < a < 0.5 and study how Seismo’s
arm displacements change with the parameter a.

3. How do you think the results of Problem 2 would change if the period of the
sinusoidal oscillation were different from 2? Try afew cases to check your
predictions.
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Seventeen ski jumpers take off from an upward-tilted ski-jump.

How would you model the motion of a baseball thrown at a target, or the rise and
fall of a whiffle ball, or the trajectory of a ski jumper? You need modeling principles
to explain the effects of the surroundings on the motion of a body.

Building on the work of Galileo, Newton formulated the fundamental laws of
motion that describe the forces acting on a body in terms of the body’s accelera-
tion and mass. Newton’s Second Law of Motion, for example, relates the mass
and the acceleration of a moving body to the forces acting on it and ultimately
leads to differential equations for the motion.

Bodies moving through the air near the surface of the earth (e.g., a whiffle
ball, Indiana Newton jumping onto a boxcar, or a ski jumper) are subject to the
forces of gravity and air resistance, so these forces will affect their motion.

Vectors; force; gravity; Newton’s Laws; acceleration; trajectory; air resistance;
viscous drag; Newtonian drag; lift

Chapter 1 for more on modeling, and Chapter 2 for “The Juggler” and “The Sky
Diver”.
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[1 Vectors

A vector isadirected line segment and can be represented by an arrow with a
head and atail. We use boldface |etters to denote vectors.
Some terminol ogy:

e Thelength of avector v isdenoted by |v|.

e Two vectorsv and w are equivalent if they can be made to coincide by
trandations. (Trandations preserve length and direction of vectors.) So
parallel vectors of equal length and pointing in the same direction are
equivalent.

e Thesumv + w of v and w is defined by the parallelogram law as fol-
lows:. v 4+ w isthe diagonal vector of the parallelogram formed by v and
w as shown in the margin figure.

e |f r isany real number, then the product rv is the vector of length |r||v|
that pointsin the direction of v if r > 0 and in the direction opposite to
vifr <0.

e |f avector u = u(t) depends on avariable t, then the derivative du/dt
[or u’(t)] is defined as the limit of adifference quotient:
d u(t+h) —u(t)

, u
U(t):a:fl\—)O h

e A coordinate frame is a triple of vectors, denoted by (i, f k}, that are
mutually orthogonal and all of unit length. Every vector can be uniquely
written as the sum of vectors parallel toi, j, and k. So for each vector v
thgre isaunique set of real numbers vy, vy, and vz such that v = v1i +
Vo) + v3k. Here v1,vp, and vz are called the coordinates (or components)
of vintheframe (i, j, k}.

U3R

vl Let’'s see how to use vectorsin areal-life situation. Suppose a particle of
mass m movesin amanner described by the position vector

R =R(t) = x(1)i + y(t)j + z(tH)k

z If R isdifferentiable, then
- R'(t) = X ()i + Y (O] + Z (DK
R(t) g Thevector R’ (t) = v(t) isthe velocity vector of the particleat timet, and v(t)

at is tangent to the path of the particle’'s motion at the point R(t). If R'(t) is

Y differentiable, then
R’(t) = V' (t) = X"()i + Y/ ()] + Z'(Dk

The vector R”(t) = a(t) is the acceleration vector for the particle.
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Bifurcation Diagram
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Figure 13.3: Part of the bifurcation diagram for the logistic map.

a single point in the diagram above a particular parameter value, that point
corresponds to an attracting fixed point. The spot in the diagram where you
see an arc of attracting fixed points split into two arcs corresponds to a bifur-
cation from an attracting fixed point for an attracting orbit of period 2 (i.e.,
period doubling). If the diagram shows a multitude of points above a given
parameter value, then either you are seeing an attracting periodic orbit of a
very high period, or else you are seeing chaotic wandering. It should be noted
that when constructing the bifurcation diagram for each parameter value and
initial point, the first 50 or so iterates are omitted so that only the long-term
behavior is visible in the diagram. See Figure 13.3 and Screen 2.4 in Mod-
ule 13 for the bifurcation diagram of the logistic map.

The stable arcs in these diagrams are usually straightforward to generate
numerically. We constructed a bifurcation diagram on an interval [Amin, Amex]
for the logistic population model xn11 = g, (Xn) using the following proce-
dure.

1. FiX Aminy Amax» Aincs Nminy Nmax- HEre Ainc is the step size between suc-
cessive values of A while npin and npya are bounds on the number of
iterates used to construct the diagram; they control the accuracy of the
diagram. Typical valuesare Ny, = 50 and Ny = 150.

2. Let )\. = )\.m|n

3. Taking Xo = 0.5 for example, compute the first nnin iterates of g with-
out plotting anything. This eliminates transient behavior.
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4. For Nmin < N < Nmax, plot the points (A, g;"(0.5)). If the orbit of 0.5
converges to a periodic orbit, only points near this orbit are plotted. If
the orbit of 0.5isn’t periodic, then the points above A seem to be almost
randomly distributed.

5. Let )\, = )\. +)\,inc.
6. If A < Amax, 9o back to Step 3 and repeat the process.

0O Goto the one-dimensional tab of the Discrete Tool. Use the default val-
ues, but set the value of ¢ a 1 (c in the tool plays the role of A in Chap-
ter/Module 13). Click on the bifurcation diagram. Keep your finger on the
up-arrow for ¢ and describe what is happening. Any attracting periodic or-
bits? For what values of ¢ do these orbits occur? What are the periods?

[0 Periodic and Chaotic Dynamics

One of the most celebrated theorems of discrete dynamical systems is often
paraphrased “Period 3 Implies Chaos” This theorem, originally proven by
Sarkovskii and independently discovered by Li and Yorke!, is a remarkable
result in that it requires relatively little information about the dynamical sys-
tem and yet it returns a treasure trove of information.

THEOREM 13.2 If f isacontinuousfunction on thereal line and if
there exists a point of period 3, then there exist points of every period.

For the logistic population model there exists an attracting period-3 orbit
at A = +/8+ 1 3.83, and most initial conditions in the unit interval con-
vergeto this orbit (see Figure 13.4). In terms of our model, most populations
tend to oscillate between the three different val ues of the period-3 orbit. The-
orem 13.2 states that even more is going on at A = +/8 + 1 than meets the
eye. If we pick any positive integer n, there exists a point p such that nis
the smallest positive integer alowing g;"(p) = p. Thus, for example, there
exists a point that returns to itself in 963 iterates. The reason we don't “see”
this periodic orbit (or, indeed, any periodic orbit, except that of period 3) is
that it is unstable, so no iterate can approach it. But orbits of every period are
indeed present if A = v/8+ 1.

1James Yorkeand T.Y. Li are contemporary mathematicians who published their result in 1975 (see
References). They were the first to apply the word “chaos’ to the strange behavior of the iterates of
functionssuch asg, . A.N. Sarkovskii published astronger result in 1964, in Russian, in the Ukrainian
Mathematical Journalbut it remained unknown in the West until after the paper by Yorke and Li had
appeared.



What is Chaos?

241

Iteration Map

05 -

06 -

*#n+1)

04 -

0z -

04 v 1
o 0z

P

' 1 ' 1 ' 1
4 05 03 1
)

o

Figure 13.4: At » = /8 + 1~ 3.83 the logistic map g, = Ax(1— x) has an attract-
ing orbit of period 3; the points X, X1, ..., Xs9 have been suppressed in this
graph.

[0 What is Chaos?

|:| A set U of real numbersis
openif every point p of U has
the property that al pointsin
someinterval (p—a, p+a) are
asoinU.

So, you're probably asking, what is chaos? The definition of chaos is a bit
dlippery. In fact, mathematicians are still arguing about a proper definition.
But to get the idea acrosswe'll use one due to Devaney.

Let Sbe a set such that if x liesin S, then f°"(x) belongsto Sfor all
positive integers n. The set Sis called invariant. If you start in an invariant
set, you can't get out! Now let’s define what we mean by chaosin aninvariant
st S

A map f : S— Sischaoticif:

1. periodic pointsaredensein S
2. f displays sensitive dependenceon initial conditionsin S; and
3. f istopologically transitivein S.

The first condition of this definition is relatively explained like this: A
set A is densein another set B if for every point x in B and every open set
U containing x there exists points of A that are also in U. Therefore, condi-
tion 1 saysthat periodic points are almost everywherein S, This meansthat S
contains many periodic points; Theorem 13.1 gives a condition guaranteeing
infinitely many of these points.
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D Module 13 has examples.

In the second condition, sensitive dependence on initial conditioneans
that pointsthat areinitially closeto one another eventually get moved far apart
under iteration by f.

Finally, f istopologically transitive(or mixing) if given any pair of open
setsU and V in S, some iterate of f takes one or more points of U into V.
This means that points of open sets get spread throughout the set S.

The most significant item on this list for applied problems is sensitive
dependence on initial conditions. Let's consider the logistic growth model
at a parameter value where the dynamics are chaotic. Sensitive dependence
impliesthat no matter how close two populations may betoday, therewill bea
time in the future when the populations differ significantly. So environmental
disturbancesthat cause small population changeswill eventually lead to large
changes, if chaotic dynamicsexist.

Chaotic dynamics occur in awide range of models. Although the defini-
tions above are givenin terms of asingle scalar dynamical system, everything
extends to higher dimensions, and many of the applications are two or three
dimensional. In addition to models of population dynamics, chaos has been
observed in models of the weather, electrical circuits, fluid dynamics, plane-
tary motion, and many other phenomena. The relatively recent understanding
of chaos has shed new light on the complexity and beauty of the world we
inhabit.

[0 Complex Numbers and Functions

Imaginary axis 7

|
|
|
|
|
X

=X+1iy
=relf

Y

Real axis

D Euler's formulais also
used in Chapter 4.

Probably the most popular type of discrete dynamical system is a complex
dynamical systerwhere the variables are complex numbers instead of real
numbers. The intricate fractal structures common to images generated using
complex dynamics have appeared everywherefrom calendarsto art showsand
have inspired both artists and scientists alike. Many of the fundamental ideas
of complex dynamics are identical to those of real dynamics and have been
discussed in previous sections. In what follows, we will highlight both the
similarities and differences between real and complex dynamics.

Recdll that complex numbers arise when factoring quadratic polynomials
with negative discriminant. Because the discriminant is negative we must
take the square root of a negative real number, which we do by defining i to
be v/—1. We then write the complex numbeas z= x + iy. We say that x is
the real part of zand y is the imaginary part of z The complex number zis
represented graphically on the complex plane by the point having coordinates
(X, y). It isoften useful to represent complex numbersin polar coordinates by
letting x =r cosf and y =r sind so that

z=r(cos +ising) = re'’

The remarkable relationship cos6 + i sind = € between polar coordinates
and exponential functions is known as Euler's Formula The number r =
VX2 + y2 is the distance from the origin to the point z in the complex plane
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and is sometimes called the modulusof z, and it is denoted by r = |z|. The
angle 6 iscaled the argumenif z. Note that the usual properties of exponen-
tial functions hold in the complex plane. Thus, given two complex numbers
z=re'’ and w = sé?, their product is

zw = rsd @9

A complex function €z) takes a complex number z as its argument and
returns a complex number w = f(z). Differentiation proceeds as in the real
case; for example, (%)’ = 37°. Unlike functions of one real variable, we
cannot graph a complex function since both the domain and range are two-
dimensional.

[I Iterating a Complex Function

|:| Any period-n point is also
aperiodic point of all periods
which are positive integer
multiples of n.

Iteration of a complex function isidentical to the iteration of areal function.
Givenaninitial z-value z,, iteration generates a sequence of complex numbers
2 = f(z), z2 = f(z), etc. Fixed and periodic points are defined in the same
way asfor real functions, as are stability and instability. Here are the previous
criteriafor stability, but now applied to complex functions.

e A fixed point z* isstableif | f'(Z")| < 1, and unstableif | f'(z")| > 1.

e A period-n point z* (and its orhit) is stableif |(f°")'(z")| < 1, and un-
stableif |(f")(z29)| > 1.

Let's consider a simple example to illustrate these ideas. Let f(z) = 7.
Then z* = 0 is an attracting fixed point since f(0) =0and | f'(0)| =0. If z
isany point such that |z] < 1, then the sequence { f °"(2)}7°, convergesto 0 as
n — oo. On the other hand, if |z| > 1, then the sequence { f°"(2)}72, goesto
infinity asn — oco. To see what happensto values of z having modulus equal
to 1, let'swritez= €’. Then f(z) = €??, which also hasmodulus 1. Thusall
iterates of points on the unit circle |z| = 1 stay on the unit circle. The point
Zz* = lisarepdlling fixed point since f (1) = 1and | f'(1)| = 2. The period-2
points are found by solving f(f(z)) = Z* = z. We can rewrite this equation
as

2Z2-1)=0
One solution to this equation is z* = 0, corresponding to the attracting fixed
point, and another solution is z* = 1, corresponding to the repelling fixed
point. Notice that the fixed points of f(z) remain fixed pointsof f(f(z)), or
equivalently, are also period-2 points of f (z). To find the other two solutions,
wewrite z = € to get the equation
e3i9 =1

which we need to solve for 6. Since we are working in polar coordinates, we
notethat 1 = €2" where nisan integer. Thisimpliesthat 39 = 2nx and from
this we find a second pair of period-2 pointsat z= €*/3 and z = €*"/3, Both
of these are repelling.
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Julia Set
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Figure 13.5: The filled Julia set for f(z) = 22+ ¢, where ¢ = 0.4012 — 0.3245i

0 Show that €/ and €*'/3 are repelling period-2 points of f = z2. Show
that f°"(z) > 0asn— oo if |7l < 1, andthat | f°"(2)| — o< if |Z] > 1. What
isthe “basin of attraction” of the fixed point z= 0?

0 Julia Sets, the Mandelbrot Set, and Cantor Dust

|:| The closureof aset A
consists of the points of A
together with all points that are
limits of sequences of the points
of A

The set of repelling periodic points of the function f = Z? is dense on the unit
circle, although we don't show that here. This leads usto the definition of the
Julia set.

DEFINITION Thefilled Julia set Kof acomplex-valued function f is
the set of al points whose iterates remain bounded. The Julia set Jof
f isthe closure of the set of repelling periodic points.

For f = 7?, thefilled Juliaset K of f isthe set of all complex numbers z
with |z] < 1, whilethe Juliaset J of f istheunitcircle |zl = 1. Thisisavery
simple example of a Julia set. In general, Julia sets are highly complicated
objects having avery intricate fractal structure. For example, see Figure 13.5
and Screens 3.3 and 3.4 of Module 13.

In the above example, the Julia set J divides those points that iterate to
infinity (points outsidethe unit circle) and those that convergeto the attracting
fixed point (points inside the unit circle). This division of the domain by
the Julia set is often the case in complex dynamics and provides a way of
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|:| In the Discrete Tool of
ODE Architect, the coloring is
reversed. Points in the Julia set
are colored black and points
whose orbits diverge past the
predetermined bound are colored
with various colors according to
their divergence rates (e.g., red is

the fastest, dark blue the slowest).

|:| A complex function f is
analyticif its derivatives of every
order exist. A point Zisacritical
pointof fif f'(2) =0.

numerically computing the filled Julia set of a given function f. Assign a
complex number to each screen pixel. Then use each pixel (i.e., complex
number) as an initial condition and iterate to determine whether the orbit of
that point exceeds some predetermined bound (for example |z = 50). If it
does, we say the orbit diverges and we color the point black. If not, we color
the point red to indicateit isin the filled Julia set.

Earlier in this chapter we saw the importance of attracting periodic orbits
in building a bifurcation diagram for areal map f. Although we didn't men-
tionit then, we can homein on an attracting periodic orbit of f (if thereisone)
by starting at xo = Xif f'(x) iszeroat X and nowhereelse. Complex functions
f(2) for which f’(Z) = 0 at exactly one point Z have the same property asthe
following theorem shows.

THEOREM 13.3 Let f bean analytic complex-valued function with
a unique critical point Z. If f has an attracting periodic orbit then, the
forward orbit of Z convergesto this orbit.

Let'slook at some of theimplications of thistheorem with the family of func-
tions f.(z) = 2 + c wherec = a+ ib isacomplex parameter. For each value
of c the only critical point is Z= 0. To find an attracting periodic orbit for a
given value of ¢ we need to compute the orbit

{0,c,c®+c,...}

and see if the orbit converges or not. If it does, we found the attracting pe-
riodic orbit; if not, there doesn’t exist one. Let's see what happens when we
set ¢ = 1to givethefunction f;(z) = z> + 1. The orbit of the critical point is
{0,1,2,5, 26, ...}, which goesto infinity. Thus, f; hasnoattracting periodic
orbit and the Julia set does not divide points that converge to a periodic orbit
from pointsthat iterate to infinity. Infact, it can be shown that this Juliaset is
totally disconnected; it is sometimes referred to as Cantor dust Click on out-
lying points on the edge of the Mandelbrot (defined below) set in Screen 3.5
of Module 13 and you will generate Cantor dust in the upper graphics screen.

This leads to another question. If some functions in the family f; have
connected Julia sets (such as fo = %) and other functions in the family have
totally disconnected Julia sets (such as f1), what set of pointsin the ¢ plane
separates these distinctive features? This set is the boundaryof the Mandel-
brot set. The Mandelbrot set Mof the function f.(z) = Z2+ cisdefined asthe
set of all complex numbers c such that the orbit { fg"(0)¢2 ;} remains bounded,
thatis, | f°"(0)| < K for some positive number K and n.

This definition leads us to an algorithm for computing the Mandelbrot
set M. Assign to each pixel a complex number ¢. Choose a maximum num-
ber of iterations N and determine whether | fZ"(0)| < 2 for al n < N (it can
be proven that if | f¢"(0)| > 2 for some n, then the orbit goes to infinity).
If so, then color this point green to indicate that it is in the Mandelbrot set.
Otherwise, color this point black. It is this computation that gives the won-
derfully intricate Mandelbrot set; see Figure 13.6 and Screens 3.4 and 3.5 of
Module 13.
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Mandelbrat Set

Imige)

Relc)

Figure 13.6: The Mandelbrot set; the cross-hairs are set on the point 0.4012 —
0.3245i, which gives the Julia set shown in Figure 13.5.

The Mandelbrot set actually contains much more information than is de-
scribed here. It is, in fact, the bifurcation diagram for the family of functions
f.(z) = 22+ c. Each “blob” of the set correspondsto an attracting periodic or-
bit of aparticular period. Vaues of ¢ in the big cardioid shown on Screen 3.4
of Module 13 give attracting period-1 orbits for f.. Values of ¢ in the circle
immediately to the |eft of this cardioid give attracting period-2 orbits for f..
Other “blobs’ give other attracting periodic behaviors.

Although we have only defined the Mandel brot set for the specific family
f. = 22+ ¢, it can be defined in an anlagous way for other families of complex
functions (see the Discrete Tool). Onefinal note on Julia sets and the Mandel -
brot set. You've probably seenintricately colored versions of these objectson
posters or elsewhere. The coloring is usually determined by how “fast” orbits
tend to infinity. The color schemeis, of course, up to the programmer.

Module 13 introduces and lets you play with three important discrete dy-
namical systems—Ilinear, logistic, and athird that uses complex numbers. Ex-
plorations 13.1-13.4 extend theseideas and introduce other mapswith curious
behavior under iteration.

References Alligood, K.T., Sauer, T.D. and Yorke, JA., Chaos: An Introduction To Dy-

namical System$1997: Springer-Verlag). “Period Three Implies Chaos’
and Sarkovskii’s theorem are described in the third of thirteen chaptersin
the marvelous book.
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Devaney, R.L., A First Course in Chaotic Dynamical Systems, Theory and
Experiment(1992: Addison Wesley). Thisisthe “intermediate” book by
Devaney on chaotic dynamical systems. Chapter 11 concerns Sarkovskii's
Theorem, and Yorke and Li’s theorem that “ Period 3 Implies Chaos’.

Doebeli, M. and Ruxton, G. “Controlling Spatial Chaos in Metapopulations
with Long-Range Dispersal” in Bulletin of Mathematical Biologyvol. 59
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the logistic map in population dynamics.

Guimez, J. and Matias, M.A. “Control of Chaosin Unidimensional Maps’ in
Physics Letters A/ol. 181 (September 1993) pp. 29-32

Peitgen, H.-O. and Richter, PH., The Beauty of Fractalg1986: Springer-
Verlag)

Saha, P. and Strogatz, S.H. “ The Birth of Period 3" in Mathematics Magazine
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Strogatz, S., Nonlinear Dynamics and Chap§l994: Addison-Wesley). A
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Yorke, J. and Li, T.Y., “Period 3 Implies Chaos’ in the American Mathemati-
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Stoppard, T., the play “Arcadia’, (1993: Faber and Faber). Yes! A play about
chaos.
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Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 13.1. One-Dimensional Maps and the Discrete Tool

1. Goto the Discrete Tool and enter the proportional growth model Xp.1 = CXn,
where c is the parameter. For the range 0 < n < 30 and the initial condition
Xo = 0.5, explore and describe what happensto the iteration map, time series,
and bifurcation diagram as the parameter is increased from —2 to 2. For
what values of c is there a sudden change in the behavior of the iterates (the
bifurcation values of ¢)? For what values of c arethere 1, 2, or infinitely many
fixed or periodic points? Which of there points are attractors? Repellers?

2. GototheDiscrete Tool and explore and describe what happensto theiteration
map, the time series, and the bifurcation diagram as the parameter c for the
logistic map gc(X) = cx(1 — X) isincremented from 1 to 4. Use the range
50 < n < 150to avoid aninitial wandering, and the initial condition xo = 0.5.
Describewhat all three graphson thetool screenlook like at values of c where
there is a periodic orbit? What is the period? Go as far forward as you can
with the period doubling sequence of values of c: 3, 3.434, ... . What are
the corresponding periods? [SuggestionZoom on the bifurcation diagram.]
Repeat with the sequence 3.83, 3.842, ... .
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In the Discrete Tool enter the tent map T on theinterval 0 < x < 1:
2CX, 0<x=<05
2c(l1-x), 05<x<1

where the parameter c is allowed to range from 0 to 1. Describe and explain
what you see as c isincremented from 0 to 1. [Suggestionuse the Edit option
in the Menu box for the Bifurcation Diagram and set 200 < n < 300 in order
to suppresstheinitia transients.] Any orbits of period 2? Period 3?

Te(X) = ¢(1— 2abs(x — 0.5)) =
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Exploration 13.2. Circle Maps

Another common type of discrete dynamical system is a circle map, which
maps the perimeter of the unit circle onto itself. These functions arise when
modeling coupled oscillators, such as pendulums or neurons. The simplest
types of circle maps are rotations that take the form

R,(0) = (6 + ) mod 27
where 0 < 9 < 27 and w is a constant.

1. Show that if w = (p/q)7r with p and g positive integers and p/q in lowest
terms, then every point has period q.

2. Show that if w = ar with a anirrational number, then no point on the circle
isperiodic.
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3. What isthelong-term behavior of the orbit of apoint onthe circleif w = arr,
whereaisanirrational number?
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Exploration 13.3. Two-Dimensional Maps and the Discrete Tool

A two-dimensional discrete dynamical system looks like thes:
Xnt1 = F(Xn, ¥n, ©)
Ynt+1 = 9(Xn, Yn, €)

where f and g are given functions and c is a “place holder” for parameters.
For given values of c, X, and Yy, system (3) defines an orbit of points

©)

(X0, Y0),  (X1,¥1), (X2, ¥2),...

in the xy-plane. The two dimensional tab in the Discrete Tool allows you to
explore discrete systems of the form of (3)

1. Open the Discrete Tool and explore the default system (a version of what is
known as the Henon May:

Yni1 = bX

where a and b are parameters. For fixed values of the parameters a and b
find the fixed points. Arethey sinks, sources, or neither? How sensitiveisthe
long-term behavior of an orbit to small changes in the initial point (Xo, Yo)?
What happensif you increment a through a range of values? If you increment
b? Any period doubling sequences? In your judgment, is there any long-term
chaotic wandering? [Suggestion:Keep the values of a and b within small
ranges of their default valuesto avoid instabilities.]

4
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2. Repeat Problem 1 with the following version of the Henon map:
Xni1 = a— X2+ by,
Yn+1 = Xn
Start witha=1.28, b=-0.3, X0 =0, yp=0.
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Exploration 13.4. Julia and Mandelbrot Sets and the Discrete Tool

Note that the color schemes for the Julia and Mandelbrot sets in Module 13
differ from those in the discrete tool.

1. Use the Discrete Tool to explore the Mandelbrot set and Julia sets for the
complex family f. = 2% + c. What happens to the filled Julia sets as you
move ¢ from inside the Mandelbrot set up toward the boundary, then across
the boundary and out beyond the Mandelbrot set? Describe how the Julia sets
change as you “walk” along the edge of the Mandelbrot set.
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2. Repeat Problem 1 for the complex family g. = csinz

3. Repeat Problem 1 for the family h, = c€e~
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Acceleration The acceleration of amoving body whose po-
sition at timetisu(t) is given by
¢
de?
Air resistance A body moving through air (or some other
medium) is slowed down by a resistive force (also
called a drag or damping force) that acts opposite to

the body’s velocity. See also “Viscous damping” and
“Newtonian damping.”

Amplitude The amplitude of a periodic oscillating function
u(t) is half the difference between its maximum and
minimum values.

Angular momentum The angular momentum vector of a
body rotating about an axis is its moment of inertia
about the axis timesits angular velocity vector.
Thisisthe analog in rotational mechanics of momen-
tum (mass times velocity) in linear mechanics.

Angular velocity An angular velocity vector, w(t), is the
key to the relation between rotating body axes and a
fixed coordinate system of the observer. The compo-
nent w; of the vector w(t) along the jth body axis de-
scribes the spin rate of the body about that axis.

Autocatalator Thisisachemical reaction of several steps,
at least one of which is autocatalytic.

Autocatalytic reaction In an autocatalytic resction, a
chemical species stimulates more of its own produc-
tion than is destroyed in the process.

Autonomous ODE An autonomous ODE has no explicit
mention of the independent variable (usualy t) in the
rate equations. For example, X = x? is autonomous,
but X = x? +tisnot.

Balance law The balance law states that the net rate of
change of the amount of a substance in a compartment
equals the net rate of flow in minus the net rate of flow
out.

Beats When two sinusoids of nearly equal frequencies are
added the result appears to be a high frequency si-
nusoid modulated by a low frequency sinusoid called
a beat. A simple example is given by the function

(sint)(sin10t), where the first sine produces an “am-
plitude modulation” of the second.

Bessel functions of the 1st kindThe Bessel function of the
first kind of order zero,

n
nl222n

isasolution of Bessel’s equation of order zero, and is
bounded and convergent for all s.

Bessel functions of the 2nd kind The Bessel function of
the second kind of order zero, Yy(s), is another so-
lution of Bessel’s equation of order zero. It is much
more complicated than J(s), and

BE =13+ (D

Yo(§) >0 as s— 0+

See Chapter 11 for a complete formula for Y(s) that
involves alogarithmic term, J(s), and a complicated
(but convergent) infinite series.

Bessel's equationBessel’s equation of order p > 0is
Sw"(S) +sw'(s) + (£ — pPPHhw=0

where p is anonnegative constant. Module 11 consid-
ersonly p = 0. See Chapter 11 for p > 0.

Bessel's equation, general solution oBessel’s  equation
of order zero is second order and linear. The genera
solution is the set of all linear combinations of J(s)
and Yo(S).

Bifurcation diagram A bifurcation diagram describes how
the behavior of a dynamical system changes as a pa
rameter varies. It can appear in studies of iteration or
of differential equations.

In the case of asingle real parameter, a bifurcation di-
agram plots a parameter versus something indicative
of the behavior, such as the variable being iterated (as
in Module 13, Nonlinear Behavior) or asingle variable
marking location and stability of equilibrium pointsfor
adifferential equation.

In iteration of a function of a complex variable, two
dimensions are needed just to show the parameter, but
different colors can be used to show different behav-
iors (asin Module 13, Complex Dynamics).



258

Glossary

Cantor Set, Cantor Dust A Cantor set was first detailed

by Henry Smith in 1875, but was named in honor of
Georg Cantor, the founder of set theory, after he used
this bizarre construction in 1883. Now Cantor sets are
found in many guises in discrete dynamical systems.
A Cantor set is a totally disconnected set, in afinite
space, with uncountably many points. A typical con-
struction is to delete a band across the middle of a set,
then to delete the middle of both pieces that are left,
and then to repeat this process indefinitely.
Julia sets (see glossary) for parameter values outside
the Mandelbrot set (see glossary) are Cantor dusts,
constructed by a similar algorithm. See Companion
Book for References.

Carrying capacity The carrying capacity K of an environ-
ment is the maximum number of individuals that the
environment can support at steady state. If there are
fewer individuals than the carrying capacity in the en-
vironment, the population will grow; if there are more
individuals, the population will decline.

A widely used model for population dynamics involv-
ing a carrying capacity is the logisitc ODE
dN
dt
wherer istheintrinsic growth rate constant.

—rN(1— N/K)

Cascade A cascade is a compartment model where the
“flow” through the compartments is all one direction.

Center A center is an equilibrium point of an autonomous
planar linear system for which the elgenval ues are con-
jugate imaginaries +iB, B # 0. All nonconstant orbits
of an autonomous planar linear system with a center
are simple closed curves enclosing the equilibrium.

Centering an equilibrium If p* isan equilibrium point of
the system X' = f(x) (so f(p*) = 0), then the change
of coordinates x = y + p* moves p* to the origin in
the y-coordinate system.

Chainrule The chain rule for differentiating a function
L(O(t), y(t)) with respect to t is

dL_oLdo  oLdy
dt 90 dt 9y dt
=Le0' + Lyy
= Loy +Lyy

Chaos Mathematical chaosisatechnical term that describes
certain nonperiodic behavior of a discrete dynamical
system (Module 13) or solutions to adifferential equa-
tion (Module 12). A system is said to be chaotic in a
region if al of the following are true.

e |t exhibits sensitive dependence on initial condi-
tions.

e Periodic unstable orbits occur amost every-
where.

e |terates of intervals get “mixed up.”

Chaotic behavior never repeats, revisits every neigh-
borhood infinitely often, but is not random. Each step
is completely determined by the previous step.
An equivalent list of requirements appears in Mod-
ule 12, Screen 1.4. Further discussion appears in
Chapter 13.

Characteristic equation The characteristic equation of a
square matrix A isdet(Al — A) = |Al — A| = 0. For
a2 x 2 matrix, thisreduces to A — tr AA +det A= 0
whose solutions, called eigenvalues of A are

. tr AL+ Vtr A—4det A
- 2
Chemical law of mass action The rate of areaction step is

proportional to the product of the concentrations of the
reactants.

Example: If one unit of species X produces one unit of
product Y in areaction step, the rate of the step is kx,
where k is a positive constant. Thus, we have

y = kx

X = —kx,

Example (Autocatalysis): If one unit of species X re-
acts with two units of Y and produces three units of Y
in an autocatalytic step, the reaction rate is

axyy= axy
where a is apositive constant. Thus, we have
y = 3axy’2 — 2axy’ = axy

because one unit of X is destroyed, while three units
of Y are created, and two are consumed.

X = —axy,

Combustion model The changing concentration y(t) of a
reactant in a combustion process is modeled by the
IVP

y=Y1-y), y0=a

where a is a small positive number that represents
a disturbance from the pre-ignition state y = 0.
R. E. O'Malley studied the problem in his book, Sin-
gular Perturbation Methods for Ordinary Differential
Equations (1991: Springer).

Compartment model A compartment model is a set of
boxes (the compartments) and arrows that shows the
flow of asubstance into and out of the different boxes.

0<t<2/a
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Component graphs A component graph of a solution of a

differential system is a graph of one of the dependent
variables as afunction of t.

Example: For the ODE system
X =F(X,Y)
y =G(xy)

the component graphs are the plots of a solution x =
X(t) and y = y(t) in the respective tx- and ty-planes.

Concentration The concentration of a substance is the

amount of the substance dissolved per unit volume of
solution.

Connected setA connected set is a set with no islands. In

the early 1980’'s Adrien Douady (Université Paris XI,
Orsay and Ecole Normale Supérieure) and John Hub-
bard (Cornell University) proved that the Mandelbrot
set (see Glossary) was connected. They did this by
showing that its exterior could be put in a one-to-one
correspondence with the exterior of adisk. They found
in the process that al the angles one might note while
walking around the boundary of the disk have spe-
cial analogs on the Mandelbrot set. Halfway around
the disk from the rightmost point corresponds to be-
ing at the tip of the Mandelbrot set, while one third or
two thirds the way around the disk corresponds to the
“neck” where the biggest ball attaches to the cardioid.

Conserved quantity A function E(q, y) isconserved along

a trajectory q = q(t), y = y(t), of asystem q =
f(a.y), y =0, y),if dE@(), y(t))/dt=0.

Astime changes, the value of E stays constant on each
trajectory, although the value will vary from onetrajec-
tory to another. The graph of each trgjectory inthe qy-
phase plane lies on one of the level sets E = constant.
This idea of a conserved quantity can be extended to
any autonomous system of ODESs. An autonomous
systemisconservativeif thereisafunction E that stays
constant along each trgjectory, but is nonconstant on
every region (i.e., varies from trajectory to tragjectory).

Cycle In adiscrete dynamical system, including a Poincaré

section, a cycle is a sequence of iterates that repeats.
The number of iteratesin acycleisits period.

For an autonomous differential system, a cycle is a
nonconstant solution x(t) such that x(t + T) = X(t),
for all t, where T is a positive constant. The smallest
value of T for acycleisits period.

For acyclein asystem of 2 ODEs, see Limit Cycle.

Damped pendulum A rea pendulum of length L is af-

fected by friction or air resistance that is a function

of L, 6, and ¢, and acts opposite to the direction of
motion.

Throughout the Linear and Nonlinear Pendulums sub-
module of Module 10, we assume that, if there is any
damping, it is viscous (see Viscous damping); i.e., the
damping forceisgiven by —bL6&. Theminussigntells
us that damping acts opposite to the velocity.

Module 4 makes amore detailed study of the effects of
damping on alinear oscillator, as does Module 11 for
the spring in the Robot and Egg.

Damping Damping can arise from several sources, includ-
ing air resistance and friction. The most common
model of damping is viscous damping—the damping
forceis assumed to be proportional to the velocity and
acts opposite to the direction of motion. See also New-
tonian damping.

Dense orbit Anorbit x(t) of asystem of ODESX = f(t, x)
isdensein aregion R of x-space if the orbit gets arbi-
trarily close to every point of R astime goes on.

That is, if X, isany point in R, and ¢ is any positive
number, then, at some time t;, the distance between
X(t1) and x; islessthan .

Determinant The determinant of the 2 x 2 matrix

a b
a=[¢ 4
isdet A=ad— bc.

Deterministic A system of ODEsissaid to be deterministic
if the state of the system at time t is uniquely deter-
mined by the state of the system at theinitial time.

For example, the singlefirst order ODE X = f (t, X) is
deterministic if f and df/dx are continuous functions
of t and X, asfor each set of initial data (to, X) thereis
exactly one solution x(t).

Thus, if you were to choose the same initial data a sec-
ond time and watch the solution curve trace out in time
again, you would see exactly the same curve.

Dimensionless variablesSuppose that a variable x is
measured in units of kilograms and that x varies
from 10 to 500 kilograms. If we set y =
(x kilograms) /(100 kilograms), y is dimensionless,
and 0.1 < y < 5. The smaller range of valuesis useful
for computing. The fact that y has no units is useful
because it no longer mattersif the units are kilograms,
grams, or some other units.

When variables are scaled to dimensionless quantities,
they are typically divided by a constant somewhere
around the middle of the expected range of values.
For example, by dividing a chemical concentration by
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a “typical” concentration, we obtain a dimensionless
concentration variable. Similarly, dimensionless time
is obtained by dividing ordinary time by a “standard”
time.

Direction field A direction field is a collection of line seg-
ments which shows the slope of the trgjectories for an

autonomous ODE system
dx
—=F
at X, y)
dy
T G(x,y)

at a representative grid of points. An arrowhead on a
segment shows the direction of motion.

Disconnected Julia setA disconnected Julia set is actually
a Cantor dust. It is composed entirely of totaly dis-
connected points, which means that it is almost never
possible to land on a point in the Julia set by clicking
on apixel. You will probably find that every click you
can make starts an iteration that goes to infinity, only
because you cannot actually land on an exact enough
value to show a stable iteration.

Discrete dynamical systemA discrete dynamical system
takes the form u,,; = f(u,), where the variable u,
gives the state of the system at “time” n, and u,.; is
the state of the system at time n+ 1. See Module 13.

Eigenvalues The eigenvalues of amatrix A are the numbers
A for which

Av = \v

for some nonzero vector v (the vector v is called an
eigenvector). The eigenvalues A of a2 x 2 matrix A
are the solutions to the characteristic equation of A:

A2—trAL+detA=0

A_trAi,/(trA)2—4detA
- 2

where tr A is the trace of A, and det A is the determi-
nant of A. If alinear or linearized system of ODEsis
Z = A(z— p*), and if thereal parts of the eigenvalues
of A arepositive, then trgjectories flow away from the
equilibrium point, p*. If the real parts are negative,
then trajectories flow toward p*.

Eigenvector An eigenvector of amatrix Aisanonzero vec-
tor, v, that satisfies Av = Av for some eigenvalue .
The ODE Architect Tool calculates eigenvalues and
eigenvectors of Jacobian matrices at any equilibrium
point of an autonomous system (linear or nonlinear).

Eigenvectors play a strong role in the local geometry
of phase portraits at an equilibrium point.

Energy In physicsand engineering, energy is defined by
E = kinetic energy + potential energy

where kinetic energy is interpreted to be the energy of
motion, and the potential is the energy due to some
external force, such as gravity, or (in electricity) a bat-
tery, or amagnet. If energy is conserved, i.e., stays at
a constant level, then the system is said to be conser-
vative.

If we are dealing with the autonomous differential sys-
tem

y =-v(X)

we can define an “ energy function” by

(®)

X =Yy,

E=%f+VU)

where dV/dx = v(x). Note that E is constant
along each trajectory, because dE/dt = ydy/dt +
dV/dx)(dx/dt) = y(—v(x)) + v(X)(y) = 0, where
the ODEs in system (5) have been used. The term
(1/2)y? is the “kinetic energy”. V(x) is the “poten-
tial energy” in this context. See Chapter 10 for more
on these ideas.

Epidemic An epidemic occurs in an epidemilogical model
if the number of infectives, | (t), increases above its
initial value, lo. Thus, an epidemic occursif 1I'(0) > 0.

Equilibrium point  An equilibrium point p* in phase (or
state) space of an autonomous ODE, isapoint at which
all derivatives of the state variables are zero—a sta-
tionary point—a steady-state value of the state vari-
ables. For example, for the autonomous system,

y =G(x,y)

if F(x*,y*) =0, G(x*, y*) =0, then p* = (X*, y*) is
an equilibrium point, and x = x*, y=y* (foral t) is
aconstant solution.

For a discrete dynamical system, an equilibrium point
p* isonefor which f(p*) = p*, sothat p;, , = pj, for
al n; p* isalso called afixed point of the system.

X = F(X,Y),

Estimated error For the solution u(t) of the IVP y =
f(t,y), y(to) = Yo, thelocal error at the nth step of
the Euler approximation is given by

e, = Taylor series of u(t) — Euler approximation

— %hzu//(tn) + h3u///(tn) 4o
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If the true solution, u(t), isnot known, we can approx-
imate e, for small h by

1
e, ~ Taylor approx. — Euler approx. = Ehzu”(tn)

Euler's method Look at the IVPY = f(t,y), y(to) = Yo.
Euler's method approximates the solution y(t) at dis-
crete t values. For step sizeh, put .1 =ty + h for
n=0,1,2,.... Euler’'smethod approximates

y(t), y(t2), ...
by the values

Y1, Y2, ...

where
Yot1 = Yn+hf(th, yn), forn=0,1,2,...

Existence and uniquenessA basic uniqueness and exis-
tence theorem says that, for the IVPR,

X =F(Xy,t), y =Gy,
X(to) = Xo, y(to) = Yo

a unique solution x(t), y(t) exists if F, G, aF/ax,
aF/ay, 3G/0x, and 9G/dy are al continuous in some
region containing (Xo, Yo)-

Fixed point A fixed point, p*, of a discrete dynamical sys-
tem is a point for which X,11 = f(X,) = X,. That is,
iteration of such a point simply gives the same point.
A fixed point can aso be called an equilibrium or a
steady state. A fixed point may be asink, asource, or a
saddle, depending on the character of the eigenvalues
of the associated linearization matrix of the iterating
function.

Forced damped pendulum A forced, viscously damped
pendulum has the modeling equation

mxX’ + bxX + ksinx= F(t)

The beginning of Module 10 explains the terms and
parameters of this equation using 6 instead of x. Mod-
ule 12 examines a case where chaos can result, with
b=01 m=1 k=1 A=1 and F(t) = cost.
All three submodules of Module 12 areinvolved in ex-
plaining the behaviors, and the introduction to the Tan-
gled Basins submodule shows a movie of what hap-
pens when b isvaried from 0 to 0.5.

Forced pendulum Some of the most complex and curious
behavior occurs when the pendulum is driven by an
externa force. In Module 10, The Pendulum and its

Friends, you can experiment with three kinds of forces
in the Linear and Nonlinear Pendulums submodule,
and an internal pumping force in the Child on a Swing
submodule. But, for truly strange behavior, take alook
at Module 12, Chaos and Control.

Fractal dimension Benoit Mandelbrot in the early 1980's

coined the word “fractal” to apply to objects with di-
mensions between integers. The boundary of the Man-
delbrot set (see glossary) is so complicated that its
dimension is surely greater than one (the dimension
of any “ordinary” curve). Just how much greater re-
mained an open question until 1992 when the Japanese
mathematician Mitsuhiro Shishikura proved it is actu-
ally dimension two!

Frequency The frequency of afunction of period T is1/T.

Another widely used term is “circular frequency”,
which is defined to be 27/ T. For example, the peri-
odic function sin(3t) has period T = 257/3, frequency
3/(2w), and circular frequency 3.

General solution Consider the linear system X = Ax+u

[where x has 2 components, A is a2 x 2 matrix of
constants, and u is a constant vector or afunction only
of t]. Let A have distinct eigenvalues A4, A, with cor-
responding eigenvectors v, v,. All solutions of the
system are given by the so-called general solution:

X(t) = Cie'tyy + Cret2ty, + X

where X is any one particular solution of the system
and C; and C, are arbitrary constants.. If u is a con-
stant vector, then X = p*, the equilibrium of the sys-
tem. If x has more than two dimensions, terms of the
same form are added until all dimensions are covered.
Notethat, if u=0, p* = 0isan equilibrium.

Geodesic Any smooth curve can be reparameterized to a

unit speed curve x(t), where |X(t)|] = 1. Unit-speed
curves X(t) on a surface are geodesics if the accelera-
tion vector X’ (t) is perpendicular to the surface at each
point x(t).

It can be shown that a geodesic is locally length-
minimizing, so, between any two points sufficiently
close, the geodesic curve is the shortest path.

Gltract The gastro-intestina (GI) tract consists of the

stomach and the intestines.

Gravitational force The gravitational force is the force on

a body due to gravity. If the body is near the earth’s
surface, the force has magnitude mg, where mis the
body’s mass, and the force acts downward. The value
of acceleration due to gravity, g, is 32 ft/sec® (English
units), 9.8 meters/sec® (metric units).
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Great circle A great circle on a sphere is an example of
ageodesic. You can test this with a ball and string.
Hold one end of the string fixed on a ball. Choose an-
other point some distance away, and find the geodesic
or shortest path by pulling the string tight between the
two points. You will find that it alwaysisalong acircle
centered at the center of the ball, which is the defini-
tion of agrest circle.

Hooke’s law Robert Hooke, an English physicist in the sev-
enteenth century, stated the law that a spring exerts a
force, on an attached mass, which is proportional to
the displacement of the mass from the equilibrium po-
sition and points back toward that position.

Initial condition Aninitial condition specifies the value of
a state variable at some particular time, usually at
t=0.

Initial value problem An initial value problem (1\VVP) con-
sists of a differential equation or a system of ODEs
and aninitial condition specifying the value of the state
variables at some particular time, usualy at t = 0.

Integral surfaces The surface Sdefined by F(x, y,z) = C,
where C isa constant, is an integral surface of the au-

tonomoussystem
X=1xy,2, yY=0XV%2, Z=hXxyY2
if

:?)—';er%ng%—Zh:O

for al x, y, z. We get a family of integral surfaces by
varying the constant C. An orbit of the system that
touches an integral surface stayson it. The function F
iscalled an integral of the system.

For example, the family of spheres
F=x2+y?+ Z = constant
isafamily of integral surfaces for the system
X =y, y =z—X, Z=-y
because

2xX +2yYy + 227 = 2xy+ 2y(z— X) +2z(—y) =0

Each orbit lies on a sphere, and each sphereis covered
with orbits.

Intermediate Anintermediateisachemical produced inthe
course of areaction which then disappears as the reac-
tion comes to an end.

Intrinsic growth rate At low population sizes, the net rate
of growth isessentially proportional to population size,
so that N =rN. The constant r is called the intrinsic
growth rate constant. It gives information about how
fast the population is changing before resources be-
come limited and reduce the growth rate.

Iteration Iteration generates a sequence of numbers by us-
ing a given number X and the rule x,.1 = f(X,) ,
where f (x) isagiven function. Sometimes, x, iswrit-
ten as x(n).

IVP Seeinitial value problem.

Jacobian matrix The system X = F(X,y), Y = G(X,Y),
has the Jacobian matrix

oF  OF
| x ey
I= G G
X oy

The eigenvalues and eigenvectors of this matrix at an
equilibrium point p* help determine the local geome-
try of the phase portrait.

Jacobian matrices J can be defined for autonomous
systems of ODEs with any number of state variables.

The ODE Architect Tool will find eigenvalues and
eigenvectors of J at any equilibrium point.

Julia Set In complex dynamics, a Julia set for a given func-
tion f(z) separates those points that iterate to infinity
from those that do not. See the third submodule of
Module 13 Dynamical Systems.

Julia sets were discovered about 1910 by two French
mathematicians, Pierre Fatou and Gaston Julia. But,
without computer graphics, they were unable to see
the details of ragged structure that today display Can-
tor sets, self-similarity and fractal properties.

Kinetic energy of rotation The kinetic energy of rotation
of agyrating body is

1
E= E(Ilwf—l— L3 + 1303)

where |; and w; are, respectively, the moment of iner-
tiaand the angular velocity about the body axis, j, for
i=1,23.

Lift The lift force on a body moving through air is a force
that acts in a direction orthogonal to the motion. Its
magnitude may be modeled by a term which is pro-
portional to the speed or to the square of the speed.
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Limit cycle A cycleisaclosed curve orbit of the system

X' =F(x,y)
Yy =6xy)

A cycleisthe orbit of a periodic solution.

An attracting limit cycle is a cycle that attracts all
nearby orbits as time increases, and a repelling limit
cycleif it repels al nearby orbits as time increases.

Linearization For anonlinear ODE, alinearization (or lin-

ear approximation) can be made about an equilibrium,
p* = (x*, y*), asfollows:

For X = F(x,y), Y = G(X, Y), thelinearized system
isZ = J(z— p*), where J isthe Jacobian matrix eval-
uated at p*, i.e.,

[-15 2] [
vl % ] by
The eigenvalues and eigenvectors of the Jacobian ma-
trix, J, at an equilibrium point, p*, determine the ge-
ometry of the phase portrait close to the equilibrium
point p*. These ideas can be extended to any au-

tonomous system of ODEs. A parallel definition ap-
pliesto adiscrete dynamica system.

Linear pendulum Pendulum motion can be modeled by

a nonlinear ODE, but there is an approximating lin-
ear ODE that works well for small angles 6, where
sind ~ 6. In that case, the mathematics is the same
asthat discussed for the mass on aspring in Module 4.

Linear system A linear system of first-order ODEs has

only terms that are linear in the state variables. The
coefficients can be constants or functions (even non-
linear) of t.
Example: Hereis alinear system with state variables
x and y, and constant coefficientsa, b, ... , h:

X =ax+by+c

y = fx+gy+h
This can be written in matrix/vector form as:

Z=Az+k

z:[ﬂ, A:[{;l g] k=[c h

The example can be extended to n state variables and
an n x nmatrix A. If z= p* isan equilibrium point
of alinear system, then k = — Ap* and the system may
be written as

Z=Az-p)

What is special about a constant coefficient linear sys-
temisthat linear algebra can be applied to find the gen-
eral solution. See General solution (for linear ODES).

Lissajous figures Jules Antoine Lissgjous was a 19th-

century French physicist who devised ingenious ways
to visualize wave motion that involves more than one
frequency. For example, try plotting the parametric
curve x; = Sin2t, X; = sin3t in the x;X,-plane with
0<t<320.

The graph of asolution x, = X3 (t), X, = Xa(t) of

[Xl] =B [Xl] , for Ba2 x 2 constant matrix
Xo X2

in the x;x;-plane is a Lissgous figure if the vector
(x1(0), x2(0)) is not an eigenvector of B.

See also “Normal modes and frequencies.”

Local IVP One-step methods for approximating solutions

tothe VP

y =y, Yy(to) = Yo

generate the (n + 1)st approximation, y,,1, from the
nth, y,, by solving the local IVP
u=fu,  ult) =y

Thisis exactly the same ODE, but the initial condition
isdifferent at each step.

Logistic model The logistic equation is the fundamental

model for population growth in an environment with
limited resources. Many advanced models in ecology
are based on the logistic equation.

For continuous models, the logistic ODE is

dP P

wherer isthe intrinsic growth rate constant, and K is
the carrying capacity.
For discrete models, the logistic map is

fL(X) = AX (1— %)

where A isthe intrinsic growth rate constant, and K is
again the carrying capacity.

Mandelbrot Set In complex dynamics, for f.(z) = 22 +c,

the Mandel brot set isabifurcation diagram in the com-
plex c-plane, computed by coloring all c-values for
which z does not iterate to infinity. It acts as a cata-
log of all the Julia sets for individual values of c.
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The boundary of the Mandelbrot set is even more com-
plicated than the boundary of a given Julia set. More
detail appears at every level of zoom, but no two re-
gions are exactly self-similar.

Two mathematicians a8 UCLA, R. Brooks and
J. P. Matelsky, published the first picture in 1978. It
isnow called the Mandel brot set, because Benoit Man-
delbrot of the Thomas J. Watson IBM Research Center
made it famous in the early 80s.

You can experiment with the Mandelbrot set in Mod-
ule 13, on screens 3.1 and 3.4.

Matrix An n x n square matrix A of constants, where n is

apositive integer, isan array of numbers arranged into
n rows and n columns. The entry where the ith row
meets the jth column is denoted by a;.

In ODEs we most often see matrices A as the array of
coefficients of alinear system. For example, hereisa
planar linear system with a2 x 2 coefficient matrix A:

X =2x—3y 2 -3
y = 7x+4y 17 4

Mixing A function f : R— Ris“mixing” if given any two

intervals | and J there existsan n > 0 such that the nth
iterate of | intersects J.

Modeling A mathematical model isacollection of variables

and equations representing some aspect of a physi-

cal system. In our case, the equations are differential

equations. Stepsinvolved in the modeling process are:
1. State the problem.

2. ldentify the quantities to which variables are to
be assigned; choose units.

3. Statelawswhich govern the relationships and be-
haviors of the variables.

4. Trandlate the laws and other data into mathemat-
ical notation.

5. Solve the resulting equations.

6. Apply the mathematical solution to the physical
system.

7. Test to see whether the solution is reasonable.

8. Revise the model and/or restate the problem, if
necessary.

Moment of inertia The moment of inertia, |, of a body B

about an axisis given by

I:/f/ r2p(x,y, 2 dV(X, Y, 2)
B

wherer isthe distance from ageneral point in the body
to the axis and p is the density function for B. Each

moment of inertia plays the same role as mass doesin
nonrotational motion, but, now, the shape of the body
and the position of the axis play arole.

Newtonian damping A body moving through air (or some

other medium) is slowed down by aresistive force that
acts opposite to the body’s velocity, v. In Newtonian
damping (or Newtonian drag), the magnitude of the
forceis proportional to the square of the magnitude of
the velocity, i.e., to the square of the speed:

force= —k|v|v for some positive constant k

Newton’s law of cooling The temperature, T , of a warm

body immersed in a cooler outside medium of temper-
ature To,; changes at arate proportional to the temper-
ature dfference,

where T, is assumed to be unaffected by T (unless
stated otherwise). The same ODE works if Toy is
larger than T (Newton's law of warming).

Newton’s second lawNewton's second law states that, for

abody of constant mass,

mass - accel eration = sum of forces acting on body

Thisis adifferential equation, because acceleration is
the rate of change of velocity, and velocity is the rate
of change of position.

Nodal equilibrium The behavior of the trajectories of an

autonomous system of ODEs is nodal at an equilib-
rium point if al nearby trajectories approach the equi-
librium point with definite tangentsast — +oo (nodal
sink), or ast — —oo (nodal source).

If the system is linear with the matrix of coefficients
A, then the equilibrium is a nodal sink if al eigenval-
ues of A are negative, anoda sourceif all eigenvalues
are positive. This also holds at an equilibrium point
of any nonlinear autonomous system, where A is the
Jacobian matrix at the equilibrium point.

Nonautonomous ODE A system of ODEs with t occurring

explicitly in the expressions for the rates is nonau-
tonomous.

Nonlinear center point An equilibrium point of a nonlin-

ear system, X = F(X,y), Y = G(X, y), is acenter if
all nearby orbitsare simple closed curves enclosing the
equilibrium point.
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Nonlinear ODE A nonlinear ODE or system has at least
some dependent variables appearing in nonlinear terms
(e.g., xy, sinx, 4/X). Thus, linear algebra cannot be
applied to the system overall. But, near an equilibrium
(of which there are usually more than one for a non-
linear system of ODES), a linearization is (usualy) a
good approximation, and allows analysis with the im-
portant roles of the eigenval ues and eigenvectors.

Nonlinear pendulum Newton’s laws of motion give us
force = mass x acceleration

In the circular motion of a pendulum of fixed length,
L, a angle 6, acceleration is given by L6". The only
forces acting on the undamped pendulum are those due
tension in therod and gravity. The component of force
in the direction in which the pendulum bob is moving:

F =mLY’ = —mgsirp

where m is the mass of the pendulum bob, and g is
the acceleration due to gravity. The mass of the rigid
support rod is assumed to be negligible.

Normal modes and frequenciesThe norma modes of a
second order system Z' = Bz(where Bisa2 x 2 ma-
trix with negative eigenvalues u,, 1,) are eigenvectors
v1, v Of B. The general solutionisall linear combina-
tions of the periodic oscillations z, z, z3, 2, along the
normal modes.

Z; = v1C0Sw1it, 2z = vlsina)lt,

Z3 =V, COSwot, Zs = v Sinwot

where w; = /=1, wz = /=2, aethe norma fre-
quencies.
See also “ Second order systems.”

Normalized ODE Inanormalized differential equation, the
the highest order derivative appears alone in a separate
term and has a coefficient equal to one.

ODE See ordinary differential equation.
On-off function See square wave.
Orbit Seetrgjectory.

Order of the method A method of numerical approxima-
tionto asolution of an IVPisorder p, if there existsa
constant C such that

max (|global error|) < ChP

ash— 0.

Ordinary differential equation An ordinary differential
equation (ODE) is an equation involving an unknown
function and one or more of its derivatives. The order

of the ODE isthe order of the highest derivative in the

ODE. Examples:
dy )
Tl 2t, (first order, unknown y(t))
% =2y+t, (first order, unknown y(t))

X" —4xX 4+ 7X=4sin2t,

Oscillation times Oscillation times of a solution curve x(t)
of an ODE that oscillates around x = O are the times
between successive crossings of x = 0 in the same di-
rection. If the solution is periodic, the oscillation times
all equal the period.

Oscillations A scalar function x(t) oscillates if x(t) alter-
nately increases and decreases as time increases. The
oscillation is periodic of period T if x(t+ T) = x(t)
for dl t and if T is the smallest positive number for
which thisistrue.

Parametrization Each coordinate of a point in space may
sometime be given in terms of other variable(s) or pa-
rameter(s). A single parameter suffices to describe a
curve in space. Two parameters are required to de-
scribe atwo-dimensional surface.

Period The period of a periodic function u(t) is the small-
est time interval after which the graph of u versus t
repesats itself. It can be found by estimating the time
interval between any two corresponding points, e.g.,
successive absolute maxima
The period of acyclein adiscrete dynamical systemis
the minimal number of iterations after which the entire
cycle repeats.

Periodic phase plane The periodic xX-phase plane for the
pendulum ODE x” = 0.1x' + sinx = cost is plotted
periodically in x. An orbit leaving the screen on the
right comes back on the left. In other words, the hor-
izontal axis represents x mod 2zz. This view ignores
how many times the pendulum bob has gone over the
top. See Module 12, screen 1.4.

Phase angle The phase angle, §, of the oscillatory function
u(t) = Acos(wot + 8) shiftsthe the graph of u(t) from
the position of a standard cosine graph u = cosapt by
the amount §/wo . The phase angle may have either
sign and must liein the interval —mr/ap < § < 7/ wo.

Phase plane The phase plane, or state plane, isthe xy plane
for the dependent variables x and y of the system

X =F(X,y)
y =G(x,y)

(second order, unknown x(t))
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The trajectory, or orbit, of asolution

x=X(1), y=y®

of the system isdrawn in this plane with t as a param-
eter. A graph of trgjectories is called a phase portrait
for the system.

The higher dimensional analog is called phase space,
or state space.

Pitch The pitch (frequency) of an oscillating function u(t)
isthe number of oscillations per unit of timet.

Poincaré Henri Poincaré (1854-1912) was one of the
last mathematicians to have a universal grasp of all
branches of the subject. He was also a great popular
writer on mathematics. Poincaré’'s books sold over a
million copies.

Poincaré section A Poincaré section of asecond order ODE
X" = f(x, X, 1), where f hasperiod T int, isastrobe
picture of the xX-phase plane that plots only the points
of an orbit that occur at intervals separated by a period
of T time units, i.e., the sequence of points

Po = (x(0), X'(0))
Pr=(x(T), X(T))

P, = (X(nT), X(nT))

This view of phase space was developed by Henri
Poincaré in the early twentieth century, because it is
especialy useful for analyzing nonautonomous differ-
ential equations. For further detail, see the entire sec-
ond submodule of Module 12, Chaos and Control.

A Poincaré section is a two-dimensional discrete dy-
namical system. Another example of such asystem is
discussed in some detail in the second submodule of
Module 13.

Population quadrant In a two-species population model,
the population quadrant of the phase plane is the one
where both dependent variables are non-negative.

Post-image In adiscrete dynamical system, a post-image of

aset § isanother set of points, S , where the iterates
of § land in one step.
For a Poincaré section of an ODE, S would be the set
of points arriving at S, when the ODE is solved from
S over one time period of the Poincaré section. See
submodule 3 of Module 12.

Pre-image In adiscrete dynamical system, apre-image of a
set § isanother set of points, S, that iterateto S in
one step.

For a Poincaré section of an ODE, S_; would be the
set of points arriving a8 S when the ODE is solved
from S_; over onetime period of the Poincaré section.
See submodule 3 of Module 12.

Products The products of a chemical reaction are the
species produced by a reaction step. The end prod-
ucts are the species that remain after all of the reaction
steps have ended.

Proportional Two variables are proportiona if their ratio
is constant. Thus, the circumference, c, of acircleis
proportional to the diameter, because c/d = 1.

The basic linear differential equation

dy

= _k
at

represents a quantity y whose derivative is propor-

tional to its value.

Random Random motion is the opposite of deterministic
motion. In random motion, there is no way to predict
the future state of a system from knowledge of the ini-
tial state. For example, if you get heads on the first toss
of acoin, you cannot predict the outcome of the fifth
toss.

Rate constant Example: The constant coefficients a, b, and
cin the rate equation

X (t) = ax(t) — by(t) — cXé(t)
are often called rate constants.

Rates of chemical reactionsThe rate of a reaction step is
the speed at which a product species is created or
(equivalently) at which a reactant species is destroyed
in the step.

Reactant A chemical reactant produces other chemicalsin
areaction.

Resonance This phenomenon occurs when the amplitude of
a solution of aforced second order ODE becomes ei-
ther unbounded (in an undamped ODE) or relatively
large (in adamped ODE) after long enough times.

Rotation system As Lagrange discovered in the 18th cen-
tury, the equations of motion governing a gyrating
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where |; isthe principal moment of inertia, and wj is
the component of angular velocity about the jth body
axis.

Saddle An equilibrium point of aplanar autonomous ODE,
or afixed point of adiscrete two-dimensional dynami-
cal system, with the property that, in one direction (the
unstable one), trgjectories move away from it, while,
in another direction (the stable one), trajectories move
toward it.

At a saddle of an ODE, one eigenvalue of the associ-
ated linearization matrix must be real and positive, and
at least one eigenvalue must be real and negative.

Scaling Before computing or plotting, variables are often
scaled for convenience.

See also “Dimensionless variables.”

Second order systemsSecond order systems of the form
z’ = Bzoften arise in modeling mechanical structures
with no damping, (and hence, no loss of energy). Here,
zisan n-vector state variable, Z' denotes d?z/dt?, and
Bisann x n matrix of real constants.

Although numerical solversusually requirethat wein-
troduce v = Z and enter the system of 2n first order
ODEs, Z = v, v' = Bz we can learn alot about solu-
tionsdirectly from the eigenvalues and eigenvectors of
the matrix B.

See also “Normal modes and frequencies’ and
Screen 3.4 in Module].

Sensitivity An ODE model contains elements, such as ini-
tiad data, environmental parameters, and functions,
whose exact values are experimentally determined.
The effect on the solution of the model ODEs when
these factors are changed is called sensitivity.

Sensitivity to initial conditions A dynamical system has
sensitive dependence on initial conditions if every pair
of nearby points eventually gets mapped to points far

apart.
Separatrix Separatrices are trgjectories of a planar au-

tonomous system that enter or leave an equilibrium
point p with definite tangents ast — 400, and divide

a neighborhood of p into distinct regions of quite dif-
ferent long-term trajectory behavior as t increases or
decreases.

For more on separatrices see “ Separatrices and Saddle
Points” in Chapter 7.

A sink isan equilibrium point of a system of ODEs, or
afixed point of a discrete dynamical system, with the
property that all trajectories move toward the equilib-
rium.

If al eigenvalues of the associated linearization matrix
at an equilibrium of a system of ODEs have negative
real part, then the equilibrium isasink.

Sink

Slope The slope of a line segment in the xy-plane is given
by the formula
_ changeiny
" changein x
Theslope of afunction y = f (x) at apoint isthe value
of the derivative of the function at that point.
Slope field Seedirection field.

Solution A solution to a differential equation is any func-
tion which gives a true statement when plugged into
the equation. Such afunction is called a particular so-

lution. Thus,
y=t"-2
isa particular solution to the equation
dy
— =2t
dt

The set of al possible solutions to a differential equa-
tion is called the general solution. Thus,

y=t*+C
isthe general solution to the equation

dy

— =2t

dt

Source A source is an equilibrium of a system of ODEs,

or afixed point of adiscrete dynamical system, with
the property that all trajectories move away from the
equilibrium.
If al eigenvalues of the associated linearization matrix
at an equilibrium of a system of ODES have positive
real part, then the equilibrium is a source.

Spiral equilibrium An equilibrium point of a planar au-
tonomous system of ODEsisaspiral point if all nearby
orbits spiral toward it (or away from it) as time in-
creases.
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If the system islinear with the matrix of coefficients A,
then the equilibrium is a spiral sink if the eigenvalues
of A are complex conjugates with negative rea part,
a spiral source if the real part is positive. This aso
holds at an equilibrium point of any nonlinear planar
autonomous system, where A isthe Jacobian matrix at
the equilibrium.

Spring A Hooke's law restoring force (proportional to dis-
placement, x, from equilibrium) and a viscous damp-
ing force (proportional to velocity, but oppositely di-
rected) act on a body of mass m at the end of spring.
By Newton's Second Law,

mxX' = —kx— bx
where k and b are the constants of proportionality.

Spring force The spring force is often assumed to obey
Hooke's |law—the magnitude of the force in the spring
is proportional to the magnitude of its displacement
from equilibrium, and the force acts in the direction
opposite to the displacement.

The proportionality constant, k, is called the spring
congtant. A large value of k corresponds to a stiff
spring.

Square wave An on-off function (also called a sgquare
wave) is a periodic function which has a constant
nonzero value for a fraction of each period; otherwise,
it hasavalue of 0. For example, y = ASqWave(t, 6, 2)
is a square wave of amplitude A and period 6, which
is“on” for thefirst 2 units of its period of 6 units, then
is off the next 4 time units.

Stable An equilibrium point p* of an autonomous system
of ODEs s stable if trajectories that start near p* stay
near p*, as time advances. The equilibrium point
p* = 0 of thelinear system Z = Az, where Aisama
trix of real constants, is stable if al eigenvalues of A
are negative or have negative real parts.

State space The phase plane, or state plane, is the xy-plane
for the dependent variables x and y of the system

X = F(xy)
y =G(x.y)
The trajectory, or orbit, of asolution
X =X(1), y=y®

of the system isdrawn in this plane with t as a param-
eter. A graph of trajectories is called a phase portrait
for the system.
The higher dimensional analog is called phase space,
or state space.

State variables These are dependent variables whose val-
ues at a given time can be used with the modeling
ODEsto determine the state of the system at any other
time.

Steady state A steady state of a system of ODEsis an equi-
librium position where no state variable changes with
time.

Surface A surface of a three-dimensional object is just its
two- dimensional “skin,” and does not include the
space or volume enclosed by the surface.

Taylor remainder For an n+ 1 times differentiable func-
tion u(t), the difference (or Taylor remainder)

ut) — [ute) + hu' (tg) +--- + %h”u“‘) (to) +---]

can be written as

GRS

for somecintheinterva [to, to + h], afact which gives
useful estimates.

Taylor series expansionFor an infinitely differentiable
function u(t), the Taylor series expansion at t, for
u(to+h)is

1 1
U(to) + N (to) + SH°U"(to) + - + h"™ (to) + - -

Taylor series method Look at the IVP y = f(t,y),
y(to) = Yo. For a step size h, the three-term Tay-
lor series method approximates the solution y(t) at
thya=th+h,forn=0,1,2,...,usng theagorithm

1
Y1 = Yo+ hf(tn, yo) + Ehz f(th, Yn)

Trace Thetrace of asquare matrix isthe sum of itsdiagonal

entries. So
a b
tr[C d] =a+d

Trace-determinant parabola The eigenvalues 23, A, of a
2 x 2 matrix A are given by

tr A+ Vtr2 A—4det A
2

The trace-determinant parabola, 4det A = tr* A, di-
vides the tr A — det A plane into the upper region
where A’s eigenvalues are complex conjugates and the
lower region where they arereal. The two eigenvalues
arereal and egqual on the parabola.

1, A2 =
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Trajectory A trajectory (or orbit, or path) is the paramet-
ric curve drawn in the xy-plane, called the phase plane
or state plane, by x = x(t) and y = y(t) ast changes,
where x(t), y(t) isasolution of

X =F(XV,1)
Yy =G(X ¥, 1)

The trajectory shows how x(t) and y(t) play off
against each other as time changes.

For a higher dimensional system, the definition ex-
tendsto parametric curvesin higher dimensional phase
space or state space.

Unstable Anequilibrium point p* of an autonomous system
of ODEsisunstableif itisnot stable. That meansthere
isaneighborhood N of p* with the property that, start-
ing inside each neighborhood M of pf, thereisat least
one trajectory that goes outside N as time advances.

Vector A vector is adirected quantity with length. In two
dimensions, a vector can be written in terms of unit
vectorsi and I directed along the positive x and y axes.

Viscous damping A body moving through air (or some
other medium) is slowed down by a resistive force

that acts opposite to the body’s velocity, v. In viscous
damping (or viscous drag), the force is proportional to
the velocity:

force= —kv

for some positive constant k.

Wada property The Wada property, as described and illus-
trated on Screen 3.2 of Module 12 isthe fact that:

Any point on the boundary of any one of the
areas describe on Screen 3.2 is also on the
boundary of al the others.

The geometry/topology example constructed by Wada
was the first to have this property; we can now show
that the basins of attraction for our forced, damped
pendulum ODE have the same property. See Mod-
ule 12 and Chapter 12.

All we know about Wadais that a Japanese manuscript
asserts that someone by that name is responsible for
constructing this example, showing that for three ar-
eas in aplane, they can become so utterly tangled that
every boundary point touches all three areas!



Regular Singular Points 207

t-x
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Figure 11.1: Solutions of ODE (6) for k=9, x(0) =1, X(0) =0,and C=0, 3, 6,
9, 12, 15. Which is the C = 15 curve?.

in the series, or by using a numerical solver to solve the corresponding IVP.
ODE Architect was used to graph solutions of ODE (6) for several values of
C (Figure 11.12).

What if tg is notan ordinary point for the ODEx” + p(t)xX + q(t)x= 0,
that is, what if p(t) or g(t) is not analytic aty? For example, in the ODE
X"+ x/(t—1) =0, q(t) is not analytic ato = 1. Such a point is said to be
a singular pointof the ODE. For exampleg = 1 is a singular point for the
ODE X’ + x/(t — 1) = 0. Next we show how to deal with ODEs with certain
kinds of singular points.

O Ist=0an ordinary point or a singular point®f + t>x = 0? What about
X"+ (sint)x= 0 andx” + x/t = 0?

[0 Regular Singular Points

A singular point of the ODEX"(t) + p(t)X'(t) 4+ q(t)x(t) = 0 is aregular
singular pointif both (t — to) p(t) and(t — to)2q(t) are analytic ato. In this
case we'll have to modify the method to find a series solution to the ODE.

O Ist =0 a regular singular point of” 4+ X'/t + x = 0? What about
X"+ X 4+ x/t? =0 andx” + X + x/t3=0?
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D Assume that the roots of
the indicial equation are real
numbers.

D The second summation is
called theFrobenius series

D Consult the references for

detailed instructions on how to
find the coefficients,.

Since (t — to) p(t) and (t — tg)2q(t) are analytic aty, they have power
series expansions centeredat

(t—to) p(t) = Po+ Pi(t —to) + Pa(t — to)? + - --
(t—1t0)%q(t) = Qo+ Qu(t —to) + Qa(t — to)? + - --

As we shall soon see, the constant coefficieR§sand Qg, in these two series
are particularly important. The roots of the quadratic equation (called the
indicial equation
rr—1+Pr+ Q=0 (8)
are used in solution formula (9) below.
A theorem due to Frobenius tells us how to modify our original method

of constructing power series solutions so that we can obtain series solutions
near regular singular points.

Frobenius Theorem. If ty is a regular singular point of the secondt
order differential equatior” (t) + p(t)X (t) + q(t)x(t) = 0, then there
is at least one series solutiontabf the form

X1(t) = (t— tO)rl Z an(t— tO)n — Z an(t— to)n+rl (9)
n=0 n=0

wherer is the larger of the two roots andr, of the indicial equation.

The coefficients, can be determined in the same way as in the earlier
example: differentiate twice, substitute the seriesyfar px; andx] into the
given differential equation, and then find a recurrence formula.

Here are a few things to keep in mind when finding a Frobenius series.

1. The roots of the indicial equation may not be integers, in which case the
series representation of the solution would not be a power series, but is
still a valid series.

2. If ry —ry is not an integer, then the smaller ragtof the indicial equa-
tion generates a second solution of the form

Xo(t) = (t—19)™ > "bn(t —to)"
n=0

which is linearly independent of the first solutigpn(t).
3. Whenr; —r; is an integer, a second solution of the form

o
Xa(t) = Cxa (D) IN(t —to) + »_bn(t —tg)™"
n=0
exists, where the values of the coefficelntsare determined by finding
a recurrence formula, ar@is a constant. The solution(t) is linearly
independent ok, (t).
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[1 Bessel Functions

|:| If tis very large, Bessel's
equation looks like the harmonic
oscillator equationx’ + x = 0.

|:| The roots of the indicial
equation are ar@ and—p.

|:| Consult the references for
the derivation of the formula for

Jp(D).

|:| Actually y is an unending
decimal (or so most
mathematicians believe), and
0.5772 gives the first four digits.

For any nonnegative constaptthe differential equation
22X (t) + tX (1) + (1> — pP)X(t) =0

is known asBessel's equation of order, @nd its solutions are thBessel
functions of order pln normalized form, Bessel’s equation becomes

X (1) + %x’(t) " ( > P )x(t) _

From this we can see thgn(t) = 1 andt?q(t) = t> — p?, so thattp(t) and
t2q(t) are analytic aty = 0. Therefore zero is a regular singular point and,
using equation (8), we find that the indicial equation is

rc—1)+r—p?>=r2—p?>=0
Application of Frobenius’ Theorem yields a solutidpgiven by the formula

(=" 2
_ pE "
PO=CL o Dpr2(prm

The functionJy(t) is called theBessel function of order p of the first kind
The series converges and is bounded fott.allf p is not an integer, it can
be shown that a second solution of Bessel's equatiah jgt) and that the
general solution of Bessel's equation is a linear combinatiod4f) and
J_p(D).

For the special casp = 0, we get the functiordy(t) used in the aging
spring model in the second submodule of Module 11.:

t4

B ( 1)n B t2 tG
Jo(t) = ;0 (2 (—> —l——-f-&—m—f'

Note that even though= 0 is a singular point of the Bessel equation of order
zero, the value 08y (0) is finite [Jo(0) = 1]. See Figure 11.2.

O Check thatly(t) is a solution of Bessel's equation of order O.

When p is an integer we have to work much harder to get a second solu-
tion that is linearly independent d,(t). The result is a functiol¥(t) called
the Bessel function of order p of the second kirthe general formula for
Yp(t) is extremely complicated. We show only the special ¢qge), used in
the aging spring model:

Yo(t):§|:(V+|n%>J(t)+Z( :I(':]T;:H ( ) i|

whereH, =1+ (1/2) 4+ (1/3) +--- 4+ (1/n) andy is Euler's constanty =
liMpsoo(Hy—InN) =~ 0.5772.
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t

Figure 11.2: The graph of Jy(t) [dark] looks like the graph of the decaying
sinusoid 4/2/xtcoqt — 7/4) [light].

The general solution of Bessel's equation of integer omlisr
X(t) = c1Jp(t) + C2Yp(h) (10)

for arbitrary constants; andc,. An important thing to note here is that the
value ofY(t) att = O doesreflect the singularity at = O; in fact, Y,(t) —
—oo ast — 0T, so that a solution having the form given in (10) is bounded
onlyif c, =0.

Bessel functions appear frequently in applications involving cylindrical
geometry and have been extensively studied. In fact, except for the functions
you studied in calculus, Bessel functions are the most widely used functions
in science and engineering.

[0 Transforming Bessel’s Equation to the Aging Spring Equation

[] see“Aging Springs” in Bessel's equation of order zero can be transformed into the aging spring equa-
Module 11. tion X" 4+ e"x = 0. To do this, we take

t=(2/a)In(2/as) (12)

where the new independent variablis assumed to be positive. Then we can
use the chain rule to find the first two derivatives of the displacemehthe
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aging spring with respect ®
dx _dxdt _dx( 2
ds dtds dt\ as
¢x _dfde 2)] dxd( 2
d®  ds|dt\ as dtds\ as
_dxdi( 2) dx2
~ di2ds\ as/ dtag
_dx( 2\ 2\ dx2
Cde2 \ as as) dtag
_Px 4 dx2
T dt?2 (as)?2  dtag
|:| We usew in place ofxin  Bessel’s equation of ordgr= 0 is given by:
the aging spring section of d2x dx
Module 11. _
szd82 +sds+szx_0
and when we substitute in the derivatives we just found, we obtain
d’°x 4 dx 2 dx/ 2
32 (W_(aS)z + ag) +Sa <_a_s> +32X— 0
Using the fact that
s= (2/a)e V2 (12)

References

(found by solving equation (11) f@) in the last term, when we simplify this
monster equation it collapses down to a nice simple one:

d’°x 4 4

W? + ?e aly =0
Finally, if we divide through by 4a, we get the aging spring equation,
X' +e 3 =0.

The other way around works as well, that is, a change of variables will
convert the aging spring equation to Bessel's equation of order zero. That
means that solutions of the aging spring equation can be expressed in terms of
Bessel functions. This can be accomplished by usiagc; Jo(s) + C2Yo(S)
as the general solution of Bessel's equation of order 0, and then using for-
mula (12) to replace. Take another look as Experiments 3 and 4 on Screens 2.5
and 2.6 of Module 11. That will give you a graphical sense about the connec-
tion between aging springs and a Bessel's equation.

Borrelli, R. L., and Coleman, C. Qifferential Equations: A Modeling Per-
spective (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. CElementary Differential Equations and
Boundary Value Problemsth ed., (1997: John Wiley & Sons, Inc.)
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Figure 11.3: Here are some typical graphs for the solution of x’ + Cyt?x’ +
9x = 0 for various values of C,. The graphs and the data tables are useful in
Problem 1 of Exploration 11.1.
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Figure 11.4: Here is a phase-plane portrait for an aging spring ODE, X’ +
e'x = —9.8. See “Modeling an Aging Spring” in the library folder “Physical
Models” and also Problem 1 in Exploration 11.3.
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Exploration 11.1. Damping a Robot Arm

In each of the following problems it is assumed that the displacement x of a
robot arm satisfies an IVP of the form

X'+b®)X+9x=0, x(0=1 x(0)=0

An optimal damping function b(t) is one for which the solution x(t) reaches
0.005 in minimal time t* without ever going below zero.

1. Consider damping functions of the foriit) = Cyt. For a positive integer
k, let C; be the value ofCy that gives the optimal solution, and denote the
corresponding minimal time btf. In Module 11, Screen 1.4 and TTA 3 on
Screen 1.7 you found that the optimal solutionket 1 is x(t) = e~%/2, with
C; =9 andt; ~ 1.0897.

(@) Use ODE Architect to find an approximate optimal solution and values
of C; andt} whenk = 2. [SuggestionLook at Figure 11.3.]

(b) Repeat withk = 3.

(c) Compare the optimal damping functions fo& 1, 2, 3, in the context
of the given physical process.

2. For quadratic dampingb(t) = C,t?, derive a power series solutiofit) =
> oo ant". Show that the recurrence formula for the coefficients is
By = —[9a, 4+ Co(n— Dan_1] Con=1
(n+1(n+2)

anda, = —9ay/2. Recall thaby = x(0) anda; = x'(0).
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3. Let Ps(t) be the Taylor ponnomiaEﬁ:O ant", where thea,, are given by the
recurrence formula in Problem 2.

(@) Write out Ps(t) with C, as a parameter; briefly describe how the graph
of Ps(t) changes a€; increases.

[[] Youwill need resuits from  (b) Graph the apparently optimal solution from Problem 1(a) over the in-
Problem 1(a) here. terval 0< t <t} and compare it to the graph &(t) with C, = C;.

4. If the robot arm is totally undamped, its position at timis X(t) = cos 3;
therefore the arm cannot reaxh= 0 for allt, 0 < t < /6. In this situation
the undamped arm can’t remain above- 0. The optimal damping func-
tions C;:tk found in Problem 1 look more like step functions as the degree
increases. Try to improve the tinteby using a step function for damping.

Assume the robot arm is allowed to fall without damping until just before
it reachesx = 0, at which time a constant damping force is applied. This
situation can be modeled by defining

b(t) = {

fore = 0.2, 0.1, and 0.05. Use ODE Architect to find valuesBpfthat give

an approximate optimal solution. Include a graph showing your best solution
for eache and give your best value of in each case. What happens to the
“optimal” B, as¢ — 0?

0 forO<t<g-—e
B. fort>g%—¢

5. Find a formula for the solution for the situation in Problem 4. The value of
should be treated as a parameter. Assumexittat= cos 3 fort < (r/6) — e.
Then the IVP to be solved is

X'+ BX +9%=0
X(/6—¢) = cos[A§ —e)] =sin3k
X (/6 —¢) = —3sin[3(§ — )] = —3cos 3

The solution will be of the formx(t) = ci€ + c,€?, r1 < ry < 0, but the
optimal solution requires that = 0. Why? For a fixed, find the value of
B. so thatx(t) remains positive and reaches 0.005 in minimum time.



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A

notepad report using the Architect is OK, too. Course/Section

Exploration 11.2.

Bessel Functions

Bessel functions resemble decaying sinusoids. Let's compare the graph of
Jo(t) with that of one of these sinusoids.

(@) Onthe same set of axes, graph the Bessel fundijén and the function

\/g cos(t— 2)

over the interval < t < 10.

(b) Now graph these same two functions over the intervaltO< 50.

(c) Describe what you see.
[Suggestion:You can use ODE Architect to plot a good approximation of
Jo(t) by solving an IVP involving Bessel's equation in system form:

X=y, Y=-x=y/t, X(t)) =1, X(to) =0

with to = 0.0001. Actually,Jo(0) = 1 andJy(0) = 0, butty = 0 is a singular
point of the system so we must move slightly away from zero. You can plot the
decaying sinusoid on the same axesgd) by enteringa = \/%cos(t -

in the same equation window as the IVP, selecting a custom 2D plot, and
plotting botha andx vs.t.]
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Repeat Problem 1 for the functiong(t) and \/%sin(t —Z). To graph a
good approximation ofy(t), solve the system equivalent of Bessel's equation
of order zero (from Problem 1) with initial data = 0.89357, x(tg) = 0,

X (tp) = 0.87942 As in Problem 1, we have to avoid the singularity@t 0,
especially here becaudg(0) = —oco. The given initial data are taken from
published values of Bessel functions and their derivatives.
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Exploration 11.3. Aging Spring Models

1. Checkoutthe Library file “Modeling an Aging Spring” in the “Physical Mod-
els” folder (see Figure 11.4). The ODE in the file models the motion of a
vertically suspended damped and aging spring that is subject to gravity. Carry
out the suggested explorations.

2. Show that

X(t) = ,/%sin(? In(t + 1)) — At 1cos<§3 In(t+ 1))

is an analytic solution of the initial value problem
Xt
t+1)2

Explain why this IVP provides another model for the motion of an aging
spring that is sliding back and forth (without damping) on a support table.

X'(t) + 0, x(0O)=-1, X0 =0
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3. Graph the solutiorx(t) from Problem 2 over the interval 8 x < 10 and
compare the graph to the one obtained in Module 11 using ODE Architect.
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Exploration 11.4. The Incredible Lengthening Pendulum

Suppose that we have an undamped pendulum whose length L = a+ bt in-
creases linearly over time. Then the ODE that models the motion of this

|:| The ODE for a pendulum is

pendulum of varying length . ’

is derived in Chapter 10. (a+bte"(t) +2be'(t) + go(t) =0 (13)
where 6 is small enough that siné ~ 6, the mass of the pendulum bob is 1,
and the value of the acceleration due to gravity is g = 32!

1. With a= b =1 and initial condition®(0) = 1 and¢’(0) = 0, use ODE Ar-
chitect to solve ODE (13) numerically. What happen8 ast — +oco?

2. Under the same conditions, what happens to the oscillation time of the pen-
dulum ast — 4+o00? (The oscillation time is the time between successive
maxima ofé(t).)

1See the article “Poe’s Pendulum” by Borrelli, Coleman, and Hobsdvidthematics Magazine
Vol. 58 (1985) No. 2, pp. 78-83. See also “Child on a Swing” in Module 10.
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Show that the change of variables
s=(2/b)/(a+bt)g, x=0+a+ bt
transforms Bessel's equation of order 1

d’x  dx
Szdsz +sds+(32 1)x=0
into ODE (13) for the lengthening pendulunsyggestionTake a look at the
section “Transforming Bessel's Equation to the Aging Spring Equation” in
this chapter to help you get started. Use the change of variables given above

to express the solution of the IVP in Problem 1 using Bessel functions.]



Overview

Key words

See also

Chaos and Control

Xy

Poincag map of a forced damped pendulum superimposed on a tra-
jectory.

In this Chapter we’ll look at solutions of a forced damped pendulum ODE. In
the linear approximation of small oscillations, this ODE becomes the standard
constant-coefficient ODE x” + ¢X + kx = F(t), which can be solved explicitly in
all cases. Without the linear approximation, the pendulum ODE contains the term
ksinxinstead of kx. Now the study becomes much more complicated. We’ll focus
on the special case of the nonlinear pendulum ODE

X"+ cX + sinx = Acost 1)

but our results leave a world of further things to be discovered. We’ll show that
appropriate initial conditions will send the pendulum on any desired sequence of
gyrations, and hint at how to control the chaos by finding such an initial condition.

Forced damped pendulum; sensitivity to initial conditions; chaos; control; Poincaré
sections; discrete dynamical systems; Lakes of Wada; control

Chapter 10 for background on the pendulum. Chapter 13 for more on discrete dy-
namical systems and other instances of chaos and sensitivity to initial conditions.
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[] Introduction

How might chaos and control possibly be related? These concepts appear a
first to be opposites, but in fact they are two faces of the same coin!

A good way to start discussing this apparent paradox is to think about
learning to ski. The beginning skier tries to be as stable as possible, with
feet firmly planted far enough apart to give confidence that she or he will not
topple over. If you try to ski in such a position, you cannot turn, and the only
way to stop, short of running into a tree, is to fall down. Learning to ski is
largely a matter of giving up on “stability,” bringing your feet together so as
to acquire controllability! You need to allow chaos in order to gain control.

Another example of the relation between chaos and control is the early
aircraft available at the beginning of World War |, carefully designed for great-
est stability. The result was that their course was highly predictable, an easy
target for antiaircraft fire. Very soon the airplane manufacturers started to
build in enough instability to allow maneuverability!

[1 Solutions as Functions of Time

The methods of analysis we will give can be used for many other differential
equations, such as Duffing’s equation

X" +cX +x— x3 = Acosot, 2)
or the differential equation
X" +cX 4+ x— x% = Acoswt, (3)

which arises when studying the stability of ships. The explorations at the end
suggest some strategies for these problems.
Let’s begin to study ODE (1) witle = 0.1

X" 4+ .1xX' + sinx = Acost 4)

Let’s compute some solutions, starting at 0 with A =1 and various values
of x(0) andx’(0), and observe the motion out te= 100, or perhaps longer
(see Figure 12.1). We see that most solutions eventually settle down to an
oscillation with period 2 (the same period as the driving force). Tkisplot
actually shows oscillations which differ by multiples of.2
This settling down of behaviors at various levels is definitely a feature
of the parameter values chosen: for the amplitéde 2.5 in ODE (4), for
instance, there does not appear to be any steady-state oscillation at all.
Looking at such pictures is quite frustrating: it is very hard to see the
pattern for which initial conditions settle down to which stable oscillations,
and which will not settle down at all.
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Figure 12.1: Solution curves of ODE (4) with x(0) =0, X (0) =2, 2.1.

[1 Poincaré Sections

|:| Note that the clock starts
atty = 0 when generating
Poinca¥g plots.

|:| When thexx-plane is

used to chart the evolution of the
pointsPX(a, b), k=1,2, ..., it

is called the Poincarplane.

Poincag found a way to understand and visualize the behavior of our differ-
ential equation: he sampled solutions of ODE (4) at multiples of the period
27 of the driving function:

0,2n, 4m, ..., 2kn, . ..

This is much like taking pictures with a strobe light.

An equivalent way of saying this is to say that we will itefatiee map-
ping P : R? — R? which takes a pointa, b) in R?, computes the solution
x(t) with x(0) = a, x'(0) = b, and sets

P(a, b) = (x(2r), X' (27)) 5)

This mappingP is called aPoincate mapping If you apply the operatoP to
(a, b) k times in succession, the result®(a, b) and we see that

PX(a, b) = (x(2kn), X' (2kn))

In sense, the Poincausection is simply a crutch: every statement about
PoincaFg sections corresponds to a statement about the original ODE, and vice
versa. But this crutch is invaluable the orbits of a nonautonomous ODE such
as (4) intersect each other and themselves in a hopelessly tangled way.

1Chapter 13 discusses iterating mapsR — R; there you will find that already the maj(x) =
AX(1 — x) is filled with surprises. Before trying to understand the iterationPpfwhich is quite
complicated indeed, the reader should experiment with several easier examples, like lineBr-maps
R2. The notion ofbasinwill also be much clarified by considering the iteration of Newton’s method
in one complex variable, perhaps for cubic polynomials.
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[1 Periodic Points

A good way to start investigating the PoineanappingP (or for that matter,
the iteration of any map) is to ask: what periodic points does it have? Setting
X' =y, aperiodic pointis a point(x, y) in R? such that for some integ&we
havePX(x, y) = (x, y). Fixed points are periodic points witk= 1, and are
particularly important.

Periodic points of perio# for P are associated with periodic solutions of
ODE (4) of period &x. In particular, ifx(t) is a solution which is periodic of
period 2z, then

(x(0), X'(0)) = (x(27), X' (27))

is a fixed point ofP. If you observe this solution with a strobe which flashes
every 2r, you will always see the solution in the same place.

[0 The Unforced Pendulum

If there is no forcing term in ODE (4), then we have an autonomous ODE like
those treated in Chapter 10.

Example: The ODE
X"+ X +10sinx=0

models a damped pendulum without forcing. A phase plane portrait is shown
in Figure 12.2. Note that the equilibrium points (of the equivalent system) at

x = 2nm, X = 0 are spiral sinks, but the equilibrium pointsat (2n+ 1),

X = 0 are saddles. Note also that the phase plane is divided into slanting re-
gions, each of which has the property that its points are attracted to the equi-
librium point inside the region. These regions are calladins of attraction

If a forcing term is supplied, these basins become all tangled up (Figure 12.4
on page 227).

There is a PoincarmappingP for the unforced damped pendulum, which
is fairly easy to understand, and which you should become familiar with be-
fore tackling the forced pendulum. In this case, two solutions of ODE (4)
with A = 0 stand out: the equilibria(t) = 0 andx(t) = = for all t. Cer-
tainly if the pendulum is at one of these equilibria and you illuminate it
with a strobe which flashes evefly seconds, wherd is a positive num-
ber, you will always see the pendulum in the same place. Thus these points
are fixed points of the corresponding PoirecarappingP. In the xx-plane,
the same thing happens at the other equilibrium points, that is, at the points
..., (=27,0),(0,0)(27,0), ... for the “downward” stable equilibria, and at
the points.. ., (—3x, 0), (-, 0), (7, 0), ... for the unstable equilibria.

The analysis in Module 10 using an integral of motion should convince
you that for the unforced damped pendulum, these are the only periodic points:
if the pendulum is not at an equilibrium, the value of the integral decreases
with time, and the system cannot return to where it was.
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Figure 12.2: Basins of attraction of the downward equilibrium positions of
the unforced damped pendulum are bounded by separatrices.

If you start the pendulum with botk(0) andx’(0) small, the damping
will simply kill off the motion, and the pendulum will be attracted to the
downward equilibrium. The poin, 0) in state space is calledsink

The behavior is more interesting near an unstable equilibrium. Imagine
imparting an initial velocity to the bob by kicking it. For a small kick, it will
swing back. Now kick it a little harder: it will rise higher, and still swing
back. Kick it harder still, and it will make it over the top, and hit you in
the back if you aren’t careful. Dividing the kicks which don’t make it over
from those that do is a very special kick, where pendulum rises forever, more
and more slowly, tending to the unstable equilibrium. Thus there are initial
conditions which generate solutions that tend to the unstable equilibrium; in
the Poincag plane these solutions form two curves which meet end to end
at the fixed point corresponding to the unstable equilibrium. Together they
form thestable separatrixof the fixed point. There are also curves of initial
conditions which come from the unstable equilibrium; together they form the
unstable separatriof the unstable equilibrium. See Figure 12.3

As stated earlier, a good first thing to do when iterating a map is to search
for the periodic points; a good second thing is to find the periodic points which
correspond to unstable equilibrisaddlesin the case of the pendulum) and
find their separatrices.

For the unforced damped pendulum, the equilibria of the differential equa-
tion and the fixed points of any Poineariap coincide; so, too, do the separa-
trices of the unstable equilibria (in the phase plane) and the separatrices of the
corresponding saddle fixed points in the Poiecpldne. These separatrices
separate the trajectories which approach a given sink from the trajectories that
approach a different sink.
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Figure 12.3: Stable and unstable separatrices at a saddle for an unforced
damped pendulum. Which are the stable separatrices?

O “Check” your understanding by reproducing the plot in Figure 12.3.

[0 The Damped Forced Pendulum

We described above the Poinegniane for the unforced pendulum. The same
description holds for the forced pendulum. A figure showing a Poincar’
map for a forced pendulum appears as the chapter cover figure. Thus, in the
Poincag plane, we expect to see a collection of fixed points corresponding to
the oscillations to which the pendulum “settles down”, and each has a basin:
the set of initial conditions which will settle down to it. The basins appear to
be extraordinarily tangled and complicated, and they are. The reader should
put up the picture of the basins (Screen 2.6 in Module 12), and practice super-
imposing iterations on the figure, checking that if you start in the blue basin,
the entire orbit remains in the blue basin, perhaps taking a complicated path
to get near the sink, but making it in the end.

[0 Tangled Basins, the Wada Property

In the tangled basins Screen 3.3 of Module 12, each basin appears to be mad
of a central piece, and four canals which go off and meander around the plane.
The meandering appears to be completely random and chaotic, and the only
thing the authors really know about the shapes of the basins of our undamped
pendulum is the following fact: The basins have iWada property every
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Poincaré Section
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Figure 12.4: Tangled basins for a forced damped pendulum.

point of the boundariof any basin is in the boundary of all the others. Thus
if you start at a boundary point of any basin, and perturb the initial condition
an arbitrarily small amount, you can land in any of the infinitely many basins.

A careful look at Figure 12.4 should convince you that this stands a good
chance of being true: Each region of a canal boundary point includes pieces
on many curves. Itisn’t clear, of course, that there are canal tfe basins
between any two canals.

It is one thing to think that the Wada property is likely true, and quite
another to prove it. It isn't clear how you would prove anything whatsoever
about the basins: they do not appear to be amenable to precise study.

To get a grip on these basins, the first step is to understand why they
appear to be bounded by smooth curves, and to figure out what these smooth
curves are. For each sink (solid white squares in Figure 12.4), there are in fact
four periodic points (open squares), each of period two, which are saddles,
and such that for each saddle one of the two unstable separatrices is entirely
contained in the corresponding basin.

2The boundarydU of an open set) c R? is a pointx € R? which is not inU, but such that
there exists a sequence of poirgse U which converges tx. Later we will encounter the notion
of accessible boundanthe pointsx € 9U such that there exists a parametrized curvg0, 1] — U
such that lim_, ¢ ¥ (t) = x. For simple open sets, the boundary and the accessible boundary coincide,
but not for our basins.
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The next step is to show that taecessible boundaf the basin is made
up of the stable separatrices of these saddles. This uses the techriiqgeof
cells, as pioneered by Kennedy, Nusse and Yorke. To see a fleshed out sketch
see the @DEE article referenced at the end of this chapter.

[0 Gaining Control

The statement about the basins having the Wada property is, in some sense,
negative statement, saying that there is maximum possible disorder. Is there
some positive statement one can make about the forced pendulum (for these
parameter values)? It turns out that there is. The precise statement is as
follows.

During one period of the forcing term, say during

t in the intervally = [2kr, 2(k 4+ 1) 7]

the pendulum will do one of the following four things:

o It will cross the bottom position exactly once moving clockwise (count
this possibility as-1);

o It will cross the bottom position exactly once moving counterclockwise
(count this possibility ag-1);

o It will not cross the bottom position at all (count this possibility as 0);

o It will do something else (possibility NA).

Note that most solutions appear to be attracted to sinks, and that the stable
oscillation corresponding to a sink crosses the bottom position twice during
eachly, and hence these oscillations (and most oscillations after they have
settled down) belong to the NA category.

The essential control statement we can make about the pendulum is the
following:

For any biinfinite sequence., ¢_1, g9, €1, ... Of symbolsg; selected
from the set{—1, 0, 1}, there existx(0), x'(0) such that the solution
with this initial condition will dogy during the time intervaly.

The chaos game in Module 12 suggests why this might be true; the tech-
nigues involved in the proof were originally developed by Srhale

3Stephen Smale is a contemporary mathematician who was awarded a Fields medal (the mathe
matical equivalent of a Nobel prize) in the early 1960's. See Devaney in the references at the end of
this chapter.
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Figure 12.5: Start in quadrilateral Q, and reach forward into Q; and backward
into Q_s.

We start by drawing quadrilateraf3¢ around thekth saddle, long in the
unstable direction and short in the stable direction, such that it crosses a good
part of the tangle. We can now translate our symbglsvhich refer to the
differential equation, into the Poin@mapping language:

If at time t = 2k the pendulum is iy and at time 2k + L) it is in
Qk+¢,, then duringl the pendulum does;. So it is the same thing to require
that a trajectory of the pendulum realize a particular symbol sequence, and
to require that an orbit of the Poinearhap visit a particular sequence of
quadrangles, just so long as successive quadrangles be neighbors or identical.

Draw the forward image of that quadrilateral, and observe that it grows
much longer in the unstable direction and shrinks in the stable direction; we
will refer to P(Qx) as thekth snake Sc. The entire proof comes down to
understanding how intersect®Qx_1, Qx and Q. 1.

The thing to be checked is th& intersects all three in subquadrangles
going from top to bottom, and that the top and bottonQpfmap to parts of
the boundary o which are outsid&y_; U Qx U Q1. See Figure 12.5 for
an example of a winning strategy for three adjacent quadrilaterals.

Once you have convinced yourself that this is true, you will see that every
symbolic sequence describing a history of the pendulum is realized by an
intersection of thinner and thinner nested subquadrangles.

A similar argument shows that a symbol describing a future of the pendu-
lum corresponds to a sequence of thinner and thinner subquadrangles going
from left to right. The details are in the @DEE paper in the references.
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Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too.

Course/Section

Exploration 12.1.

1. Choose avalue far # 0.1, take A = 1 in ODE (1), and produce graphs like
those in the chapter cover figure and Figure 12.1.

2. Choose avalue foA # 1 andc = 0.1 in ODE 1 and produce graphs like those
in the chapter cover figure and Figure 12.1.

3. Choose a value fap # 1 in the ODE
X" 4+ 0.1X' + sinx = coswt

and produce graphs like those in the chapter cover figure and Figure 12.1.
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4. Repeat Problems 1 and 2, but for the Duffing ODE,
X" +¢cX 4+ x—x3 = Acost

5. Repeat Problems 1 and 2, but for the ODE with a quadratic nonlinearity,
X" 4+ cX +x— x> = Acost
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Supply and demand converge to a stable equilibrium.

Processes such as population dynamics that evolve in discrete time steps are best
modeled using discrete dynamical systems. These take the form x,.; = f(Xn),
where the variable x, is the state of the system at ““time” nand x,. is the state of
the system at time n + 1. Discrete dynamical systems are widely used in ecology,
economics, physics and many other disciplines. In this section we present the
basic techniques and phenomena associated with discrete dynamical systems.

Iteration; fixed point; periodic point; cobweb and stairstep diagrams; stability;
sinks; sources; bifurcation diagrams; logisitic maps; chaos; sensitive dependence
on initial conditions; Julia sets; Mandelbrot sets

Chapter 6 for more on sinks and sources in differential equations; Chapter 12 for
Poincaré sections.
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D The functionf (x) = Axis
denotedL,, and soL, (X) = AX.

D The functionAx(1 — x) is
denoted byg; (x).

D The superscript reminds
us that this is just the
composition off with itself; f is
not being raised to a power.

Discrete dynamical systenasise in a large variety of applications. For
example, the population of a species that reproduces on an annual basis is
best modeled using discrete systems. Discrete systems also play an impor-
tant role in understanding maopntinuouslynamical systems. For example,
points calculated by a numerical ODE solver form a discrete dynamical sys-
tem that approximates the solution of an initial value problem for an ODE.
The Poincag’section described in Chapter 12 is another example of a discrete
dynamical system that gives information about a system of ODEs.

A discretedynamical system is defined by tieration of a function f,
and takes the form

Xnp1= f(X), Nn=0, xogiven 1)

Here are another two examples. In population dynamics, some populations
are modeled usingproportional growthmodel

Xnp1 = Li(Xn) =A%y, Nn>=0, Xogiven 2)

wherex, is the population density at generatiorand . is a positive num-
ber that measures population growth from generation to generation. Another
common model is thiogistic growthmodel:

Xn+1 = gk(xn) = )»Xn(l - Xn)a n=> oa Xo given

Let’s return to the general discrete system (1). Starting with an initial
conditionxg, we can generatesequenceising this rule for iteration: Given
Xo, We getx; = f(Xg) by evaluating the functiorf at xo. We then compute
xo = f(X1), X3 = f(x2), and so on, generating a sequence of pofr}s.
Eachx, is then-fold compositiorof f atxg since

X = f(f(x)) = F%(x0)
xg = f(f(f(X))) = (%)

Xn = F"(X0)

(Some authors omit the superscrigt

The infinite sequence of iterat@(xp) = {X}32, is called theorbit of xg
under f, and the functionf is often referred to as map For example, if
we takei = 1/2 and the initial conditiorxg = 1 in the proportional growth
model (2), we get the orbit for the mdp

Xo=1 x1=1/2, x=1/4,...

Refer to Screen 1.2 of Module 13 for four representations of the orbit
of an iteration: as aequencgXg, X3 = f(Xg), X2 = f(X1),...}; anumerical
list whose columns are labeledx,, f(x,); atime seriewherex, is plotted
against “time”n; and astairstep/cobweb diagrafor graphical analysis.

The chapter cover figure shows a stairstep diagram for the mgdet
0.7x, + 100. Figures 13.1 and 13.2 show cobweb diagrams for the logistic
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model X1 = AX,(1 — Xp), with A = 3.51 and 39, respectively. In all of
these figures, the diagonal ling, 1 = X, is also plotted. The stairstep and
cobweb diagrams are constructed by selecting a valug,fon the horizontal
axis, moving up to the graph of the iterated function to obtajrhorizontally
over to the diagonal then up (or down) to the graph of the function to obtain
X2, and so on. These diagrams are used to guide the eye in movingjrtam
Xn+1-

[ Equilibrium States

As with autonomous ODEs, it is useful to determine the equilibrium states for
a discrete dynamical system. First we need some definitions:

[[] Afixed point of a discrete e A point x* is afixed pointof f if f(x*) = x*. A fixed point is easy to
dynamical system is the analogue spot in a stairstep or cobweb diagram even before the steps and webs
ofan equilibrium point for a are plotted: the fixed points df are where the graph df intersects the

system of ODEs. .
diagonal.

e A point x* is a periodic point of period nof f if f°"(x*) = x* and
fok(x*) #£ x* for k < n. A fixed point is a periodic point of period 1.

Both the proportional and logistic growth models have the fixed poiat0.
For certain values of the logistic model has periodic points; Figure 13.1
suggests that the model has a period-4 orbit-i# 3.51.

O *“Check” your understanding by showing that the logistic model has a
second fixed poink* = (A — 1)/A. Does the proportional growth model for
A > 0 have any periodic points that are not fixed?

[] This use of the words A fixed pointx* of f is said to bestable(or asink or anattractor) if every
“stable” and “unstable” for points point p in some neighborhood of* approaches* under iteration byf, that
Z‘.”d orbits of a discrete system ¢ ¢ fon( ) 5 x* asn — +o0o. The set ofall points such thaf*"(p) — x*
iffers from the way the words . . . . . w
are used for equilibrium points of @SN — +00 is thebasin of attractiorof p. A fixed pointx* is unstable(or
an ODE. For example, a saddle a sourceor repeller) if every point in some neighborhood &f moves out of
point of an ODE is unstable, butathe neighborhood under iteration Hy If x* is a periodn point of f, then
saddle point of a discrete system 4o ot ofx* js said to bestableif x* is stable as a fixed point of the map
is neither stable or unstable. i . . . . e
fon. The orbit isunstablaf x* is unstable as a fixed point df". Stability is

determined by théerivativeof the mapf, as the following tests show:

e A fixed pointx* is stable if| f’(x*)| < 1, and unstable iff’(x*)| > 1.

e The orbit of a periodic point* of periodn is stable if| (f°")'(x*)| < 1,
and unstable if(f°")’ (x*)| > 1.

Stable periodic orbits arattracting because nearby orbits approach them,
while unstable periodic orbits arepellingbecause nearby orbits move away
from them.
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Figure 13.1: The cobweb diagram for the logistic map, X,+1 = 3.51%,(1 — X,),
suggests that iterates of x, = 0.72 approach a stable orbit of period 4.

O Is the fixed point in the chapter cover figure stable? Is the period-4 orbit
in Figure 13.1 stable? How about the two fixed points in that figue@fes-
tion: Use the Discrete Tool as an aid in answering these questions.]

[0 Linear versus Nonlinear Dynamics

D Refer to the first
submodule of Module 13 for
examples.

The solutions of linear and of nonlinear ODEs are compared and contrasted
in Chapter/Modules 6 and 7. Now we will do the same comparison for linear
and nonlinear maps of the real line into itself.

Let’s look at the iteration of linear functions such as the proportional
growth modelx,,1 = L; (X,), which has a fixed point at* = 0. This fixed
point is stable ifiA| < 1, so the orbit of every initial population tends to O as
n— oo. If A =1, thenx,,1 = X,, and hence every pointis a fixed point. The
fixed point atx* = 0 is unstable ifA| > 1, and all initial populations tend to
oo asn — oo. If L = —1 thenx* = 0 is the only fixed point and every other
point is of period 2 since&n, 1 = —Xn.

The iteration of any linear functiorf (x) = ax+ b (with slopea # 1)
behaves much like the proportional growth model. Fixed points are found by
solvingax* + b = x*, and their stability is governed by the magnitudeof

The iteration of nonlinear functions can be much more complex than that
of linear functions. In particular, nonlinear functions can exhibit chaotic be-
havior, as well as periodic behavior. To illustrate the types of behavior typical
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Figure 13.2: The cobweb diagram of the logistic map X,.1 = 3.9%,(1 — X,) sug-
gests that iterates of xo = 0.8361either approach an attracting periodic orbit
of very high period, or else wander chaotically.

to nonlinear functions we consider; in the second submodule of Module 13,
the one-parameter family ¢dgistic functions

9.(¥) = AX(1 = X)

Figure 13.2 shows how complex an orbit of a logistic map may be for certain
values of.

[1 Stability of a Discrete Dynamical System

Now we turn our attention to the stability of an entire dynamsyatenrather

than just that of a fixed point. One of the most important ideas of dynamical
systems (discrete or continuous) is thathgperbolicity Hyperbolic points

are stable to small changes in the parameters of a dynamical system. This
does not mean that a perturbation (a small change) of the function leaves the
fixed or periodic point unchanged. It simply means that the perturbed function
will also have a fixed point or periodic point “nearby,” and that this point has
the stability properties of the corresponding point of the unperturbed function.
For example, at = 2 the functiorg,(x) has an attracting fixed poirt = 0.5.

For values ofs near 2, the functiom; (x) also has an attracting fixed point

xX* = (A —1)/Ar. For example, ifA = 2.1 then the attracting fixed point is

x* = 0.524. Even though the fixed point moved a little Jaincreased, the
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[0 Bifurcations

fixed point still exists and it is still attracting. The following theorem provides
a way of determining whether fixed points and periodic orbits are hyperbolic.

THEOREM 13.1 Given a discrete dynamical systegn.1 = 5 (Xn),
a fixed pointx* of f; (x) is hyperbolic if| f; (x*)| # 1. Similarly, a peri-
odic pointx* of periodn (and its orbit) is hyperbolic if( ") (x*)| # 1.

Because the number and type of periodic points do not change at pa-
rameter values wherg, (x) has hyperbolic points, we say that the qualitative
structure of the dynamical system remains unchanged. On the other hand,
this theorem also implies that changes in the qualitative structure of a family
of discrete dynamical systems can occur only when a fixed or periodic point
is not hyperbolic. We see this in the proportional growth modglh = Ax;,
wheni =1and: = —1. ForA =1—¢[and henced|_ (1) =i =1—¢]the
fixed pointx = 0 is attracting. But foi. = 1+ ¢ the fixed point is repelling.
Thus, as\ passes through the value 1, the stability of the fixed point changes
from attracting to repelling and the qualitative structure of the dynamical sys-
tem changes.

A change in the qualitative structure of a discrete dynamical system, such as
a change in the stability of a fixed point, is known asifarcation Two other
types of bifurcations can also occur whé&nis nonlinear.

The first, known as aaddle-nodéifurcation, occurs wher* is a peri-
odic point of perioch and (")’ (x*) = 1. In a saddle-node bifurcation, the
periodic pointx* splits into a pair of periodic points, both of periadone of
which is attracting and the other repelling. A saddle-node bifurcation occurs
in the logistic growth familyg; (x) whenx = 1. At this value the fixed point
x* = 0 (which is attracting foi. < 1) splits into a pair of fixed points¢: = 0
(repelling forA > 1), andx* = (A — 1)/A (attracting forr > 1). This type of
bifurcation is sometimes called &tchange of stabilitpifurcation.

The second important type of bifurcation is calleeriod-doublingand
occurs wherx* is a periodic point of periogrand ( f{")’'(x*) = —1. In this
bifurcation the attracting period point becomes repelling and an attracting
period-2h orbit is spawned. (Note that the stability can be reversed.) This
occurs in the logistic family, (x) whena = 3. At this parameter value, the
attracting fixed poink* = (A — 1) /A becomes repelling and a stable period-2
orbit emerges with one point on each sidexbf= (A — 1) /. Since the logistic
equations model population growth, this says that the population converges to
an equilibrium for growth rate constaritdess than 3. However, for values of
A greater than 3, the population oscillates through a sequence of values.

The bifurcations that occur in a one parameter family of discrete dynam-
ical systems can be summarized ibiturcation diagram For each value of
the parameter (on the horizontal axis) the diagram shows the long-term be-
havior under iteration of a “typical” initial point. For example, if you see
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[] Thisisalsowhat
Problem 1 of Exploration 10.1 is
about.

40
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theta (radians)
N
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Figure 10.1: Solution curves of a damped pendulum system. What is the
meaning of the horizontal solution curves?

Figure 10.1 and the chapter cover figure, respectively, show some solution
curves and trajectories of the damped, nonlinear pendulum ODE, 0" + 6’ +
10sind = 0. Although the two linear ODEs are only good models of actual
pendulum motions when 6] is small, these ODEs have the advantages that
their solutions have explicit formulas (see Chapter 4). The nonlinear ODEs
model pendulum motions for al values of 9, but there are no explicit solution
formulas.

Now fire up your computer, go to Screen 1.2 of Module 10, and visually
explore the behavior of solution curves and trajectories of linear, nonlinear,
damped, and undamped pendulum ODEs. Pay particular attention to the be-
havior of the animated pendulum at the upper left, and relate its motionsto the
trajectories and to the solution curves, and to what you think areal pendulum
would do. Exploreal the optionsin order to understand the differences.

O “Check” your understanding by matching solution curves of Figure 10.1
with the corresponding trajectories in the chapter cover figure. Describe the
long-term behavior of the pendulum represented by each curve.

0 Go to Screen 1.2 of Module 10 and explore what happens to solutions
of the undamped, linearized ODE, 0" + 0 = 0, if 6y is0 and 6 is large. The
motion of the animated pendulum is crazy, even though it accurately portrays
the behavior of the solutions 6(t) = 6, sint. Explain what is going on. Is
the linearized ODE agood model here? Repeat with the undamped, nonlinear
ODE, ¢” + sin9 = 0, and the sameinitial dataas above. Isthis abetter model ?
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There is another way to look at pendulum motion, an approach based
on integrals of motion. This approach goes beyond pendulum motion and
appliesto any physical system which can be modeled by a second-order ODE
of aparticular type.

[0 Conservative Systems: Integrals of Motion

D Visoften called a
potential function.

In this section we will study solutions of the differential equation
9 =-55 (4)

for ageneric variable g where V (q) is agiven function.

Example 1: The undamped, nonlinear pendulum ODE is the specia case
whereq = 6:

9. g
9 = —=sing, V(0) = —= cost
L ©) L
Example 2: You will see later in this chapter that geodesics on a surface of

revolution lead to the differential equation

u’ = MZL V(u) = M22_
N f3’ o 2f2
where the generic variable g is u in this case, M is a constant, and f isa
function of u.
ODE (4) is autonomous and equivalent to the system

q=y
dv ®)
y=-5
q
A solution to system (5) is a pair of functions, g = q(t), y = y(t). One
way to analyze the behavior of these solutions is by a conservation law. A
function K(q, y) that remains constant on each solution [i.e., K(q(t), y(t))
is a constant for all t], but varies from one solution to another, is said to be
a conserved quantifyor an integral of motionand the system is said to be
conservativeFor system (5) one conserved quantity is

1
K(@,y) =3y + V(@ C)

Here's how to prove that K(q(t), y(t)) stays constant on a solution—use the
chain rule and system (5) to show that dK/dt is zero:

dK dy dvdg dv dav

@ ~Yatara (o)t @O
Incidentaly, if K isany conserved quantity, so dsoisaK + g where o and 8
are constantsand « # 0.
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|:| So we can draw
trajectories of system (5) by
drawing level setsof anintegral.

Example 3: Here's an example where we use «K + B, rather than K, as the
integral to show how integrals sometimes correspond to physical quantities.
Look back at the function V (6) = —(g/L) cos6 for the undamped, nonlinear
pendulum of Example 1. Using formula(6), we seethat E(09, y) isanintegral,
where

E(6, y) = mL?K (6, y) + mgL

=mlL? (%yz— %cos@) +mgL

= %m(Ly)2 + mgL(1 — cosh)
= kinetic energy + potential energy

Thisintegral is called the total mechanical energef the pendulum. The con-
stant mgLis inserted so that the potential energy is zero when the pendulum
bob isat itslowest point.

0 Find the conserved quantity E for the undamped, linear pendulum ODE
0" + 6 = 0. Draw level curves E(9, y) = Eg, where y = ¢, in the 9y-plane,
and identify the curves (e.g., ellipses, parabolas, hyperbolas).

Drawing the level curves of a conserved quantity K in the qy-plane for
system (5) gives phase plane trgjectories of the system and so serves to de-
scribe the motions. This may be much easier than finding solution formulas,
but even so, we can take some steps toward obtaining formulas. To see this,
we have from equation (6) that if K has the value Kq on atrjgjectory of sys-
tem (5)

1 . )
§y2+V<q> =Ko, ie, y=q ==%/2Ko—2V(q)

Thisis aseparablefirst-order differential equation (as discussed in Chapter 2)
that can be solved by separating the variables and integrating:

dq V2
- =J2t+C
/vKo—V(Q)

[0 The Effect of Damping

Mechanical systems are usually damped by friction, and it is important to
understand the effect of friction on the motions. Friction is not well described
by the fundamental laws of physics, and any formula we write for it will
be more or less ad-hoc The system will now be modeled by a differential
eguation of the form

7 / dV_
q'+ f(q.9)+ dq—O
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or, rewritten as a system of first-order ODEs,

q=y
y =—1f(q,y)—dV/dq

where — f (q, y) represents the frictional force; the function f(q, y) aways
hasthe sign of y.

At low velocities, f(q, y) = byis a reasonably good approximation of
the friction due to air, but higher powers of y are necessary at higher veloc-
ities. This latter fact is why reducing the speed limit actually helps reduce
gasoline usage—thereisless drag at lower speeds. If friction were only alin-
ear function of velocity, the effects of a higher speed would be cancelled by
the distance being covered in a shorter time, and the system would expend the
same amount of energy in either case. But if friction depends on the cube of
velocity, for instance, you gain alot by going more slowly. We will examine
more elaborate friction laws when we study the pumping of a swing, but for
now we will use viscous damping with f = by.

)

Example 4: Let's model the motion of alinearized pendulum with and with-
out damping:

0=y

y = —100 — by

where b = 0 (no damping), or b = 1 (viscous damping). If there is no damp-
ing, then one conserved quantity is

©)

K= %y2+592 9)

The left graph in Figure 10.2 displays the integral surface defined by for-
mula (9). The surface is a bowl whose cross-sections K = Kq are ellipses.
Projecting the elipses downward onto the 6y-plane gives the tragjectories of
system (8) withb = 0.

Once damping is turned on, the integral K in formula (9) no longer is
constant on atrajectory. But the integral concept till gives a good geometric
picture of the behavior of a system under damping, because the value of K
decreasesalong trgjectories. Thisfact followsfrom thefollowing computation

(using system (7)):

d[y? _.dy dvdg dv) dv
d—t<7+V(Q)>—yE dgat Y _f(q’y)_d_q +d_qy

=-yf(q,y)=<0

where the final inequality follows from the fact that f (g, y) hasthesign of .
In particular, the value of K along a solution of system (8) decreases, and will
either tend to afinite limit, which can only happen if the solution tends to an
equilibrium of the system, or the value of K will tend to —oo. If V isbounded
from below (as happensfor all our examples), the latter does not happen.
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theta (radians)

Figure 10.2: The left graph shows the integral surface K = y?/2 4 5¢? for the

undamped, linearized system, ' =y, y = —100, and the projections of the

level curves K = Kq. The right graph shows a trajectory of the damped, lin-

earized system, ¢’ =y, y = —100 —y, as it cuts across the level curves of K,

with K decreasing as it goes.

Example5: Let'sturn on viscous damping (take b = 1 in system (8)) and see
what happens. Theright side of Figure 10.2 shows atrajectory of the damped,
linear pendulum system asiit cuts across the level curves of the integral func-
tion K = y?/2 4+ 50, K decreases as the trajectory approachesthe spiral sink
a0=0 y=0. [Thelevel curves of K are drawn by ODE Architect as
trajectories of the undamped system (8) with b = 0.]

Now let's turn to the more realistic nonlinear pendulum and see how
damping affects its motions.

Example 6: The nonlinear systemis

0=y

10
y = —10sind — by (19
where b = 0 corresponds to no damping, and b = 1 gives viscous damping.
In the no-damping case we can take the conserved quantity K to be

K= %yz — 10(cosf — 1) (11)

Theleft side of Figure 10.3 shows part of the surface defined by equation (11).

Example 7: With damping turned on (set b = 1 in system (10)) a trajectory
with a high initial K-value may “swing over the pivot” several times before
settling into a tightening spiral terminating at a sink, 6 = 2nz, y =0, for
some value of n. Theright side of Figure 10.3 shows one of these trgjectories
as it swings over the pivot once, and then heads toward the point, 0 = 27,
y=0,where K =0.
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[ Separatrices

K=72

theta (radians)

Figure 10.3: The left graph shows the surface K = y?/2 — 10(cos6 — 1) with two
of its bowl-like projections that touch the dy-plane at equilibrium points of
minimal K-value. The nonlinear pendulum systemis ¢’ =y, y = —10sin6 — by
with b=0. Turn on damping (b = 1) and watch a trajectory cut across the
level sets K = Ko, with ever smaller values of K (right graph).

O Would you increase or decrease b to cause the trgjectory starting at 6 =
—3, y=12toapproach 6 =0, y = 0? How about = 107, y = 0? What
would you need to do to get the trajectory to approach 6 = —2xz, y=0, or is
this even possible?

A trgjectory isaseparatrixf thelong-term behavior of trgjectorieson oneside
isquite different from the behavior on the other side. Aswe saw in Chapters 6
and 7 each saddle comes equipped with four separatrices: two approach the
saddle with increasing time (the stableseparatrices for that saddle point) and
two approach astime decreases (the unstableseparatrices). These separatrices
are of the utmost importance in understanding how solutions behave in the
long term.

Example 8: The undamped system

0=y

y = —-10sind
has equilibrium points at & = nzr, y = 0. According to the equilibrium cal-
culationsin ODE Architect, these points are centersif nis even, and saddles
if nisodd. Each separatrix at a saddle enters (or leaves) the saddle tangent to

an eigenvector of the Jacobian matrix evaluated at the point. ODE Architect
gives us these eigenvectors after it has located the saddle.

Example9: (Plotting a SeparatrixX; To find apoint approximately on asaddle
separatrix, just take apoint closeto asaddle and on an eigenvector. Then solve

(12)
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Figure 10.4: Saddle separatrices for Figure 10.5: Basins of attraction of

the undamped, nonlinear pendulum spiral sinks are bounded by stable
system enclose centers. saddle separatrices.

forward and backward to obtain a reasonable approximation to a separatrix.
For example, at 6 = 7, y= 0, ODE Architect tells us that (0.3015, 0.9535)
is an eigenvector corresponding to the eigenvalue 3.162, and so the saddle
separatrix is unstable. To graph the corresponding separatrix we choose asthe
initial point 6p = 7 + 0.003015, y = 0.009535 which isin the direction of
the eigenvector and very close to the saddle point. Figure 10.4 shows severd
separatrices of system (12). The sguares indicate saddle points, and the plus
signs inside the regions bounded by separatrices indicate centers.

0 Describe the mations that correspond to trajectories inside the regions
bounded by separatrices. Repeat with the region above the separatrices. Can
aseparatrix be both stable and unstable? [Hint: Each separatrix in Figure 10.4
begins and ends at different points.]

Example 10: Add in some viscous damping and the picture completely changes:
Figure 10.5 shows the stable separatrices at the saddle points for the system

0=y

y = —-10snd—y
The equilibrium pointsat & = 2nsr, y = 0 are no longer centers, but attracting
spiral points (the solid dots). The basin of attractionof each sink (i.e., the

points on the trgjectories attracted to the sink) is bounded by the four stable
saddle separatrices.

(13)

O With afine-tipped pen, draw the unstableseparatrices at each saddle in
Figure 10.5.

That's al we haveto say about the motions of aconstant-length pendulum
for now. More (much more) is discussed in Chapter 12, where we add a
driving term F (t) to the pendulum equations.
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[0 Pumping a Swing

D If you use a different
pumping strategy, make up a
differential equation of your own!

Recall that in an autonomoudglifferential equation, the time variable t does
not appear explicitly. The central thing to realizeis that the ODE that models
pumping a swing must be autonomoashild pumping the swing does not
consult a watch when deciding how to lean back or sit up; the movements
depend only on the position of the swing and its velocity. The swinger may
change pumping strategies, deciding to go higher or slow down, but the mod-
eling differential equation for any particular strategy should be autonomous,
depending on various parameters which describe the strategy.

If you observe a child pumping a swing, or do it yourself, you will find
that one strategy is to lean back on the first half of the forward swing and to
sit up the rest of the time. If you stand on the seat, the strategy is the same:
you crouch during the forward down-swing, and stand up straight the rest of
the time. The work is done when you bring yourself back upright during the
forward up-swing, either by pulling on the ropes (if sitting), or smply by
standing.

The pumping action effectively changes the length of the swing, which
complicates the ODE considerably, for two reasons. Newton's second law
must be stated differently, as will be shown below, and we must find an ap-
propriate equation to model the changing length.

The question of friction is more subtle. Of course, the air creates a drag,
but that is not the most important component of friction. We believe that
things are quite different for a swing attached to the axle by something flexi-
ble, than if it were attached by rigid rods. Circus acrobats often drive swings
right over the top; they always have rigid swings. We believe that a swing
attached flexibly to the axle cannot be pumped to go over the top. Suppose
the swing were to go beyond the horizontal—then at the end of the forward
motion, the swinger would go into free-fall instead of swinging back; the jolt
(heard as*“ ka-chunk) when the rope becomestight again will drastically slow
down the motion. If you get on a swing, you will find that this effect is felt
before the amplitude of the swing reaches r/2; the ropes become loose near
the top of the forward swing, and you slow down abruptly when they draw
tight again.

We will now turn this description into adifferential equation.

[J Writing the Equations of Motion for Pumping a Swing

Modeling the pendulum with changing length requires a more careful look at
Newton’s second law of motion. The equation F = ma= md’ is not correct
when the mass is changing (as when you use a leaky bucket as the bob of a
pendulum), or when the distance variable is changing with respect to position
and velocity (as for the child on the swing). In cases such asthis, forceisthe
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rate of change of the momentum mq
Force= (md)’ 14)

When the mass and pendulum length are constant, equation (14) indeed re-
duces to the more familiar F = ma

The analog in rotational mechanics about a pivot, where q = L6, is that
the torqueequals the rate of change of angular momentum:

Torque= (10')

where | isthe moment of inertia (the rotational anal og of the mass). If aforce
F isapplied at apoint p, then the torque about the pivot is the vector product
r x F, wherer isthe position vector from the pivot to p. For the undamped
and nonlinear pendulum, the gravitational torque can be treated as the scalar
—mgLsing, and the moment of inertiais | = mL2. Then Newton's second
law becomes

(mL%¢') = —mgLsin® (15)

When L and m are constant, equation (15) is precisely the ODE of the un-
damped, nonlinear pendulum. In the case of the child pumping a swing, the
mass m remains constant (and can be divided out of the equation), but L isnot
constant, so we must differentiate L2¢’ in (15) using the chain rule to get

L (g—'e‘e/ + g—;e) 0 4+ L%0" = —gLsing
or, in system form
0=y
y— _ 2y%0L/36+ gsing (16)
2ydL/ay + L

The person pumping the swing is changing L as a function of 6 and .
For the reasons given in Screen 2.3 of Module 10 we will use the following
formulafor L:

L=Lo+ ]Ar—l' (g — arctan 109) (g + arctan lOy) a7

where L is the distance from the axle to the center of gravity of the swinger
when upright, and AL is the amount by which leaning back (or crouching)
increases this distance. Note that
% (g — arctan 109)

is a smoothed-out step function: roughly 1 when 6 < 0 and O when 6 > 0.
The jump from one value to the other is fairly rapid because of the factor
10; other values would be appropriate if you were to sit (or stand) up more
or less suddenly. A similar analysis applies to the second arctan factor in
formula (17).
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Asfor friction with the swing, we will use

14

The first term corresponds to some small viscous air resistance. Admittedly,
the second term is quite ad-hoc, but it serves to describe some sort of in-
surmountable “brick wall,” which somewhat suddenly takes effect when 6 >
3/2~ /2. So it does seem to reflect our qualitative description.

Writing the differential equation as an autonomoussystem is now routine—
an unpleasant routine since we need to differentiate L, which leads to pretty
horrific formulas. But with this summary, we have tried to make the structure
clear. Now let’s get real and insert friction into modeling system (16):

0 \®
f(6,y) =¢ey+ <—> y

0=y
y— _ 2y?9L/06 + gsing + friction term (18)
- 2yaL/dy+ L
where L is given by formula (17) and

oL 2 4 arctan(10y)
20~ A I i00)
oL Z — arctan(106)
— =10ALAZ———
ay 0 72(1+ 100y?2) (19)

- 0 \°
f = —
riction term ey+<l‘4> y

Example 11: Now set g =32, Lo =4, AL =1, and ¢ = 0 (no viscous
damping), and use ODE Architect to solve system (18). Figure 10.6 shows
that you can pump up aswing fromrest at aninitial angle of 0.25 radian (about
14°) within areasonable time, but not from the tiny angle of 0.01 radian. Do
you see the approach to a stable, periodic, high-amplitude oscillation? This
correspondsto an attracting limit cycle in the 6y-plane.

What happens if we put viscous damping back in? See for yourself by
going to Screen 2.5 of Module 10 and clicking on severd initia pointsin the
gy-screen. You should see two limit cycles now:

e alarge attracting limit cycle representing an oscillation of amplitude
closeto /2, dueto the “brick wall” friction term, and (for & > 0)

o asmall repelling limit cycle near the downward equilibrium, dueto fric-
tion and viscous air resistance.

In order to get going, the child must move the swing outside the small
limit cycle, either by cagjoling someone into pushing her, or backing up with
her feet on the ground. Once outside the small limit cycle, the pumping will
push the trgjectory to the attracting limit cycle, where it will stay until the
child decidesto slow down.
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[0 Geodesics

N
o
o
Q
o

=
o
L
=}
=}
=
I

o
&
L

. swing angle (radians)
&
L

swing angle (radians)
o
|

-0.01 +

|
o
L

25 T T T T T T T T T -0.02 T T T T T T T T
0 6 12 18 24 30 0 6 12 18 24 30
t (seconds) t (seconds)

Figure 10.6: Successful pumping (left graph) starts at a moderately high an-
gle (6 = 0.25 radian). If 6, is small (e.g., 6, = 0.01 rad), then pumping doesn’t
help much (right graph).

Please note that this structure of the phase plane, with two limit cycles, is
necessary in order to account for the observed behavior: the origin must be a
sink because of air resistance, and you cannot have an attracting limit cycle
surrounding a sink without another limit cycle in between.

O Does the system without viscous damping have a small repelling limit
cycle?

Geodesics on a surface are curves that minimize length between sufficiently
close points on the surface; they may, but need not, minimize length between
distant points.

Example 12: Straight lines are geodesics on planes, and they minimize the
distance between arbitrary points. Great circles are geodesics on the unit
sphere, but they only minimize length between pairs of points if you travel
in the right direction. If you travel along the equator your path will be short-
est until you get half-way around the world; but further along, you would have
done better to go the other way.

To look for geodesics, we use the fact that parametrization of a curve y
by its arc length s results in traversing a curve at constant speed 1, that is,
|dy/dg isalways 1.

On a surface in three-dimensiona space, a geodesic y is a curve for
which the vector d?y/ds’ is perpendicular to the surface at the point y(s).
For now, let’s assume that al curves are parameterized by arc length, so y’
meansdy/ds.

If any curve y (not necessarily a geodesic) on the surface is parametrized
at constant speed, we are guaranteed that y” is perpendicular to ¢/, but not
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necessarily to the surface. To see this, observethat y' - ¢/ = 1, where y’ is
the velocity vector for the curve y and the “dot” indicates the dot (or scalar
product) of two vectors. Differentiaing the dot product equation we have
Y -y +v -y"=0,s0y" isperpendicular to y’ (or elseis the zero vector).

The statement that y” is perpendicular to the surfacesaysthat y is going
as “straight” asit can in the surface, and that the surface is exerting no force
which would make the curve bend away from its path. Such a curve is a
geodesic. See the book by Do Carmo for afull explanation of why geodesics
defined as above minimize the distance between nearby points.

Example 13: On a sphere, the parallels of latitude yield acceleration vectors
in the plane of the parallel and perpendicular to the parallel (but not in gen-
eral perpendicular to the surface), whereas any great circle yields acceleration
vectors pointing toward the center of the sphere and hence perpendicular to
both the great circle and to the surface. The great circles are geodesics, but
the parallels (except for the equator) are not.

[0 Geodesics on a Surface of Revolution

Suppose that
x=f(, z=g)
is a parametrization by arc length u of a curve in the xzplane. One conse-

quence of this parametrization is that (f'(u))? + (g'(u))? = 1. Let’s rotate
the curve by an angle 0 around the z-axis, to find the surface parametrized by

f (u) cosf
P(u,6) =| f(uysnod
g(u)

Let’'s suppose that curves y on the surface are parametrized by arc length
s and, hence, these curves have

f (u(s)) coso(s)
y(s) = | f(u(s))sind(s)
a(u(s))

and we need to differentiate this twice to find

f (u(s))U'(s) coso(s) — f(u(s))sind(s)d'(s)
Y'(s) = | T'(u(s)U'(s)sind(s) + f(u(s))coso(s)d'(s)
g'(u(s)u'(s)

g'(u) g”(u) 0

f (u) cosf —f(u)sing
—(@)?| fuysing | +6"| f(u)cosh (20)
0 0

f’(u) cosd f”(u) cosd —f(u)sing
Y =u"| f'(uysing | + W)?| f’(uysing | +2u¢’ | f'(u)cosd
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Thisarray is pretty terrifying, but the two equations

, 0P , 0P
5o=0 ad ¥ 22 =0 (21)

which expressthe fact that " is perpendicular to the surface, give
U —@)2fuf'(uy=0 and 2u f(u)f'(Wo +06"(f(u)>=0 (22

That " is perpendicular to the surface if formulas (21) hold follows because
the vectors 9P/ou and 9P/36 span the tangent plane to the surface at the
point (6,u). Formulas (22) follow from formulas (21), from the fact that
(f/(u))2+ (g'(u))2 = 1, and from the formulas

f/(u) cosH —f(u)ysing
Z;—P: |:f/(u)sin9] %: |: f(u)cos@j|
! g 0
The quantity

M = (f(u))% (23

is conserved along atrgjectory of system (22) since
OI%[( f(u)%0] = (f(u)?0" +2u6 f'f=0

The integral M behaves like angular momentunisee Exploration 5 for
the central force context that first gave rise to this notion).
Substituting & = M/ ( f (u))? into the first ODE of equation(22) gives

g MW
(fu)s

Using equations (23) and (24), we obtain a system of ODEs for the geodesics
on a surface of revolution:

(24)

M
—(f(w)?
u=w (25)
' — M2 f’(u)
(f(u))3
We recognize that ODE (24) is of the form of ODE (4), so

/

/!

__d m
~ du(f(u))?

and we can analyze this ODE by the phase plane and conservation methods
used earlier. Let us now specializeto the torus.
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[1 Geodesics on a Torus

Rotate acircle of radiusr about aline lying in the plane of the circleto obtain
atorus. If Risthedistance from the lineto the center of thecircle, thenin the
above equations we can set

x= f(u)= R+rcosu

z=g(u)=rsinu

If we set r = 1, then we have (/)2 + (g')? = 1 as required in the derivation
of the geodesic ODEs. The system of geodesic ODEs (25) becomes

;L M
~ (M 4 cosu)?
u'=w (26)
) M?sinu
W =———
(R+ cosu)3

where M is a constant. The variable u measures the angle up from the outer
equator of the torus, and & measures the angle around the outer equator from
some fixed point. Figure 10.7 shows seventeen geodesics through the point
0o = 0, ug = 0with wo sweeping from —8t0 8. In Figure 10.7 and subsequent
figureswetake R= 3 and M = 16. Figure 10.8 showsthe geodesic curvesin
the Ou-plane (left graph) and in the uu'-plane (right). Note the four outlying
geodesics that coil around the torus, repeatedly cutting both the outer [u =
2nr] and the inner [u = (2n 4 1) 7] equators and periodically going through
the hole of the donut. Twelve geodesics oscillate about the geodesic along the
outer equator.

a7z
AR
N
s
Wl 7
\\\\\\\\",

\

Figure 10.7: Seventeen geodesics through a point on the outer equator.
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|:| Try this and see how hard
it isto stay on the inner equator.

30 10

-30 . — — - — - -10 _—
-12 -8 -4 0 4 8 -15 -10 5 0 5 10 15
theta u

Figure 10.8: The seventeen geodesics of Figure 10.7 drawn in the 6u-plane
(left) and in the uu-plane (right).

Figure 10.9 showsthe outer and inner equatorial geodesics (the horizontal
lines) in the du-plane, as well as three curving geodesics starting at 6 = 0,
Up = 0. One oscillates about the outer equator six times in one revolution
(i.e., as 6 increases from 0 to 27). The other two start with values of yg
that take them up over the torus and near the inner equator. One of these
geodesics turns back and slowly oscillates about the outer equator. The other
starts with a dightly larger value of Yo, cuts across the inner eguator, and
slowly coils around the torus. This suggests that the inner equator (u = )
isaseparatrixgeodesic, dividing the geodesics into those that oscillate about
the outer equator from those that coil around the torus. This separatrix is

10

T
P
fo

-2.5

T
0 3.142 6.284
theta

Figure 10.9: Equatorial geodesics (lines), a geodesic that rapidly oscillates
around the outer equator, another that oscillates slowly around the outer
equator, and a third that slowly coils around the torus.
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Figure 10.10: The graphs of the toroidal geodesics in the uu-plane (left) look
like the trajectories of an undamped, nonlinear pendulum (right).

unstable in the sensethat if you start a geodesic near the inner equator (say at
0o = 3.14, yo = 0) and solve the system (26), then the geodesic moves away
from the separatrix.

Why do we call this geodesic model a“friend of the pendulum”? Take a
look at the u” and w’ ODEs in system (26). Note that if we delete the term
“cosu” from the denominator of the w’ equation, then we obtain the system

u=uw
2 (27)
w = —M—sinu

R3
which is precisely the system for an undamped, nonlinear pendulum with
g/L = M?/R3. This fact suggests that geodesics of (26) plotted in the uu’-
plane will look like trajectories of the pendulum system (27). Figure 10.10
comparesthe two sets of trgjectoriesand showshow much alikethey are. This
illustrates ageneral principle (which, like most principles, hasits exceptions):
If two systems of ODEs resemble one another, so will their trajectories.

References Arnold, V.1., Ordinary Differential Equation$1973: M.I.T.)

Note: Arnold's book is the classical text. Much of the considerable liter-
ature on modeling swings has been influenced by his description, which
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Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 10.1. Explorations of Basic Pendulum Equation

1. If the nonlinear pendulum ODE (3c) is approximated by the linear ODE (3a),
how closely do the trajectories and the component curves of the two ODESs
match up? Screen 1.2 in Module 10 will be abig help here.

2. What would motions of the system, X =y, y = —V(x), look like under
different potential functions, such as V(x) = x* — x?? What happens if a
viscous damping term —y is added to the second ODE of the system? Use
graphical images like those in Figures 10.2 and 10.3 to guide your analysis.
Use ODE Architect to draw trajectoriesin the xy-plane for both the undamped
and damped case. |dentify the equilibrium points in each case as saddles,
centers, sinks, or sources. Plot the stable and the unstable saddle separatrices
(if there are any) and identify the basin of attraction of each sink. [Suggestion:
Usethe Equilibrium feature of ODE Architect to locate the equilibrium points,
calculate Jacobian matrices, find eigenval ues and eigenvectors, and so help to
determine the nature of those points.]
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Find all solutions of the undamped and linearized pendulum ODE,
0" +(g/L)0 =0

Show that all solutions are periodic of period 27.,/L/g. Are dl solutions of
the corresponding nonlinear pendulum ODE, 6” + (g/L) sind = 0, periodic?
If the latter ODE has periodic solutions, compare the periods with those of
solutions of the linearized ODE that have the sameinitial conditions.

Use the sweep and the animate features of ODE Architect to make “movies’
of the solution curves and the trgjectories of the nonlinear pendulum ODE,
0" + b6+ sind = 0, wherefp = 0, 6; = 10, and b is anonnegative parameter.
Interpret what you see in terms of the motions of a pendulum. In this regard,
you may want to use the model-based pendulum animation feature of ODE
Architect.
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Exploration 10.2. Physical Variations for Child on a Swing

1

Module 10 and the text of this chapter describe a swing-pumping strategy
where the swinger changes position only on thefirst half of the forward swing
(i.e., where 6 is negative but ¢’ is positive). Is this the strategy you would use
to pump aswing? Try pumping a swing and then describe in words your most
successful strategy.
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2. Rebuild the model for the length function L(6, 6") of the “swing pendulum”
to model your own pumping scenario. [Suggestion:Change the arguments
of the arctan function used in Module 10 and the text of this chapter.] Use
the ODE Architect to solve your set of ODEs. From plots of t6-curves and
of 66'-trgjectories, what do you conclude about the success of your modeling

and your pumping strategy?
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Exploration 10.3. Bifurcations

In these problems you will study the bifurcations in the swing-pumping model
of Module 10 and this chapter as the viscous damping constant ¢ or the in-
cremental pendulum length AL is changed.

1. Thereis a Hopf bifurcation for the small-amplitude repelling limit cycle at
¢ = 0. for the swing-pumping system (18) and (19) Plot lots of trajectories
near the origin # = 0, y = 0 for values of ¢ above and below ¢ = 0 and
describe what you see. What does the ODE Architect equilibrium feature tell
you about the nature of the equilibrium point at the originif ¢ < 0? If ¢ = 0?
If e >07?
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2. Now sweep AL through a series of values and watch what happens to the
large-amplitude attracting limit cycle. At a certain value of AL you will see
a sudden change (called a homoclinic, saddle-connection bifurcatjorWhat
is this value of AL? Plot lots of trgectories for various values of AL and
describe what you see.



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 10.4. Geodesics on a Torus

The basic initial value problem for a geodesic starting on the outer equator
of a torus is

B M

" (M + cosu)?

L M2sinu (28)

~ (R+cosu)?
u0) =0, U0 =ao 60 =0

9/

where M is a constant.

1. Make up your own “pretty pictures’ of geodesic sprays on the surface of the
torus by varying u’(0). Explain what each geodesic is doing on the torus. If
two geodesics through ug = 0, 6y = 0 intersect at another point, which pro-
vides the shortest path between two points? Is every “meridian”, 6 = const.,
ageodesic? Isevery “pardlel”, u = const., ageodesic?
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2. Repeat Problem 1 at other initial points on the torus, including a point on the
inner equator.

3. Exploredifferent values for R (between 2 and 5) for the torus—what does it
mean for the solutions of the ODEs for the geodesics? To what extent does
the ugly denominator in the ODES mess up the similarity to the nonlinear
pendulum equation?

Answer by discussing effects on u-phase portraits.
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Exploration 10.5.

2.

|:| Another way to write the
VeCtor r isr =1cosé +]siné,
wherei and | are unit vectors
along the positive x- and y-axes,
respectively.

The Central Force and Kepler’s Laws

An object at position r(t) (relative to a fixed coordinate frame) is moving
under a central force if the force points toward or away from the origin, with
a magnitude which depends only on the distance r from the origin. This is
modeled by the differential equation r” = f(r)r, where we will take r (t) to be
a vector moving in a fixed plane.

Example 14: (Newton'’s law of gravitation) This, as applied to a planet and
the sun, is perhaps the most famous differential equation of all of science.
Newton’s law describes the position of the planet by the differential equation

"

where r is the vector from the center of gravity of the two bodies (located, for
all practical purposes, at the sun) to the planet, G is the universal gravitational
constant, and A = M3/(m+ M)?, where mis the mass of the planet (so for all
practical purposes, A is the mass of the sun).

Newton's law of gravitation is often called the “inverse square law,” not the
“inverse cube law.” Explain.

The way to analyze a central force problemisto write it in polar coordinates,
where

r =r[cos6, sind]
r' =r'[cosh, sinfd] +r&'[—sing, cosd]
r' = (r" —r(6)?)[cosh, sin6] + (2r'0' +rd")[—siné, cosb]
Show that the central force equationr” = f(r)r yields
210 +10" =0 (29)
and

r —r @)% =rf ) (30)
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Show that the quantity M = r2¢’ is constant as a function of time during a
motion in a central force system, using equation (29).

The quantity M (now called the angular momentum of the motion) was
singled out centuries ago as a quantity of interest precisely because of the
derivation above. You should see that the constancy of M is equivalent to
Kepler's second lawthe vector r sweeps out equal areasin equal times.

Substitute & = M/r? into equation (30) and show that, for each value of the
particular central force f(r) and each angular momentum M, the resulting
differential equation is of the expected form.

Specialize to Newton's inverse square law with k = AG and show that the
resulting system becomes

s kM
TETet
or the system
r'=y
k M?
V="t

Make a drawing of the phase plane for this system, and analyze this drawing
using the conserved quantity K, where
y2 k M2

K(r’y):?_{_F_ﬁ

K is evidently defined only for r > 0, and K has a unigque minimum, so the
level curves of K are simple closed curvesfor K << 0, corresponding to the
eliptic orbits of Kepler's first law an unbounded level curve when K = 0
corresponding to a parabolic orbit, and other unbounded curves for K > 0
which correspond to hyperbolic orbits. (For discussion of these three cases
and their relation to conic sections, see Hubbard and West, Part 11, Section 6.7
pp. 43-47.)
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Many phenomena, especially those explained by Newton’s Second Law, can be
modeled by second-order linear ODEs with variable coefficients, for example:

1. Robot arms, which are modeled by a spring-mass equation with a time-
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An aging spring stretches.

varying damping coefficient; and

2. Agi

ng springs, which are modeled by a spring-mass equation with a time-

varying spring constant.

These two applications illustrate very different ways in which series solutions can

be used to solve linear ODEs with nonconstant coefficients.

Infinite series; recurrence formula; ordinary point; singular point; regular singular
point; Bessel’s equations; Bessel functions; aging spring; lengthening pendulum

Chapter 4 for second-order linear ODEs with constant coefficients (i.e., without

the time-dependence).
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[ Infinite Series

D Look inyour calculus
book for Taylor series. Theterm
“analytic” isfrequently used for
functions with convergent Taylor
Series.

Certain second-order linear ODEs with nonconstant coefficients have been
studied extensively, so their properties are well-known. We will look at some
of these ODEs in the chapter.

If the general linear homogeneous (undriven) second-order ODE

X"+ p(t)X +q(t)x=0 (D

has coefficients p and g that are not both constants, the methods of Chapter 4
don't work. However, sometimes we can write a solution X(t) as a power
series:

X(t) =" an(t—to)" @)
n=0

where we use ODE (1) to determine the coefficients a,. Much useful infor-
mation can be deduced about an ODE when its solutions can be expressed as
power series.

If afunction x(t) has a convergent Taylor series x(t) = Y _an(t —tp)" in
some interval about t = tg, then x(t) is said to be analyticat to. Since all
derivatives of analytic functions exist, the derivatives X' and x” of x can be
obtained by differentiating that seriesterm by term, producing series with the
same radius of convergence as the series for x. If we substitute these series
into ODE (1), we can determine the coefficients a,. To begin with, ag and a;
are equal to theinitial values x(tp) and X' (tg), respectively.

O “Check” your understanding by evaluating the series (2) at t = to to show
that ag = X(tp). Now differentiate series (2) term by term to obtain aseriesfor
X (t); evaluate this series at tp to find that a; = X'(tp). Does a, equal X" (tp)?

[0 Recurrence Formulas

A recurrence formuldor the coefficients a,, is a formula that defines each
a, in terms of the coefficients ag, a4, ..., an—1. To find such a formula, we
have to express each of the termsin ODE (1) [i.e., X, p(t)X, and q(t)x] as
power seriesabout t = tg, which isthe point at which theinitial conditionsare
given. Then we combine these series to obtain a single power series which,
according to ODE (1), must sum to zero for all t near to. Thisimplies that
the coefficient of each power of t — to must be equal to zero, which yields an
equation for each a,, in terms of the preceding coefficients ap, ay, ... , an_1.
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|:| We chose afirst-order
ODE for simplicity.

|:| Notice in the second
summation that n starts at 2,
rather than 0. Do you see why?

Example: Finding a recurrence formula
Let's solve the first-order IVP X' +tx =0, Xx(0) = 1. First we write x(t) in
theform

o0
X(t) = Z ant"
n=0

where we have chosen tg = 0. The derivative of x(t) isthen
X(1) =) nat"*
n=1
Substituting this into the given ODE, we get
oo (o)
X +tx = Z nat" 1+ Z at"l=0
n=1 n=0

To make the power of t the same in both sums, replace n by n — 2 in the
second sum to obtain

o0 o0 o0
D nat™ Y e o™t =ar+ ) [nag+anJt" =0
n=1 n=2 n=2

The last equality istrueif and only if a; = O and, if for every n > 2, we have
that na, + an_» = 0. Therefore, the desired recurrence formulais

—an-2

a”:T’ n=23,... 3
Since a; = 0, formula (3) shows that the coefficients ag, as, ..., axi1, .- -
must al be zero; and a; = —ap/2, au = —ax/4=ap/(2-4),.... Witha
little algebra you can show that the seriesfor x(t) is

X(t) = ag— g2y 04 &

6 ..
2 2-4 2-4-6t +

which can be simplified to

2 1/2\° 1/t2\°
X(t):a0<1_§+ﬁ<§> _§<E> +---
If theinitial condition ag = x(0) = 1 is used, this becomes the Taylor Series
for e**/2 about t = 0. Although the series solution to the IVE, X' + x = 0,
X(0) = 1, can be written in the form of afamiliar function, for most 1V Ps that

israrely possible and usually the only form we can obtain is the series form
of the solution.

00 Check that x(t) = e /2 isasolution of the IVP X + tx = 0, Xx(0) = 1.
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[0 Ordinary Points

D Note that p(t) = Ctand
q(t) = k are analytic for all t.

D Historically, new functions
in engineering, science, and
mathematics have often been
introduced in the form of series
solutions of ODEs.

If p(t) and q(t) are both analytic at tg, then tg is called an ordinary point
for the differential equation x”(t) + p(t)X (t) + q(t)x(t) = 0. At an ordinary
point, the method illustrated in the preceding example always produces solu-
tionswritten in seriesform. The following theorem states this more precisely.

Ordinary Points Theorem. If ty is an ordinary point of the second-
order differential equation

X'+ pt)X +qt)x=0 4

that is, if p(t) and q(t) are both analytic at ty, then the general solution
of ODE (4) is given by the series

X(1) =Y an(t — to)" = agxe(t) + axXa() (5)
n=0

where ag and a; are arbitrary and, for each n > 2, a, can be written in
terms of ag and a;. When this is done, we get the right-hand term in
formula (5), where x;(t) and x,(t) are linearly independent solutions
of ODE (4) that are analytic at ty. Further, the radius of convergence
for each of the series solutions x; (t) and X, (t) is at least as large as the
smaller of the two radii of convergencefor the seriesfor p(t) and q(t).

One goal of Module 11 isto give you afeeling for the interplay between
infinite series and the functions they represent. In the first submodule, the
position x(t) of arobot arm is modeled by the second-order linear ODE

X'+ CtX + kx=0 (6)

where C and k are positive constants. Using the methods of the earlier exam-
ple, we can derive a series solution (with to = 0)
kt?  k(2C+Kt*  Kk(2C + k) (4C + k)t®
that satisfies x(0) = 1, x'(0) = 0. We then have to to determine how quickly
the arm can be driven from the position x = 1 to x = 0.005 without letting
X go below zero. The value of k isfixed at 9, so that only C is free to vary.
When C =k, it turns out that series (7) is the Taylor series for e /2 ahout
t = 0. It can then be demonstrated numerically, using ODE Architect, that
C = 9 produces a solution that stays positive and is an optimal solution in the
sense of requiring the least time for the value of x to drop from 1 to 0.005.
In the mgjority of cases, however, it is not possible to recognize the series
solution as one of the standard functions of calculus. Then the only way to
approximate x(t) at agiven value of t is by summing alarge number of terms
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|:| The term ksxpx3 makes
this system nonlinear.

See Screen 4.3 of
Module 8 for values of the rate
constants.

For example, the chemical law of mass action applied to the reaction

X+Y -5z
gives
X =—kxy, y =-kxy, and Z =kxy
where k is a positive rate constant and x, y, z denote the respective concen-
trations of the chemicals X, Y, Z inthereactor. The autocatalytic reaction
X +2Y - 3y

is modeled by

X = —kxy?

y = —2kxy? + 3kxy? = kxy?
because the rate of decrease of the reactant concentration x is kxy? (think of
X+ 2Y as X+ Y +Y), the rate of decrease of the reactant concentration y

is 2kxy? (because two units of Y are involved), and the rate of increase in the
product concentration y is 3kxy? (think of 3Y asY + Y +Y).

O If youwant to speed up the reaction should you increase the rate constant
k, or lower it? Any guesses about what would happen if you heat up the
reactor? Put the reactor on ice?

With this background, we can model a sequence of reactionsthat has been
studied in recent years:

k: k; k:
X1 —1> Xo, X —2> X3, Xo 4+ 2X3 —3> 3X3, X3 ﬁ> Xa

Note the nonlinear autocatalytic step in the midst of the first-order reactions.
A compartment diagram for thisreaction is

koxo
Kix1 KaXz
X1 X2 X3 X4

2
k3 XoX3

where X3, X2, X3, and X4 dencte the respective concentrations of the chemicals
X1, Xz, X3, and X4. The corresponding ODEs are:

/

X1 = —k1X1

Xy = KiXg — (KoXo + KaXx2X3)
3

X5 = (KoXo + kaXoX3) — KaXa
X3 = KaX3

In areaction like this, we call X; the reactant, X, and X3 intermediates, and

X4 the final product of the reaction. For certain ranges of values for the rate

constants k1, ko, ks, ks and for the inital reactant concentration x; (0), the

)
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D The chapter cover figure
shows how the intermediate
concentrations X (t) and xg(t)
play off against each other as
time increases.

Scaled time t

Figure 8.4: As the reactant falls into the Hopf bifurcation zone, the oscillations
of the intermediates turn on as the product rises. Later the oscillations turn
off and the reaction approaches completion.

intermediate concentrations x,(t) and x3(t) will suddenly begin to oscillate.
These oscillations eventually stop and the intermediates decay into the final
reaction product. See Figure 8.4.

The onset of these oscillations is a kind of a Hopf bifurcation for x,(t)
and x3(t). Inthis context, if we keep the value of x; fixed at, say X}, the rate
term kyX; in system (7) can be viewed as a parameter c. Then the middle two
rate equations can be decoupled from the other two:

/ 2
Xy = C— KaXo — KaXaX5

X/3 = koXo + k3X2X§ — kaxs

)

Now let's fix ky, ks, and k4 and use the parameter ¢ to turn the oscillationsin
X2(1) and x3(t) on and off. Thisis the setting for a Hopf bifurcation, so let's
take adetour and explain what that is.

As a parameter transits a bifurcation value the behavior of the state vari-
ables suddenly changes. A Hopf bifurcation is a particular example of this
kind of behavioral change. Suppose that we have a system that involves a
parameter c,

X =1f(Xvy0)
Y =9(X ¥, 0)
and that has an equilibrium point Pat x=4a, y=b[sothat f(a,b,c)=0

9)
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|:| Thisisthe Jacobian matrix
of system (9). See Chapter 6.

|:| The Hopf conditions.

|:| Since &’ (¢g) # 0, a(c)
changes sign as ¢ goes through
Co; this meansthat P goesfroma
sink to a source, or the other way
around.

and g(a, b, ¢) = 0]. Suppose that the matrix of partial derivatives

ot of
X 0
J= y
99 99

09X 8y x=a,y=Db

has the complex conjugate eigenvalues «(c) = i (c). The Dutch mathemati-
cian Eberhard Hopf showed that if :

(a) thefunctions f and g are twice differentiable,

(b) Pisastable, attracting sink for some value ¢y of the parameter c,
(¢) a(co) =0,

(d) [do/dc]e—c, # O,

(e) B(co) #0,

then as the parameter ¢ varies through the bifurcation value ¢y, the attracting
equilibrium point P destabilizes and an attracting limit cycle appears (i.e., an
attracting periodic orbit in the xy-phase plane) that grows in amplitude as ¢
changes beyond the value c,.

Itisn't dways asimple matter to check the conditionsfor aHopf bifurca-
tion (especialy condition (b)). It is often easier just to apply the Architect to
the system and watch what happens to solution curves and trajectories when
aparameter is swept over arange of values. For instance, for system (8) with
valuesk,; = 0.08 and k3 = k4 = 1 for the rate constants, we can sweep the pa-
rameter ¢ and observetheresults. In particular, we want to find values of ¢ for
which an attracting limit cycle is either spawned by P, or absorbed by P. At
and near the specia ¢ values we can use the Equilibrium feature of the ODE
Architect tool to locate the equilibrium point, calculate the Jacobian matrix,
and find its eigenval ues. We expect the eigenvalues to be complex conjugates
and thereal part to change sign at the bifurcation value of c.

Figure 8.5 shows a sweep of twenty-one trajectories of system (8) with ¢
sweeping down from 1.1 to 0.1 and the values of ki, ko, and k3 asindicated in
the figure. See also Problem 3, Exploration 8.4.

O (Thisisthefirst part of Problem 3 of Exploration 8.4.) Use ODE Archi-
tect to duplicate Figure 8.5. Animate (the right icon under Tools on the top
menu bar) so that you can see how the trajectories change as ¢ moves down-
ward from 1.1. Then use the Explore feature to determine which values of ¢
spawn or absorb alimit cycle. For what range of values of ¢ does an attracting
limit cycle exist?

This behavior of the system (8) carries over to the autocatalator sys-
tem (7). Notice that the first equation in (7) is X; = —KyX1, which is easily
solved to give xi(t) = x1(0)e~ . If ky is very small, say k; = 0.002, the
exponential decay of X, isvery slow, so that if x;(0) = 500, the term ky X3 (),
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Figure 8.5: Twenty-one trajectories of system (8) for twenty-one values of c;
initial data is x;(0) = x3(0) = 0, time interval is 100 with 1000 points.

though not constant, has values between 1 and 0.01 for a long time interval.
The behavior of the autocatalator will be similar to that of system (8).
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Exploration 8.1. Tracking Pollution in a Lake

1. Suppose that the water flow rates into and out of a lake are s, = Sout =
10° m3/yr. The (constant) lake volume is V = 10'° m®, and the concen-
tration of pollutant in the water flowing into the lake is pi, = 0.0003 Ib/m?3.
Solve the IVPwith L(0) = 0 (noinitial pollution) and describe in words how
pollution builds up in the lake. Estimate the steady-state amount of pollution,
and estimate the amount of time for the pollution level to increase to half of
the asymptotic level.

2. Supposethat the lake in Problem 1 reaches its steady-state level of pollution,
and then the source of pollutionisremoved. Build anew VP for thissituation,
and estimate how much time it will take for the lake to clear out 50% of the
pollution. How doesthistime compareto the time you estimated in Problem 1
for the build-up of pollutant?
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What would be more effectivein controlling pollutionin the lake: (i) reducing
the concentration of pollutant in the inflow stream by 50%, (ii) reducing the
rate of flow of polluted water into the lake by 50%, or (iii) increasing the
outflow rate from the lake by 50%7?
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Exploration 8.2. What Happens When You Take a Medication?

1. Go to the Library in ODE Architect and check out the file “Cold Pills I: A
Model for the Flow of a Single Dose of Medication inthe Body” in the folder
“Biological Models” Thismodel tracks a unit dose of medication asit moves
from the Gl tract into the blood and is then cleared from the blood. Read the
fileand carry out the explorations suggested there. Record your results below.

2. Goto the Library in ODE Architect and check out “Cold Fills I1: A Model
for the Flow of Medication with Periodic Dosage” in the folder “Biological
Models” Carry out the suggested explorations.
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3. Suppose you take a decongestant pill every four hours to relieve the symp-
toms of a cold. Each pill dissolves slowly and completely over the four-hour
period between doses, releasing 16 units of decongestant at a constant rate.
The decongestant diffusesfrom the Gl tract into the bloodstream at arate pro-
portional to the amount in the Gl tract (rate constant isa = 0.5/ hr) and is
cleared from the bloodstream at arate proportional to the amount in the blood
(rate constant isb = 0.1/ hr). Assume that initially there is no decongestant
in the body. Write areport in which you addressthe following points. Be sure
to attach graphs.

@
(b)
(©)
(d)

e

(f)

Write out ODEs for the amounts x(t) and y(t) in the Gl tract and the
blood, respectively, at timet.

Find explicit formulasfor x(t) and y(t) in terms of x(0) and y(0).

Use ODE Architect to plot x(t) and y(t) for 0 <t < 100 hr. What are
the equilibrium levels of decongestant in the Gl tract and in the blood
(assuming that you continue to follow the same dosage regimen)?
Graph x(t) and y(t) as given by the formulas you found in part (b) and
overlay these graphs on those produced by ODE Architect. What are
the differences?

Imaginethat you are an experimental pharmacol ogist for Get Well Phar-
maceuticals. Set lower and upper bounds for decongestant in the blood-
stream, bounds that will assure both effectiveness and safety. How long
does it take from the time a patient starts taking the medication before
the decongestant is effective? How long if you doublethe initial dosage
(the “loading dose”)? How about a triple loading dose?

For the old or the chronicaly ill, the clearance rate constant from the
blood may be much lower than the average rate for a random sample
of people (because the kidneys don't function as well). Explore this
situation and make a recommendation about lowering the dosage.

4. Repeat al of Problem 3 but assume the capsuleis rapidly dissolving: it deliv-
ersthe decongestant at a constant rate to the Gl tract in just half an hour, then
the dosage is repeated four hours later.
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Exploration 8.3. Get the Lead Out

1. Check out the ODE Architect Library file “A Model for Lead in the Body” in
the“Biological Models’ folder and carry out the explorations suggested there.
(The notation for the rate constantsin the library file differs from the notation
used in this chapter.)

2. Usethefollowing rate constants. k; = 0.0039, k, = 0.0111, ks = 0.0124,
ks = 0.0162, ks = 0.000035, kg = 0.0211, and put L = 49.3 ng/day in the
lead system (4). These values were derived directly from experiments with
volunteer human subjectsliving in Los Angelesin the early 1970s. Using the
data for the lead flow model, describe what happensiif the lead inflow rate L
is doubled, halved, or multiplied by a constant «. Illustrate your conclusions
by using the ODE Architect to graph the lead levelsin each of the three body
compartmentsasfunctions of t. Do the long-term lead levels (i.e., the equilib-
rium levels) depend on the initial values? On L? Find the equilibrium levels
for each of your values of L using ODE Architect. Find the eigenvalues of
the Jacobian matrix for each of your values of L. With the names given in
Chapter 6 to equilibrium pointsin mind, would you call the equilibrium lead
levels sinks or sources? Nodes, spirals, centers, or saddles?
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The bones act as a lead storage system, as you can see from the graphs in
Submodule 3 of Module 8. What happensif the exit rate constant k4 from the
bones back into the blood is increased from 0.000035 to 0.00035? To 0.00357?
Why might an increase in ks be harmful? See Problem 2 for the values of L
and the rate constants k;.

The medication now in use for acute lead poisoning works by improving the
efficiency of the kidneysin clearing lead from the blood (i.e., it increases the
value of the rate constant kg). What if a medication were developed that in-
creased the clearance coefficient ks from the tissues? Explore this possibility.
See Problem 2 for the values of L and the rate constants k;.

In the 1970s and ' 80s, special efforts were made to decrease the amount of
lead in the environment because of newly enacted laws. Do you think this
was a good decision, or do you think it would have been better to direct the
efforts toward the development of a better antilead medication for cases of
lead poisoning? Why? What factors are involved in making such a decision?
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Exploration 8.4. Chemical Reactions: the Autocatalator

1. Check out “The Autocatalator Reaction” in the “Chemical Models’ folder in
the ODE Architect Library and graph the concentrations suggested. Describe
how the concentrations of the various chemical species changein time.

2. Hereareschematicsfor chemical reactions. Draw a compartment diagram for
each reaction. Then write out the corresponding sets of ODEs for the indi-
vidual chemical concentrations. [Use lower case letters for the concentrations
(e.g., x(t) for the concentration of chemical X at timet).]

@ X+Y -5z

b) X+Y-5 7z w
© X+2Y 5 7

(d) X+2Y =53y 47
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D Use the Explore feature to
estimate the starting and stopping
times of the oscillator.

Explore the behavior of x,(t) and x3(t) as governed by system (8). Start with
c=11 k;=0.08 ks=ks=1, and x(0) = y(0) = 0. Then sweep ¢
from 1.1 down to 0.1 and describe what happens to orbits in the x,x3-plane.
Find the range of vaues of ¢ between 1.1 and 0.1 for which attracting limit
cycles are visible. These are Hopf cycles. Fix ¢ at a value that you think is
interesting and sweep one the parameters ky, ks, or k4. Describe what you
observe. [Suggestion: Take alook at Figure 8.5, use the Animate feature of
ODE Architect to scroll through the sweep trgjectories. Then use the Explore
option to get a data table with information about any of the trgjectories you
have selected.]

Look at the autocatalator system (7) with x;(0) = 500, x2(0) = x3(0) =
X4(0) = 0and k; = 0.002, k, =0.08, k3 = ks = 1. Graph x,(t) and x3(t)
over various time ranges and estimate the times when sustained oscillations
begin and when they finally stop. What are the time intervals between suc-
cessive maxima of the oscillationsin x,? Plot a3D txox3-graph over various
time intervals ranging from t = 100 to t = 1000. Describe what you see.
[Suggestion: Look at the chapter cover figure and Figure 8.4.]

Now sweep the values of x; (0) downward from 500. What is the minimal
value that generates sustained oscillations? Then fix x;(0) at 500 and try to
turn the oscillations off by changing one or more of the rate constants kg,
ko, ks, ks—this corresponds to heating or chilling the reactor. Describe your
results.
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Population biology is the study of how communities of organisms change. The
structure of a population can be quite intricate, such as species interactions in a
tropical rain forest. Other communities may involve only a few species and are
simpler to describe. There are many aspects of population biology, including ecol-
ogy, demography, population genetics, and epidemiology. In each of these areas,
mathematics plays an important role in modeling how populations change in time
and how the interaction between the environment and the community affects that
change. We’ll explore mathematical models in ecology and epidemiology.

Logistic model; growth rate; carrying capacity; equilibrium; steady state; compete-
tion; coexistence; exclusion; predator-prey; epidemiology

Chapter 1 for more on the logistic equation, Chapter 7 for predator-prey models,
and Chapter 8 for chemical mass action.
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[1 Modeling Population Growth

The increasing awareness of environmental issues is an important devel op-
ment in modern society. This awareness ranges from concern about conserv-
ing important natural resources to concern about habitat destruction and the
endangerment of species. Human population pressures are ever-increasing,
and this growth has led to intense exploitation of the environment. To reduce
the negative effects of this exploitation, scientists are seeking to understand
the ecology and biology of natural populations. This understanding can be
used to design management strategies and environmental policies.

The simplest ecological models describe the growth of a single species
living in an environment or habitat. Characteristics of the habitat—temperature,
moisture, availability of food—uwill affect how well the species survives and
reproduces. Intrinsic biological characteristicsof the species, such asthebasic
reproductiverate, also affect the growth of the species. However, a mathemat-
ical model that incorporates all possible effects on the growth of the popul a-
tion would be complicated and difficult to interpret.

O “Check” your understanding by answering this question: What are some
other characteristics of a species and its environment that can affect the pro-
ductivity of the species?

The most common procedure for modeling population growth is first to
build elementary modelswith only afew biological or environmental features.
Once the simple models are understood, more complicated models can be
developed. Inthe next section we' Il start with thelogistic model for the growth
of asingle species—amodel that is both simple and fundamental .

[0 The Logistic Model

The ecological situation that we want to model is that of a single species
growing in an environment with limited resources. Examples of this situation
abound in nature: the fish population of a mountain lake (the limited resource
isfood), a population of ferns on aforest floor (the limited resourceis light),
or the lichen population on a field of arctic rocks (the limited resource is
space). We won't attempt to describe the biology or ecology of our popula-
tion in detail: we want to keep the mathematical model simple. Instead, we'll
summarize a number of such effects using two parameters. The first parame-
ter is caled theintrinsic growth rate of the population. It is often symbolized
using the letter r, and it represents the average number of offspring, per unit
time, that each individual contributes to the growth of the population. The
second parameter is called the carrying capacity of the environment. Symbol-
ized by K, the carrying capacity is the largest number of individuals that the
environment can support in a steady state. If there are moreindividualsin the
population than the carrying capacity, the population declines because there
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are too few resources to support them. When there are fewer individuals than
K, the environment has not been overexploited and the population grows.
Our mathematical model must capture these essential characteristics of
the population’s growth pattern. To begin, we define a variable that represents
the size of the population as a function of time; call thissize N(t) at time't.
Next, we specify how the size N(t) changesin time. Creating a specific rule
for the rate of change of population sizeis the first step in building a mathe-
matical model. In general, amodel for changing population size has the form
dN

i f(t,N), N =N

for some function f and initial population No. Once the details of f are
given, based on the biological and ecological assumptions, we have aconcrete
mathematical model for the growth of the population.

To complete our description of the logistic model, we need to find a rea-
sonablefunction f that captures the essential properties described above. We
arelooking for asimple function that givesrise to

e population growth when the population is below the carrying capacity
(thatis, N'(t) > 0if N(t) < K);
e population declineif the population exceeds the carrying capacity (that
is, N'(t) < 0if N(t) > K).
Onesuch functionis f(t, N) =rN(1— N/K). Thelogistic model isthe VP
dN N
ot :rN(l— R)’ N(0) = N

where r, K and Ny are positive constants. Figure 9.1 shows some typical
solution curves.
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Figure 9.1: Some solution curves for the logistic equation.
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Let’s observe a few important features of our model. First, the algebraic
sign of N'(t) follows the desired relationship to the population size N. Sec-
ond, if either N = 0 or N = K, there is no change in the population size:
N’(t) =0. Thus, N =0and N = K are equilibria or steady states. The first
steady state corresponds to the extinction of the speciesin its environment,
and the second corresponds to a population in perfect balance, living at the
carrying capacity of the habitat.

Notice the effect of the parameters r and K. As the carrying capacity
K increases, the environment supports more individuals at equilibrium. As
the growth rate r increases, the population attains its steady state in a faster
time. Animportant part of understanding amathematical model isto discover
how changing the parameters affects the behavior of the system that is being
modeled. This knowledge can lead to predictions about the system, and to a
much deeper understanding of population processes. In Exploration 9.1 you
will study the logistic model and variations of it. See also Chapter 1.

O Doyouthink theintrinsic annual growth rater of the earth’s human pop-
ulation is closer to 0.01, 0.03, or 0.057? It's anyone's guess as to the carrying
capacity. What is your estimate, given that the current population is about
6 billion?

[J Two-Species Population Models

The logistic model applies to a single species. Most habitats support a vari-
ety of species; interactions can be both intraspecific (between individuals of
the same species) or interspecific (between individuals of different species).
These interactions can take many forms. For example, competition between
individuals of the same species for food resources, nesting sites, mates, and
so on, are intraspecific interactions that lead to regulated population growth.
Important interspecific interactions include predation, competition for food or
other resources, and symbiotic relationshipsthat are mutually beneficial. Such
interactions can be very complex and can involve alarge number of species.
Again, the first step in modeling complicated ecologies is to build and ana-
lyze simple models. We'll present two such models here (involving only two
species) and consider othersin the last three explorations.

0 Canyou think of amutually beneficial interaction between humans and
another species?
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[0 Predator and Prey

|:| When two species interact
at arate proportiona to the
product of the two populations,
it's called population mass
action.

Aswe noted, an important interaction between speciesis that of predator and
prey. Such interactions are very common: animals must eat to thrive, and
for every eater there is the eaten! Spiders prey on flies, cows prey on grass,
mosquitoes prey on humans, and humans prey on shiitake mushrooms, truf-
fles, salmon, redwood trees, and just about everything else. We'll now build a
simple model to describe such interactions.

Consider two species, the prey species (H, becausethey’re“ harvested” or
“hunted”) and the predator species (P), but for the moment, imagine that they
don't interact. In the absence of the predator, we assume that the prey grows
according to the logistic law, with carrying capacity K and intrinsic growth
ratea > 0. The model for the prey under these conditionsis

H =aH(1- H/K)

Now suppose that in the absence of its food source (the prey), the predator
dies out; the model for the predator is

P'=—_bP

whereb > 0. If this situation persists, the prey will grow to fill the habitat and
the predator will become extinct.

Now suppose that the predator does feed upon the prey, and that each
predator consumes, on the average, afraction c of the prey population, per unit
time. The growth rate of the prey will then be decreased (since they’re being
eaten) by the amount cH P. The predators benefit from having consumed the
prey, sotheir growth ratewill increase. But becauseagiven predator may have
to consume a lot of prey to survive, not all prey produce new predatorsin a
one-for-one way. Therefore the increase in the growth rate of the predatorsin
thiscaseisdH P, where d is aconstant which may be different than c. Putting
this al together, we obtain our model for the predator-prey system:

dH H
< =aH (l—E>—cHP
dP

—f = “bP+dHP

Analyzing this model givesinsight into a number of important ecological is-
sues, such as the nature of coexistence of predator and prey, and the under-
standing of population cycles. Figure 9.2 on the next page shows a phase plot
for the predator-prey system described by ODE (1). Exploration 9.3 examines
this predator-prey model.

)

0 Whatisthelong-term future of the prey speciesin Figure 9.2? The preda-
tor species?
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Figure 9.2: An orbit of a predator-prey model with logistic prey growth.

[0 Species Competition

D Could the competition be
so fierce that both species
become extinct?

Another common interaction between species is competition. Species can
compete for space, food, light, or for other resources. In the absence of its
competitor, each species grows logistically to its carrying capacity. However,
the presence of the competitor changes the situation, and the growth rate of
each speciesis diminished by the presence of the other. Let N; and N, repre-
sent the numbers of the two species. We model the competition between these
species with the following equations:

dN N
1 = rlNl (1— 1 —0512N2>

dt Ky @
N (1= NN
dt — 12IN2 K2 21N

The parameter a1, measures the effect of Species 2 on Species 1, and a»;
measures the effect of Species 1 on Species 2. If a2 > a1, then Species 2
dominates Species 1, because Species 2 reduces the growth rate of Species 1
more per capita than the reverse. The analysis of this model gives insight
into how species maintain their diversity in the ecology (coexistence) or how
such diversity might be lost (competitive exclusion). A phase plot for the
competitive systemis shownin Figure 9.3. Exploration 9.4 examinesarelated
model for so-called mutualistic interactions.

O DoesFigure 9.3 show coexistence or competitive exclusion?
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Figure 9.3: Orbits for a model of two competing species.

[0 Mathematical Epidemiology

|:| Another instance of
population mass action.

An important use of mathematical models is to describe how infectious dis-
eases spread through populations. Thisfield is called epidemiology. Quanti-
tative models can predict the time course of a disease or the effectiveness of
control strategies, such as immunization. Again, the development proceeds
from the simplest model to more complex ones.

The most elementary model for an epidemic is the so-called SIR model
(presented in Module 9): Consider a population of individuals divided into
three groups—those susceptible (S) to a certain disease, those infected (1)
with the disease , and those who have recovered (R) and are immuneto rein-
fection, or who otherwise leave the population. The SIR model describeshow
the proportions of these groups changein time.

The susceptible population changes size as individuals become infected.
Let'sthink of this process as “ converting” susceptiblesto infecteds. If we as-
sume that each infected individual caninfect a proportion a of the susceptible
population per unit time, we obtain the rate equation

ds

5= —as A3)

The infected population is increased by conversion of susceptibles and is de-
creased when infected individuals recover. If b represents the proportion of
infecteds that recover per unit time, then the rate of change of the infected
population satisfies

dl

g =2s bl (4)
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Figure 9.4: A plot of suceptibles (falling curve), infecteds (the “bump”), re-
covereds (rising curve), and their sum (top line).

Lastly, asinfecteds recover they augment the recovered population, so that

dR
T =P (5)

The ODEs (3)—(5) together with the initial values S(0), 1 (0), and R(0) define
the SIR model. A component plotof S, |, R,and N = S+ | + Rappearsin
Figure 9.4.

0 Canyouexplainwhy N(t) stays constant as time changes?

We can learn many important things from this model about the spread
of diseases. For example, analysis of the model can reveal how the rate of
spread of the disease through the population is related to the infectiousness
of the disease. Our common experience suggests that not all diseases become
epidemic: sometimesafew people are afflicted and the disease dies out. Anal-
ysis of the SIR model can aso giveinsight into the conditions under which a
disease will become epidemic. Thisisan important phenomenon! These and
other matterswill be examined in Exploration 9.5.

0 What factors can you think of that might influencethe spread of adisease
in a human population?

Bailey, N.T.J., The Mathematical Theory of Infectious Diseases and its Appli-
cations, 2nd ed., (1975: Hafner Press)

Edelstein-Keshet, L., Mathematical Modelsin Biology, (1988: McGraw-Hill)
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Exploration 9.1. The Logistic Model

|:| Using the ODE
Architect Library.

1

In this exploration you will consider a population that grows according to the
logistic law: N’ =rN(1— N/K), where r is the intrinsic growth rate and K is
the carrying capacity of the environment.

Open the ODE Architect Library. In the folder “Population Models,” open
the file “Logistic Model of Population Growth.” The logistic equation will
be automatically entered into the Architect. The graphs show severa solu-
tion curves. Set the initial condition for the population size to Ng = 25 and
set K = 100. Plot eight solutions by sweeping the growth rate constant from
r =—0.5tor = 2; print your graph. Describe the effect of r on the solutions
of the logistic equation. Your description should address the following ques-
tions: How does the growth rate constant affect the long-term behavior of the
population? How does the rate constant affect the dynamics of the system?

Set the ICto Np =25 and r = 1.2. Plot eight solution curves by sweeping
the carrying capacity K from 70 to 150; print your graph. Describe the effect
of the parameter K on the solutions of the logistic equation. Your description
should address the following questions: How doesthe carrying capacity affect
the long-term behavior of the population? How does the carrying capacity
affect the dynamics of the system?
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Study the graphs that you produced for Problems 1 and 2. Notice that some-
timestherate of change of population sizeisincreasing (i.e., N’(t) isincreas-
ing and the graph of N(t) isconcaveup) and sometimesit isdecreasing (N’ (t)
is decreasing and the graph of N(t) is concave down). By analyzing your
graphs, try to predict a relationship between r, K, and N that distinguishes
between these two situations. Use ODE Architect to test your prediction by
graphing more solution curves. Lastly, try to confirm your prediction by exact
analysisof N” using thelogistic ODE.
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Exploration 9.2. Harvesting a Natural Resource

Human societies use resources from their environments. We harvest animals
and plants for food, construction, fuel, and many other uses. The harvesting
of a biological resource must be done carefully, because overexploitation of
the population can cause severe harm, or even extinction, to the resource. As
a society we have become much more sensitive about the need to balance
the benefits of resource consumption against the impact of that consumption
on the exploited populations and their environment.

Resource management is an important tool for minimizing the negative
effects of harvesting. Mathematical models are tools for understanding the
impact of harvesting on a population, so that we can then design manage-
ment policies, such as quotas on the annual harvest.

In this exploration, you will analyze a simple model for harvesting a sin-
gle species. To be specific, suppose that the habitat is a forest and the re-
source is a species of pine tree. The number of trees grows logistically with
an intrinsic growth rate r, and the forest will support at most K trees (mea-
sured in millions of board feet). You are a consulting ecologist, asked to
model the effect of a lumber company’s harvesting strategy on the pine for-
est. The company harvests the trees proportionally: in a unit of time (a year,
for example), the company removes a fixed fraction h of the trees. Harvest-
ing reduces the net rate of growth of the forest; this leads you to propose the
following model for the effect of harvesting:

M:rN(l—%)—hN, N(0) = No (6)

The last term, —hN, is the harvesting term. Notice that when h =0 (i.e., no
trees are harvested), the model reduces to the logistic equation.

1. Open ODE Architect and enter the ODE for the harvesting model given by
equation (6). Set the growth rate to r = 0.1 year—1, the carrying capacity to
K = 1000 million board feet, and the populationsize ICto Np = 100at t = 0.
Describe the growth of the forest when there is no harvesting (h = 0). You'll
have to choose a good time interval to best display your results.
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Keepr and K fixed and plot solution curvesfor various (positive) values of the
harvesting rate h. You can do this exploration most efficiently by sweeping
the parameter h. After you have studied a variety of harvest rates, explain
how harvesting affects the pine population. Your explanation should address
the following questions. How does the growth of the pine population with
harvesting compare to its growth without harvesting? What is the long-term
effect of harvesting? How are the time dynamics of the forest growth affected
by harvesting?

The annual yield Y of the harvest is the amount of lumber removed per year.
Thisisjust Y = hN when there are N units of lumber in the forest. Theyield
will vary through time as the amount of lumber (trees) in the forest varies
in time. If the harvest rate is too high, the long-term yield will tend to zero
(Y — 0) and the forest will become overexploited. If the harvest rate is very
low, theyield will also be very low. Asthe consultant to the company, you are
asked: What should the harvest rate be to give the largest sustainable yield of
lumber? That isto say, what optimal harvest rate will maximizelim_, o, Y (t)?
Attack the problem graphically using ODE Architect to plot graphs of the
yield function for various values of h. Assume that r = 0.1, K = 1000,
and Np = 100. If you can, provide an analytic solution to the question, and
check your results using the Architect. Suppose that the company follows
your recommendation and harvests pine at the optimal rate. When the size
of the forest reaches equilibrium, how much lumber (trees) will there be, and
how does this amount compare to the size of the forest without harvesting?
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Exploration 9.3. Predator and Prey

Predator-prey interactions are very common in natural populations. These
interactions can be modeled by a system of nonlinear equations:

H' = aH (1— %) —CHP, P =—-bP+dHP
where H and P are the prey and predator population sizes, respectively.

1. Giveabiological interpretation of the parametersa, b, c, d, K of the predator-
prey model.

2. Open ODE Architect and enter the modeling equations for the predator-prey
system above. Assign the following values to the parameters: a= 1.0, b =
0.25, c=1.0, d=0.15, K = 100. After you have entered the equations and
parameters, set the solve interva to 60, and the number of points plotted to
500. Solve the system forward in time using the initial conditions H(0) = 1,
P(0) = 1. Plot graphs of the orbitsin the H P-phase plane, and plot the indi-
vidual component graphs for predator and prey. Experiment with other initial
conditions. Describe the nature of the solutions and locate all equilibrium
solutions.
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3. Fixa=10, b=0.25 c=1.0andd = 0.15asin Problem 2. Plot severa
solutions from the fixed initial conditions H(0) = 1, P(0) = 1, for varying
values of K. For example, let K range over several values between 100 to
10,000. How does changing the carrying capacity of the prey affect the be-
havior of the system? Make a conjecture about the limiting behavior of the
systemas K — oo.

4. Test the conjecture that you madein Problem 3in two steps:

(@) Takethelimit as K — oo in the predator-prey equations and obtain a
new system of equations that describes a predator-prey system where
there is no resource limitation for the prey.

(b) Explore this system using ODE Architect; this new system is often
called the Lotka—\olterra model. Plot severa orbits using markers that

[[] Finally, you get achance are equally spaced in time. Do the cycles have acommon period? How
to figure out what is going on in do the time markers help you answer that question? Compare your
the chapter cover figure. graphs with the chapter cover figure. Also plot graphs of H against t

and P against t for various values of H(0) and P(0). What do these
graphstell you about the periods?

How does the behavior of the Lotka—Volterra model differ from the model
you explored in Problems 1-3?
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Exploration 9.4. Mutualism: Symbiotic Species Interactions

|:| You may want to use the
Dual (Matrix) sweep feature here.

For both predator-prey and species competition, the growth rate of at least
one of the species is reduced by the interaction. Though eating the prey
helps the predator, it certainly harms the prey; for competitors the reduc-
tion in growth rate is reciprocal. Not all species interactions must be neg-
ative: there are many examples where the species cooperate or otherwise
mutually enhance their respective growth rates. A famous example is the
yucca plant-yucca moth system: the yucca plant can be pollinated only by
the yucca moth, and the yucca moth is adapted to eat nectar only from the
yucca plant. Each species benefits the other, and their interaction is positive
for both. Such interactions are called mutualistic or symbiotic by ecologists.
In this exploration we will present and analyze a simple model for mutualism.

Our model will be very similar to the competition model studied in Mod-
ule 9. To obtain a model for mutualism, we just change the signs of the
interaction terms so that they are always positive: each species enhances
the growth rate of the other. We then obtain the following equations:

dN;

dN
T Ni (r1 — €Ny + a2Np) | d_t2 =Nz (r2 — &No + 21 Ny) (1)

The parameters ry, rz, a1; and ay; retain their meanings from ODE (2) in the
competition model. However, the interaction terms «;,N; N; and «2; N3 N, have
positive sign and thus enhance the respective growth rates.

Notice that in the absence of interaction, the carrying capacities of the
two species are K; =r;/e; and K; =r,/e; in this version of the model.

Open the ODE Architect Library, go to the “Population Models’ folder; now
open the file “Mutualism: Symbictic Interactions” This file loads the equa-
tions that model a mutualistic interaction. Fixry =1, r, =0.5, e =1,
e = 0.75. Vary the values of each of the interaction coefficients from O to
2. For each combination of valuesfor a1, and a»; that you try, draw a phase
portrait of the system (7) in the first quadrant. Describe every possible kind
of behavior of the system; try enough combinations of the parameters to feel
confident that you have covered all the possibilities. Answer the following
questions: |s species coexistence possible? Can competitive exclusion occur?
Will the populations of both species remain bounded as time increases?
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Using pencil and paper, deduce the conditions under which a two-species
equilibrium will be present. Check your conditions using the Architect to
solve the model. When a two-species equilibrium is present, does it neces-
sarily have to be stable? Compare two-species equilibria to single-species
equilibria (the carrying capacities): does mutualism increase or decrease the
abundance of the species at equilibrium?

Do you think that a mutualistic interaction is always beneficial to an ecosys-
tem? Under what conditions might it be deleterious? Compare the behavior
of mutually interacting speciesto that of competing species. How are the two
behaviors similar? How are they different?
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Exploration 9.5. Analyzing the SIR model for an Epidemic

We will now explore the SIR model for the spread of an epidemic. Recall the
ODEs for this model: S = —aSl, |I’=aSl —bl, R =bl. The parametera > 0is
the infection rate constant and b > 0 is the removal (recovery) rate constant
of infecteds. Notice that S+ |I' + R =0, i.e., the total number of individuals
N is constant and equals S(0) + 1 (0) + R(0). The ODE Architect Library has an
equation file for the SIR model in the “Population Models™ folder. In this file
you will find values of a, b, and N that correspond to an actual epidemic.

1. SetthelCto I(0) =20 and R(0) = 0. Set the solve interval to 24 time
units, and make ten plots by sweeping the initial number of susceptiblesfrom
S(0) = 100 to S(0) = 500. Now examine the graph panel for | vs. t. Which
of the curves correspondsto S(0) = 100 and which to S(0) = 5007 By def-
inition, an epidemic occurs if | (t) increases from its initial value | (0). For
which of the curvesthat you plotted did an epidemic occur?

2. Thebehavior that you studied in Problem 1 is called athreshold effect. If the
initial number of susceptible individualsis below athreshold value, there will
be no epidemic. If the number of susceptibles exceeds this value, there will
be an epidemic. Use ODE Architect to empirically determine the threshold
valuefor S(0); use the values of a and b in the Library file. Now analyze the
equation for dI /dt and determine a sufficient condition for | (t) to initialy
increase. Interpret your answer as a threshold effect. Use the values of the
infection and removal rates that appear in the Library file to compare your
analytic calculation of the threshold with that obtained from your empirical
study.
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3. Clear your previous results from the Architect but keep the same valuesfor a
and b. Set theinitial conditionsfor |, R, and Sto 10, 0, and 200, respectively.
Solvethe equationsfor atimeinterval of 24 units. Notice from the plot of | (t)
that the number of infecteds steadily diminishes from 10 to nearly zero. Also
notice that over this same period of time, the number of susceptibles declines
by almost 50, and the number of recovered individual sincreasesfrom zero to
nearly 50. Explain this seemingly contradictory observation.

4. A diseaseis said to be endemic in a population if at equilibrium the number
of infectedsis positive. Isit possible in the SIR model for the disease to be
endemic at equilibrium? In other words, can lim_, o, | (t) > 0? Explain your
answey.
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High energy tragjectories of adamped pendulum ODE swing over the
top and then settle into decaying oscillations about rest points.

The whole range of fixed-length pendulum models—linear, nonlinear, damped,
and forced—are presented in this chapter, and their behaviors are compared us-
ing insights provided by integrals. After discussing fixed-length pendulum ODEs,
the effects of damping, and separatrices, we turn to a variable-length model. A
child pumping a swing alters the length of its associated pendulum as the swing
moves. We present a nontraditional autonomous model and show that phase-
plane analysis leads to a successful description of the effects of the pumping
action. Finally, the problem of finding geodesics (the paths of minimum length
between points) on a torus leads to an ODE with a striking resemblance to the
pendulum ODE.

Linear pendulum; nonlinear pendulum; damping; energy; pumping (a swing); con-
servation laws; torus; geodesic; limit cycle; bifurcation

Chapter 4 for a spring-mass system which has the same ODE as the linear pendu-
lum; Chapter 11 for a study of damping effects in the Robot and Egg submodule,
and a lengthening pendulum in Exploration 11.4; and Chapter 12 for elaboration
on the forced, damped pendulum resulting in chaos (and control).
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Chapter 10

[0 Modeling Pendulum Motion

D The volumes by Halliday
and Resnick (refs.) are good
general references for physical

models (including the pendulum).

D Since the tensile force in
the rod and the radial component
of the gravitational force are
equal and opposite, the radial
acceleration is zero and the
pendulum moves along acircular
arc.

D Thefirst two ODEsin this
list have the form of the
mass-spring ODEs of Chapter 4.

For a pendulum bob of mass m at the end of arod of negligible weight and
fixed length L at an angle 6 to the vertical, Newton’'s second law gives

mass - acceleration = sum of forces acting on the bob

The bob moves along an arc of acircle of radius L. The tangential compo-
nent of the bob’s velocity and acceleration at time t are given by L#'(t) and
Lo (t), respectively. The tangential component, —mgsiné, of the gravita:
tional force acts to restore the pendulum to its downward equilibrium. The
viscous damping force, —bL#’, is proportional to the velocity and actsin adi-
rection tangential to the motion, but oppositely directed. Other forces such as
repeated pushes on the bob may also have components F (t) in the tangential
direction

Equating the product of the mass and the tangential acceleration to the
sum of the tangential forces, we obtain the pendulum ODE.

mLé” = —mgsing — bL& — F(t) D
The equivaent pendulum system is
0=y
_ _9gng_by, L @)
y = Lsm@ Y mI_F(t)

The angle 6 is positive if measured counterclockwise from the downward ver-
tical, and is negative otherwise; 6 is measured in radians (1 radian is 360/ 2
or about 57°). We allow 6 to increase or decrease without bound because we
want to keep track of the number of times that the pendulum swings over the
pivot, and in which direction. For example, if 6 = —5 radians then the pen-
dulum was swung clockwise (the minus sign) once over the top from 6 = 0
because the angle —5 is between —r (at the top clockwise from 0) and —3x
(reaching the top a second time going clockwise).

We will work with the undriven pendulum ODE (F = 0) in this chapter.
Sincesing ~ 0 if |9] is small, we will on occasion replace siné by 6 to obtain
alinear ODE. We treat both undamped (b = 0) and damped (b > 0) pendulum
ODEs:

0 + %e —0 (undamped, linear) (3a)
0 + n%e’ n %e —0 (damped, linear) (3b)
0" + %sin@ =0 (undamped, nonlinear) (3c)
0 + %e/ + %sin@ —0 (damped, nonlinear) (3d)
/! b / g : _ i .
0" + m9 + ] sing = rnI_F(t) (damped, nonlinear, forced) (3¢)
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Exploration 6.4. Three Interconnected Tanks

|:| Take a look at
Chapter 8 for a way to
diagram this

“compartment” model.

Consider three interconnected tanks containing salt water. Initially Tanks 1
and 2 contain 10 gal of water while Tank 3 contains 15 gal. Each tank initially
contains 6 oz of salt.

Water containing 2 oz of salt per gal flows into Tank 1 at a rate of 1 gal/min.
The mixture in Tank 1 flows into Tank 2 at a rate of r gal/min. Furthermore,
the mixture in Tank 1 is discharged into the drain at a rate of 2 gal/min. Water
containing 1 oz of salt per gal flows into Tank 2 at a rate of 2 gal/min. The
mixture in Tank 2 flows into Tank 3 at a rate of r + 1 gal/min and also flows
back into Tank 1 at a rate of 1 gal/min. The mixture in Tank 3 flows into Tank 1
at a rate of r gal/min, and down the drain at a rate of 1 gal/min.

Draw a diagram that depicts the tank system. Does the amount of water in
each tank remain constant during the process? Show that the flow processis
modeled by the following system of equations, where qy(t), g2(t), and gs(t)
are the amounts of salt (in 0z) in the respectivetanks at timet:

/_Z_E _f_i +L
h=cm g ht phT 5%
/_2_|_L _E
G=ct g~ g %

r+1 r+1

0z = l—OQ2— 15 0k}

What are the corresponding initial conditions?

Let r = 1, and use ODE Architect to plot g; vs. t, g, vs. t, and gs vs. t for
the IVP in Problem 1. Estimate the limiting value of the amount of salt in
each tank after along time. Now suppose that the flow rater is increased to
4 gal/min. What effect do you think this will have on the limiting values for
1, 02, and gz? Check your intuition with ODE Architect. What do you think
will happen to the limiting valuesif r is increased further? For each value of
r use ODE Architect to find the limiting valuesfor g, gz, and gs.
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3. Although the two sets of graphsin Problem 2 may look similar, they’re ac-

tualy dightly different. Calculate the eigenvalues of the coefficient matrix

[ ] UseODEArchitecttofind  whenr = 1 and whenr = 4. Thereisacertain “critical” valuer = rq between

the eigenval ues. 1 and 4 where complex eigenvalues first occur. Determiner to two decimal
places.

4. Complex eigenvalues lead to sinusoidal solutions. Explain why the oscilla-
tory behavior characteristic of the sine and cosine functionsis not apparent in
your graphs from Problem 2 for r = 4. Devise a plan that will enable you to
construct plots showing the oscillatory part of the solution for r = 4. Then
execute your plan to make sure that it is effective.
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Exploration 6.5. Small Motions of a Double Pendulum; Coupled
Springs

Another physical system with two degrees of freedom is the planar double
pendulum. This consists of two rods of length |; and |, and two masses m,
and my, all attached together so that motions are confined to a vertical plane.
Here we’ll investigate motions for which the pendulum system doesn’t move
too far from its stable equilibrium position in which both rods are hanging
vertically downward. We’ll assume the damping in this system is negligible.

A sketch of the double pendulum system is shown in the margin. A
derivation of the nonlinear equations in terms of the angles 6;(t) and 6,(t)
that govern the oscillations of the system is given in Chapter 7 (beginning on
page 126). The equations of interest here are the linearized ODE in 6, and 6,
where both of these angles are required to be small:

mp
11,60 + ———1,65 + 99, =0
I i m, 2279
|29/2/+|1t9:/|f+g@2=0

For small values of 6,, 6, 6,, and ¢, these ODEs are obtained by linearizing
ODEs (19) and (20) on page 127.

1. Consider the special case where my = mp = mand |1 = I, = |, and define
g/ | = 3. Write the equations above as a system of four first-order equations.
Use ODE Architect to generate motionsfor different values of wg. Experiment
with different initial conditions. Try to visualize the motions of the pendulum
system that correspond to your solutions. Then use the model-based anima-
tion tool in ODE Architect and watch the animated double pendulums gyrate
asyour initial value problems are solved.
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Assume w3 = 10 in Problem 1. Can you find in-phase and out-of-phase os-
cillations that are analogous to those of the coupled mass-spring system? De-
termine the relationships between the initial conditions 61(0) and 62(0) that
are needed to produce these motions. Plot 6, against 61 for these motions.
Then change 0, (0) or 6,(0) to get a motion which is neither in-phase nor out-
of-phase. Overlay this graph on the first plot. Explain what you see. Use
the model-based animation feature in ODE Architect to help you “see”’ the
in-phase and out-of-phase motions, and those that are neither. Describe what
you see.

Show that the linearized equations for the double pendulum in Problem 2 are
equivalent to those for aparticular coupled mass-spring system. Find the cor-
responding values of (or constraints on) the mass-spring parameters my, my,
ki, and ky. Does this connection extend to other double-pendulum parame-
ter values besides those in Problems 1 and 27 If so, find the relationships
between the parameters of the corresponding systems. Use the model-based
animation feature in ODE Architect and watch the springs vibrate and the
double pendulum gyrate. Describe what you see.
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Nonlinear Systems

Angular velocity: twenty-four ways to spin a book.

While many natural processes can be modeled by linear systems of ODEs, others
require nonlinear systems. Fortunately, some of the ideas used to understand lin-
ear systems can be modified to apply to nonlinear systems. In particular, state (or
phase) spaces and equilibrium solutions (as well as eigenvalues and eigenvectors)
continue to play a key role in understanding the long-term behavior of solutions.
You will also see some new phenomena that occur only in nonlinear systems. We
restrict our attention to autonomous equations, that is, equations in which time
does not explicitly appear in the rate functions.

Nonlinear systems of differential equations; linearization; direction fields; state
(phase) space; equilibrium points; Jacobian matrices; eigenvalues; separatrices;
bifurcations; limit cycles; predator-prey; van der Pol system; saxophone; spinning
bodies; conservative systems; integrals; angular velocity; nonlinear double pendu-
lum

Chapter 6 for background on linear systems and Chapters 8-10 and 12 for more
examples of nonlinear systems.
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Chapter 7

[J Linear vs. Nonlinear

In modleing a dynamical process with ODESs we aim for amodel that is both
reasonably accurate and solvable. By the latter we mean that there are either
explict solution formulasthat reveal how solutions behave, or reliable numeri-
cal solversfor approximating solutions. Constant-coefficient linear ODEs and
linear systems have explicit solution formulas (see Chapters 4 and 6), and that
isonereason linearity is widely assumed in modeling. However, nonlinearity
isan essential feature of many dynamical processes, but explicit solution for-
mulas for nonlinear ODEs are rare. So for nonlinear systems we turn to the
aternative approaches and that’s what this chapter is about.

[0 The Geometry of Nonlinear Systems

D The equilibrium points of
a system correspond to the
constant solutions, that is, to the
points where al the rate
functions of the system are zero.

Let's start with the linear system of ODESs that models the motion of a cer-
tain viscously damped spring-mass system that obeys Hooke's Law for the
displacement x of aunit mass from equilibrium:

X =y, y=-x-01y (@)

In Chapter 4 we saw that the equivalent linear second-order ODE, x” 4+ 0.1X' +
x = 0 has an explicit solution formula, which we can use to determine the be-
havior of solutions and of trajectories in the xy-phase plane.

Now let's suppose that the Hooke's-law spring is replaced by a stiffening
spring, which can be modeled by replacing the Hooke's-law restoring force
—x in system (1) with the nonlinear restoring force —x — x3. We obtain the
system

X=y, y=-x—x>—01y 2

Asin the linear system (1), the nonlinear system (2) defines a vector (or di-
rection) field in the xy-state (or phase) plane. The field lines are tangent to
the trajectories (or orbits) and point in the direction of increasing time.

There are no solution formulas for system (2), so we turn to direction
fields and ODE Architect for visual clues to solution behavior. As you can
see from Figure 7.1, the graphs generated by ODE Architect tell us that the
trajectories of both systems spiral into the equilibrium point at the origin as
t — 400, even though the shapes of the trajectories differ. The origin corre-
spondsto the constant solution x =0, y = 0, whichiscalled aspiral sink for
each system because of the spiraling nature of the trajectories and because the
trajectories, like water in adraining sink, are “pulled” into the origin with the
advance of time. Thisis an indication of long-term or asymptotic behavior.
Note that in this case the nonlinearity does not affect long-term behavior, but
clearly does affect short-term behavior.
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[] Linearization

|:| Thisisafinite Taylor
series approximation to g(x, y).

O “Check” your understanding by answering these questions. Do the sys-
tems (1) and (2) have any equilibrium points other than the origin? How do
the corresponding springs and masses behave as time increases? Why does
the —x3 term seem to push orbits toward the y-axis if |x] > 1, but not have
much effect if |x| is closeto zero?

If we start with a nonlinear system such as (2), we can often use linear ap-
proximations to help us understand some features of its solutions. Our ap-
proximations will give us a corresponding linear system and we can apply
what we know about that linear system to try to understand the nonlinear sys-
tem. In particular, we will be able to verify our earlier conclusions about the
long-term behavior of the nonlinear spring-mass system (2).

The nonlinearity of system (2) comes from the —x3 term in the rate func-
tion g(x, y) = —x — x3 — 0.1y. In calculus you may have seen the following
formula for the linear approximation of the function g(x, y) near the point

(Xo, Yo):
g g
g(x, y) ~ g(xo, Yo) + 5((X0, Yo) (X — Xo) + @(XOa Yo(y—vyo) ()

However, g(Xo, Yo) will aways be zero at an equilibrium point (do you see
why?), so formula (3) simplifiesin this caseto

0 0
g(x, y) ~ a—?((xO, Yo) (X — Xo) + a—f’/(xO, Yo) (¥ — Yo) )

Since we'reinterested in long-term behavior and the trgjectories of system (2)
seem to be heading toward the origin, we want to use the equilibrium point
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X =y, y=-x-01y X =y, y=-x—x-0.1y
Figure 7.1: Trajectories of both systems have the same long-term, spiral-sink
behavior, but behavior differs in the short-term.
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D Linear and nonlinear
look-alikes.

[ ] Look back at Chapter 6 for
more on complex eigenvalues
and spird sinks.

X- t-x
0.4 y 0.4

(0.25,0.25)

0.2 H 0.2 H
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Trajectories t-X curves
Figure 7.2: Near the equilibrium at the origin trajectories and tx-component
curves of nonlinear system (2) and its linearization (1) are nearly look-alikes.

(X0, Yo) = (0,0) in formula (4). Near the origin, the rate function for our
nonlinear spring can be approximated by

agx,y)~ —x—0.1y

since dg/ox = —1 and ag/dy = —0.1 at xg = 0, yo = 0. Therefore the non-
linear system (2) reduces to the linearized system (1). You can see the ap-
proximation when the phase portraits are overlaid. The trgjectories and tx-
component curves of both systems, issuing from acommon initial point close
to the origin, are shown in Figure 7.2. The linear approximation is pretty
good because the nonlinearity —x3 is small near x = 0. Take another look at
Figure 7.1; the linear approximation is not very good when |x| > 1.

O How good an approximation to system (2) is the linearized system (1) if
theinitial point of atrgjectory is far away from the origin? Explain what you
mean by “good” and “far away.”

In matrix notation, linear system (1) takes the form

B -5 ][] ©

0 the characteristic equation of the system matrix is A% 4+ 0.1» + 1= 0. The
matrix has eigenvalues & = (—0.1+1i+/3.99)/2, making (0, 0) a spiral sink
(due to the negative real part of both eigenvalues). This supports our earlier
conclusion that was based on the computer-generated pictures in Figure 7.2.
The addition of a nonlinear term to alinear system (in this example, a cubic
nonlinearity) does not change the stability of the equilibrium point (asink in
this case) or the spiraling nature of the trgjectories (suggested by the complex
eigenvalues).
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|:| The point xg isan
equilibrium point of X = F(x) if
F(Xo) =0.

|:| Here'swhy linearization is
so widely used.

Thelinear and nonlinear trajectories and the tx-componentsshownin Fig-
ure 7.2 look pretty much aike. Thisis often the case for a system

X' = F(X) (6)
and its linearization
X = A(X — Xo) (7)

at an equilibrium point xo. Let's assume that the dependent vector variable
X has n components X, ... X,, that F1(X), ..., F,(X) are the components of
F(x), and that these components are at least twice continuously differentiable
functions. Then the n x n constant matrix A in system (7) isthe matrix of the
first partial derivatives of the components of F(x) with respect to the compo-
nents of x, all evaluated at Xo:

oF1 oF1
A=| 5
oFn oFn
X1 o 9%n X=Xo

A is called the Jacobian matrix of F at Xo, and is often denoted by J or J(Xo).
As an example, look back at system (1) and its linearization, system (2) or
system (5).

It is known that if none of the eigenvalues of the Jacobian matrix at an
equilibrium point iszero or pureimaginary, then closeto the equilibrium point
the trajectories and component curves of systems (6) and (7) look alike. We
can use ODE Architect to find equilibrium points, cal cul ate Jacobian matrices
and their eigenvalues, and so, check out whether the eigenvalues meet the
conditionsjust stated. If n = 2, we can apply the vocabulary of planar linear
systems from Chapter 6 to nonlinear systems. We can talk about a spiral sink,
anodal source, asaddle point, etc. ODE Architect uses a solid dot for asink,
an open dot for a source, a plus sign for a center, and an open square for a
saddle.

What happens when, say, the matrix A does have pure imaginary eigen-
values? Then all bets are off, as the following example shows.

Start with the linear system

X =y
y = —x

The system matrix has the pure imaginary eigenvalues +i, making the origin
acenter. Now give the system a nonlinear perturbation to get

X=y-x3

y = —X
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D But linearity can be
misleading!

s |
-

Linear system Perturbed system
Figure 7.3: Nonlinear terms convert a linear center to a nonlinear sink.

By picturing the direction field defined by this system, we can see that each
vector has been nudged dightly inward, toward the origin. This causes so-
[utions to spira inward, making (0, 0) a spiral sink. Figure 7.3 shows tra-
jectories from the origina linear system on the left, and a trgjectory of the
nonlinear system on the right, spiraling inward. Now it should be clear why
we had to exclude pure imaginary eigenvalues!

0 What happens if you perturb the linear system by adding the x3 term,
instead of subtracting? What about the system x' =y — x%, y = —x+ y3?

[1 Separatrices and Saddle Points

A linear saddle point has two trajectories that |eave the point (as time in-
creases from —oo) along a straight line in the direction of an eigenvector.
Another two trgjectories approach the point as time increases to +o0) along
a straight line in the direction of an eigenvector. These four trgjectories are
called saddle separatrices because they divide the neighborhood of the sad-
dle point into regions of quite different long-term trajectory behavior. Theleft
plot in Figure 7.4 shows the four separatrices along the x and y axes for the
linear system

X=x Yy=-y ©)

with a saddle point at the origin. The two that leave the origin as t increases
are the unstable separatrices, the two that enter the origin are the stable sep-
aratrices.

If we add some higher-order nonlinear termsto alinear saddle-point sys-
tem, the separatrices persist but their shapes may change. They till divide a
neighborhood of the equilibrium point into regions of differing long-term be-
havior. And, most important, they still leave or approach the equilibrium point
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(a) Trajectories of System (8) (b) Trajectories of System (9)
Figure 7.4: Saddle separatrices lie along the axes in (a); two of the spearatri-
ces are bent to the rightt by a nonlinearity in (b).

tangent to eigenvectors of the linearized system. The right plot in Figure 7.4
suggests all this for the system (8) with anonlinear term tacked on:

X=x—y, y=-y ©
Note how the nonlinearity bends two of the separatrices.

[0 Behavior of Solutions Away from Equilibrium Points

While we can use linearization in most cases to determine the long-term be-
havior of solutions near an equilibrium point, it may not be a good method
for studying the behavior of solutions“far away” from the equilibrium point.
Consider, for example, the spider-fly system of Module 7:

S = —4S+ 2SF, F/=3<1—g> F— 2SF

where Siis a population of spiders preying on F, a population of flies (all
measured inthousands). Thisnonlinear system has several equilibrium points,
oneof whichisat p* = (0.9, 2).

Take alook at the graphics windows in Experiment 2 of “The Spider and
Fly” (Screen 1.5). Thetrajectories of thelinearized systemthat are closeto p*
approximate well those of the nonlinear system. However, trgjectories of the
linearized system that are not near the equilibrium point diverge substantially
from those of the nonlinear system, and may even venture into aregion of the
state space where the population of spidersis negative!

O LookattheLibrary file“Mutualism: Symbiotic Interactions’ in the* Pop-
ulation Models’ folder and investigate the long-term behavior of solution
curves by using linear approximations near equilibrium points.
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An attracting spiral sink (a = —1). A repelling spiral source and attract-
ing limit cycle (a=1).

Figure 7.5: The system x = y+ax— X3, y = —X, undergoes a hopf bifurcation

to an attracting limit cycle as the parameter transists the value a= 0.

[0 Bifurcation to a Limit Cycle

D If you are not “into”
nonlinear electrical circuits,
ignore the modeling here and just
consider ODE (10) as a particular
nonlinear system.

D Current, voltages and time
are scaled to dimensionless
quantities in system (10).

The model equationsfor an electrical circuit (the van der Pol circuit) contain-
ing anonlinear resistor, an inductor, and a capacitor, al in series, are

X =y+ax—x, Yy =-X (10)

where X is the current in the circuit and y is the voltage drop across the ca-
pacitor. The voltage drop across the nonlinear resistor is ax — x3, where a is
a parameter. The characteristics of the resistor, and thus the performance of
the circuit, changes when we change the value of this parameter. Let's look
at the phase portrait and the corresponding e genvalues of the linearization of
this system at the equilibrium point (O, 0) for three different values of a.

As a increases from —1 to 1, the eigenvalues of the Jacobian matrix of
system (10) at the origin change from complex numbers with negative real
parts to complex numbers with positive real parts, but at a = 0 they are pure
imaginary. The circuit’s behavior changes as a increases, and it changesin a
qualitative way at a = 0. The phase portrait shows a spiral sink at (0, 0) for
a < 0, then aspira sourcefor a > 0. Further, the trgjectories near the source
spiral out to a closed curve that is itself a solution. Our electrical circuit
has gone from one where current and voltage die out to one that achieves a
continuing oscillation described by a periodic steady state. A changelike this
in the behavior of amodel at a particular value of aparameter is called a Hopf
bifurcation. Figure 7.5 shows the changesin a trgjectory of system (10) due
to the bifurcation that occurs when a isincreased through zero.

0 Find the Jacobian matrix of system (10) at the origin and calculate its
eigenvalues in terms of the parameter a. Write out the linearized version of
system (10). Check your work by using ODE Architect’s equilibrium, Jaco-
bian, and eigenval ue capabilities.
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|:| A limit cycleis
exclusively anonlinear
phenomenon. Any cycleina
linear autonomous system is
aways part of afamily of cycles,
none of which are limit cycles.

The closed solution curve in Figure 7.5 that represents a periodic steady
stateis called an attracting limit cycle because nearby trajectories spiral into it
astimeincreases. As the parameter value changesin a Hopf bifurcation, you
can observe an equilibrium point that is a spiral sink changing into a source
with nearby orbits spiralling onto the limit cycle. You'll investigate this kind
of phenomenon when you use ODE Architect to investigate the model system
in the “ Saxophone”’ submodule of Module 7.

[0 Higher Dimensions

So far we havelooked at systems of nonlinear ODESs involving only two state
variables. However it is not uncommon for a model to have a system with
more than two state variables. Fortunately our ideas extend in a natural way
to cover these situations. Analysis by linear approximation may still work
in these cases, and ODE Architect can always be used to find equilibrium
points, Jacobian matrices, and eigenvaluesin any dimension. Seefor example
Problem 4 in Exploration 7.3.

The chapter cover figure shows trgjectories of a system with three state
variables; this system describes the angular velocity of a spinning body. The
“Spinning Bodies” submodule of Module 7 and Problem 1 in Exploration 7.3
model the rotational motion of an object thrown into space; this model is
described below.

O How could you visualize the trgjectories of a system of four equations?

[1 Spinning Bodies: Stability of Steady Rotations

|:| Aswe shall see, not all
axes L will support steady
rotations.

Suppose that a rigid body is undergoing a steady rotation about an axis L
through its center of mass. In a plane perpendicular to L let 6 be the angle
swept out by a point in the body, but not on the axis. Steady rotations about
L are characterized by the fact that ¢ = d9/dt = constant, for all time. In
mechanics, it is useful to describe such steady rotations by a vector w parallel
to L whose magnitude |w| = d@/dt is constant. Notice that —w in this case
also corresponds to a steady spin about L, but in the opposite direction. The
vector w is called the angular velocity, and for steady rotations we see that w
is a constant vector. The angular velocity vector w can aso be defined for an
unsteady rotation of the body, but in this case w (t) is not a constant vector.

It turns out that in a uniform force field (such as the gravitational field
near the earth’s surface), the differential equationsfor the rotational motion of
the body about its center of mass decouplefrom the ODEsfor the trandlational
motion of the center of mass. How shall we track the rotational motion of the
body? For each rigid body thereis a natural triple of orthogonal axesL y, Lo,
and L 3 (called body axes) which, as it turns out, makes it relatively easy to
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D A matrix Ais positive
definite if it is symmetric (i.e.,
AT = A) and dl of its
eigenvalues are positive.

[] Described graphically in
Module 7.

D A complete derivation of
the model ODEs can be found in
the first of the listed references.

D Pure steady rotations are
possible about any body axis.

model the rotational motion by asystem of ODES. To define the body axeswe
need theinertiatensor | of the body. Given atriple of orthogonal axesthrough
the body’s center of mass, put an orientation on each axis and label them to
form aright-handed frame (i.e., it follow the right-hand rule). In that frame, |
isrepresented by a3 x 3 positive definite matrix. Body axesare just the frame
for which the representation of | is adiagonal matrix with the positive entries
I1, 2, and I3 along the diagonal. These values |4, |,, and |3 are caled the
principal moments of inertia of the body. Notethat | isthe moment of inertia
about the principal axisLy, for k=1, 2, 3. If abody has uniform density and
an axis L such that turning the body 180° about that axis brings the body into
coincidence with itself again, then that axis L isaprincipa axis.

Let's say that a book has uniform density (not quite true, but nearly so).
Then the three axes of rotational symmetry through the center of mass are
the principal axes: L3, the short axis through the center of the book’s front
and back covers; L ,, the long axis paralel to the book’s spine; and L 1, the
intermediate axis which is perpendicular to L, and L3. For atennis racket,
the body axis L is obvious on geometrical grounds. The other axes L ; and
L 3 are abit more difficult to discern, but they are given in the margin sketch.

Throw a tennis racket up into the air and watch its gyrations. Wrap a
rubber band around a book, tossit into the air, and look at its spinning behav-
ior. Now try to get the racket or the book to spin steadily about each of three
perpendicular body axes L4, Lo, and L3. Not so hard to do about two of the
axes—but nearly impossible about the third. Why is that? Let's construct a
model for the rotation of the body and answer this question.

L et’s confine our attention to the body’sangul ar motion while aloft, not its
vertical motion. Let'signoreair resistance. The key parameters that influence
the angular motion are the principal inertias I, |5, I3 about the respective
body axes Ly, Lo, L3. Let w1, w2, and w3 be the components of the vector
w dong the body axes L1, L,, and L3. There is an analogue of Newton's
Second Law applied to the body which involves the angular velocity vector
w. The components of the rotational equation of motion in the body axes
frame are given by l10] = (l2 — I3)wows, lhw), = (I3 — l)wiws, lzw; =
(I1 = ) wirws.

Dividing by the principal inertias, we have the nonlinear system

Wy = Wow3
1
’ |3 - I1
Wy, = B w1w3 (11)
;=1
w3 = | w12

3

Let’s measure angles in radians and time in seconds, so that each w; has units
of radians per second.

First, we note that for any constant « # 0, the equilibrium point w =
(a, 0, 0) of system (11) represents a pure steady rotation (or spinning motion)
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|:| A system of autonomous
ODEsis conservative if thereisa
function F of the dependent
variables whose value is constant
along each orhit (i.e., trgjectory),
but varies from one orbit to
another. F issaid to be an
integralof motion of the system.

|:| Body axisL; isparalel to
the wy-axis, L, to the wy-axis,
and L 3 to the ws-axisin

Figure 7.6.

about the first body axis L1 with angular velocity «. The equilibrium point

(—a, 0, 0) represents steady rotation about L 1 in the opposite direction. Sim-

ilar statements are true for the equilibrium pointsw = (0, «, 0) and (0, O, ).
Now the kinetic energy of angular rotation is given by

1
KE(w1, w2, w3) = > (1105 + 1205 + 1303)

The valueof K E stays fixed n an orbit of system (11) since
d(KE)
dt

= |1a)1a)’1 + |2wza)/2 + |3w3a)’3
= (l2 — I3)w1wow3z + (I3 — I wiwowz + (11 — 12)wiwwz =0

So system (11) is conservativeand K E isan integral. The ellipsoidal integral
surface KE = C, where C isa positive constant, is called an inertial €llipsoid
for system (11). Note that any orbit of (11) that starts on one of the ellipsoids
stays on the ellipsoid, and orbits on that ellipsoid share the same value of KE.

O Show that the functions

l3—11 lo— 13
K= w? — w3
I l1

and

l1—1> lo— 13
wf — 5
I3 l1

are also integrals for system (11). Describe the surfaces K = const., M =
const.

M =

Let's put in some numbers for |4, |5, and |3 and see what happens. Set
I, =2, I, =1, I3= 3. Then system (11) becomes

W] = —wrw3
/

0)2 = w13 (12)
, 1

Wy = W12
73

With the given valuesfor |4, |5, 13 we have theintegral
1
KE = > (Zwi + w3+ 36()%) (13

The left graph in Figure 7.6, which is aso the chapter cover figure, shows
the inertial ellipsoid KE = 12 and twenty-four orbits on the surface. The
geometry of the orbits indicates that if the body is started spinning about an
axis very near the body axes L, or L 3, then the body continuesto spin almost
steadily about those body axes. Attempting to spin the body about the inter-
mediate body axis L 1 is another matter. Any attempt to spin the body about
the L ; body axisleadsto strange gyrations. Notein Figure 7.6 that each of the
four trajectories that starts near the equilibrium point (+/12, 0, 0) where the
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Figure 7.6: Twenty-four trajectories on the inertia ellipsoid KE = 12 (left);
head-on view from the w;-axis (right) shows a saddle point on the ellipsoid.

w1-aXis pierces the ellipsoid goes back near the antipodal point (and reverses
its direction of rotation) then returns in an endlessly repeating periodic path.
This corresponds to unstable gyrations near the w1-axis.

O Match up the trajectories in Figure 7.6 with actual book rotations. Put
a rubber band around a book, flip the book into the air, and check out the
rotations. Do the projected trajectories in the right graph of Figure 7.6 really
terminate, or is something else going on?

[0 The Planar Double Pendulum

D Thisis pretty advanced
material here, so feel free to skip
the text and go directly to the
“Double Pendulum Movies'. Just
click on the ODE Architect
library, open the “Physical
Models’ folder and the “Double
Pendulum Animator” file, and
create chaos!

The planar double pendulum is an interesting physical system with two de-
greesof freedom. It consists of two rods, of lengths |, and |, and two masses,
specified by m; and my, attached together so that the rods are constrained to
oscillatein avertical plane. We'll neglect effects of damping in this system.

The governing equations are most conveniently written in terms of the
angles 1 (t) and 6, (t) showninFigure7.7. Oneway to obtain the equations of
motion is by applying Newton’s Law to the motions of the masses. First we'll
consider mass m, and the component in the direction shown by the unit vector
uz in Figure 7.7. Define a coordinate system centered at mass m, and rotating
with angular velocity Q = (d6;/dt)k, where k isthe unit vector normal to the
plane of motion. If &, ¥, and f denote the acceleration, velocity, and position
of m, with respect to the rotating coordinate system, then the acceleration a
with respect to a coordinate system at rest is known to be

R Q . .
a:a+(;—txr+29xv+Qx(er) (14)

For our configuration it follows that

f = —[l1sin(@, — 01)]us + [lo + 11 cos(82 — 01)]us (15
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with the unit vector u,4 in the direction shown in Figure 7.7. Since the only
forces acting are gravity and the tensile forces in the rods, the uz-component
of F = mpa in combination with Egs. (14) and (15) gives

Mmpl2(62 — 61)" + my[l2 + 11 cos(6, — 61)]67
+ Mply(61)2sin(02 — 61) = —mpgsing,  (16)

Similarly, the component of Newton’s Law in the direction of the unit vector
u; isgiven by

Mal16/ + Mpl2 COS(62 — 61)65 — Myl 2(63) Sin(B2 — 61)
= —mpgsind, — fosin(@, — 6,) (17)
where f, is the magnitude of the tensile force in the rod |,. Equations (16)
and (17) will provide the system governing the motion, once the quantity fs is

determined. An equation for f; isfound from the u;-component of Newton's
Law applied to the mass my:

mllle’l’ = —mlgsin91 + fzSin(Qz —01) (18)

Eliminating f, between Egs. (17) and (18) and simplifying Eq. (16) slightly,
we obtain the governing nonlinear system of second-order ODEs for the pla-
nar double pendulum:

(my + mp) 1167 + mpl, cos(6; — 61)6,
— mypl2(65)?sin(Bz — 61) + (Mg + Mmp)gsind; =0 (19)

Myl 265 + Myl COS(6 — 61)6]
+ Myl (6))?sin(0; — 61) + Mpgsind, =0 (20)

Geometery Unit vectors

Figure 7.7: Geometry and unit vectors for the double pendulum.
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Another way to derive the eguations of motion of the double pendulum
system isto use Lagrange’s equations. These are

d[ o a
d[ 9 bl

where T isthe kinetic energy of the system and V isits potentia energy. The
respective kinetic energies of the masses m; and m, are

1 ,
T1 = Emﬂ%(el)z

1 . . 1
T2 = §m2(|19/15ln91 + 1205 8in6;)% + Emz(lle/l €0S61 + 1265 C0S6;)°

The corresponding potential energies of m; and m, are

V1 = mgli(1— cos6)

Vo = mpgl1(1 — coséq) + mpgla(1 — coshy)
Then, wehave T =T; + T, and V = V; + V.. Inserting the expressions for
T and V into Egs. (21) and (22), we find the equations of motion of the dou-
ble pendlum. These equations are equivalent to the ones obtained previously

using Newton's Law. The formalism of Lagrange pays the dividend of pro-
ducing the equations with “relatively” shorter calculations.
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Exploration 7.1. Predator and Prey: Linearization and Stability

1. Let F represent the number of flies and S the number of spiders (both in
1000s). Assume that the model for their interaction is given by:

S = -4S+2SF, F =3F-2SF (23)

where the SF-term is ameasure of the interaction between the two species.

|:| Take alook as the “ Spider
and Fly” submodule of Module 7.

(@) Why isthe SF-term negativein thefirst ODE and positivein the second
when (S, F) isinside the population quadrant?

(b) Show that the system has an equilibrium point at (2, 1.5).

(c) Show that the system matrix of the linearization of system (23) about
[] Thismakesthe point (2, 1.5) has pureimaginary eigenvalues.

Iﬁi;fggggor the (d) Now plot phase portraits for system (23) and for its linearization about
' (2, 1.5). What do you see?

2. Supposethat aninsecticide reducesthe spider population at arate proportional
to the size of the population.

(@) Modify the predator-prey model of system (23) to account for this.
(b) Model how insecticide can be made more or less effective.
(c) Usethe model to predict the long-term behavior of the populations.
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In apredator-prey system that models spider-fly interaction
S =-4S+2SF, F :3(1— %) F —2SF

the number N represents the maximum fly population (in 1000s). |nvestigate
the effect of changing the value of N. What's the largest the spider population
can get? The fly population?

Suppose the spider-fly model is modified so that there are two predators, spi-
dersand lizards, competing to eat the flies. One model for just the two preda-
tor populationsis

S=4<1—§> S—SL, L/=3<l—%> L-SL

(@) What do the numbers 2, 3, 4, and 5 represent?
(b) What doesthe term SL represent? Why isit negative?
(c) What will become of the predator populationsin the long run?

Take alook at the library file “A Predator-Prey System with Resource Limi-
tation” in the “Biological Models’ folder. Compare and contrast the system
you seein that file with that given in Problem 2. Create a system where both
the predator and the prey are subject to resource limitations, and analyze the
behavior of the trgjectories.
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Exploration 7.2. Bifurcations and Limit Cycles

1. Alter the model in the “Saxophone’ submodule of Module 10 by adding a
parameter c:

1
u =, v/=—Su—|—Cv—Bv3

(@) What part of the model doesthis affect?
(b) How do solutionsbehavefor valuesof c betweenOand 2, takings= b = 1?
(c) Ascincreases, what happensto the pitch and amplitude?

2. Suppose the model for a simple harmonic oscillator (alinear model),
X=y, y=-X
is modified by adding a parameter c:
X =cx+y, Y =-x+cy

(@) What happensto the equilibrium point as ¢ goesfrom —1to 1?

(b) What happensto the eigenval ues of the matrix of coefficientsas c changes
from —1to 1?
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[] usethe model-based
pendulum animation in ODE
Architect and watch the
pendulum gyrate.

D Sweep on the parameter a,
and then animate. To animate a
graph with multiple tragjectories
corresponding to different values
of a, click on the animate icon
below the word “Tools” at the top
left of the tools screen.

Suppose we further modify the system of Problem 2:
X =cx+y—x(¢+y9), y = —X+cy— yO& + y?)

where —1 < ¢ < 1. Analyze the behavior of the equilibrium point at (0, 0)
as c increases from —1 to 1. How does it compare with the behavior you
observed in Problem 2?

You can modify the system for a simple, undamped nonlinear pendulum (see
Chapter 10) to produce a torqued pendulum:

X =y, y =—s€n(x)+a

Here a represents a torque applied about the axis of rotation of the pendulum
arm. Investigate the behavior of this torqued pendulum for the values of a
between 0 and 2 by building the model and animating the phase space asa in-
creases. Explain what kind of behavior the pendulum exhibits as a increases;
explain the behavior of any equilibrium points you see.

The motion of athin, flexible steel beam, affixed to arigid support over two
magnets, can be modeled by Duffing's equation:

X=y, y=ax—x

where X represents the horizontal displacement of the beam from the rest po-
sition and a is a parameter that is related to the strength of the magnets. In-
vestigate the behavior of thismodel for —1 < a < 1. In particular:

(@) Findall equilibrium pointsand classify them asto type(e.g., center, sad-
dle point), verifying your phase plots with eigenvalue calculations (use
ODE Architect for the eigenvalue calculations). Some of your answers
will depend on a.

(b) Give aphysical interpretation of your answersto Question (a).

(c) What happens to the equilibrium points as the magnets change from
weak (a < 0) to strong (a > 0)?

(d) What happens if you add a linear damping term to the model? (Say,
y =ax— x5 —vy.)
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Exploration 7.3. Higher Dimensions

|:| For example, w1 =0,

wy = 3, w3z =1canbetaken as
an initial point and so can
w1=1, wp=0,

w3 = (10/3)05,

Soinning Bodies.
Use ODE Architect to draw severa distinct trajectories on the ellipsoid of
inertia, 0.5(202 + w3 + 3w3) = 6, for system (12).

Choose initial data on the ellipsoid so that the trajectories become the
“visible skeleton” of theinvisible ellipsoid. What do thetrajectorieslook like?
What kind of motion does each represent? You should be able to get a picture
that resembl esthe chapter cover figure and Figure 7.6. Project your 3D graphs
onto the wyw»,-, wow3-, and w1 wz-planes, and describe what you see. Now ap-
ply the equilibrium/eigenval ue/eigenvector calculations from ODE Architect
to equilibrium points on each of the w1, w,, and w3 axes. Describe the results
and their correlation with what you saw on the coordinate planes. Now go
tothe Library file “A Conservative System: The Momentum Ellipsoid” in the
folder “Physical Models’ and explain what you see in terms of the previous
guestionsin this problem.

Exploration 7.1 (Problem 4) gives a predator-prey model where two species,
spiders and lizards, prey on flies. Construct a system of three differential
equationsthat includes the prey in the model. You'll need to represent growth
rates and interactions, and you may want to limit population sizes. Make some
reasonable assumptions about these parameters. What long-term behavior
does your model predict?

Take another look at the ODEs of the coupled springs model in Module 6.
Use ODE Architect for the system of four ODEs given in Experiment 1 of
that section. Make 3D plots of any three of the five variables x, X;, X2, X5,
and t. What do the plots tell you about the corresponding motions of the

springs?
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Modify the coupled springs model from Module 6 (where coupled linear
springsmove on africtionless horizontal surface) by making one of the springs
hard or soft: add aterm like X2 to the restoring force. Does this change the
long-term behavior of the system? Make and interpret graphsasin Problem 3.

Chaosin three dimensions

Some nonlinear 3D systems seem to behave chaotically. Orbits stay bounded
as time advances, but the dlightest change in the initial data leads to an orbit
that eventually seems to be completely uncorrelated with the original orbit.
This is thought to be one feature of chaotic dynamics. Choose one of the
following three Library files located in the folder “Higher Dimensional Sys-
tems’:

e “The Scroll Circuit: Organized Chaos’

e “TheLorenz System: Chaos and Sensitivity”
e “TheRoessler System: A Strange Attractor”

Change parameters until you see an example of this kind of chaos. You may
want to look at Chapter 12 for additional insight into the meaning of chaos.
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Compartment Models

Oscillating chemical reactions on awineglass?

A salt solution is pumped through a series of tanks. We’ll use the balance law to
model the rate of change of the amount of salt in each tank:

Netrate of change of [ _ JRateinto| | Rate out of
amount of salt in tank [ tank tank

If we know the initial amount of salt and the inflow and outflow rates of the
solution in each tank, then we can set up an IVP that models the physical system.
We’ll use this “balance law” approach to model the pollution level in a lake; the
flow of a medication; the movement of lead among the blood, tissues, and bones
of a body; and an autocatalytic chemical reaction.

Compartment model; balance law; lake pollution; pharmacokinetics; chemical re-
actions; chemical law of mass action; autocatalysis; Hopf bifurcation

Chapter 9 for more compartment models, and Chapter 6 for linear systems and
flow through interconnected tanks.
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[1 Lake Pollution

D You can get the volume
V(1) of water in the lake by
solving the IVP V' = s, — Sout,
V() = V.

D So we need to know V(0),
L(0), pin, Sin, and Sout in order to
determine L(t) and V(t).

D Take alook as Screen 1.4
in Module 8 for on-off inflow
concentrations.

Modeling how pollutants move through an environment is important in the
prediction of harmful effects, as well as the formulation of environmental
policies and regulations. The simplest situation has a single source of pollu-
tion that contaminates a well-defined habitat, such asalake. To build amodel
of this system, we picture the lake as a compartment; pollutants in the water
flow into and out of the compartment. The rates of flow determine the amount
of build-up or dissipation of pollutants. Itisuseful to represent this conceptual
model with a compartment diagram, where a box represents a compartment
and an arrow represents a flow rate. Here is a compartment diagram for a
simple model of lake pollution:

Fin INout
—» L) —

The amount of pollutant in the lake at timet is L(t), whiler;, isthe rate
of flow of pollutant into the lake and rq is the rate of flow of pollutant out
of the lake. To obtain the equation for the rate of change of the amount of
pollutant in the lake, we apply the balance law: the net rate of change of the
amount of a substance in a compartment is the difference between the rate of
flow into the compartment and the rate of flow out of the compartment:

d—L—r- —r
dt_ n out

This ODE is sufficient when we know theratesr;, and r o, but these rates
are usually not constant: they depend on the rate of flow of water into the
lake, the rate of flow of water out of the lake, and the pollutant concentration
in the inflowing water. Let s, and st represent the volume rates of flow of
water into and out of the lake, V the volume of water in the lake, and pj, the
concentration of pollutant in the incoming water. Now we can calculate the
rates shown in the compartment diagram:

L
lin = PinSn, lout = 5 Sout

Y,
The ODE for the amount of pollutant in the lake is how
dL L
a9t PinSin — vsout (1)

To obtain an 1VP, we need to specify L(0), theinitia amount of pollutant in
the lake. The solution to this VP will reveal how the level of pollution varies
in time. Figure 8.1 shows a solution to the ODE (1) for the pollution level in
thelakeif theinflow is contaminated for thefirst six months of every year and
is clean for the last six months (so pin(t) isasquare wave function).
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[0 Allergy Relief

0.8

Pollutant in lake (tons)
° o
D (2]
| |

o
)
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T
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Time t (years)

Figure 8.1: Pollutant level in a lake (on-off inflow rates).

O “Check” your understanding by finding the volume V (t) of water in the
lake at time t if V(0) = 10, s =3, and soit = 1, 3, or 5 (all quantitiesin
suitable units). Does the lake dry up, overflow, or stay at a constant volume?

Medications that relieve the symptoms of hay fever often contain an antihis-
tamine and a decongestant bundled into a single capsule. The capsule dis-
solves in the gastrointestinal (or GI) tract and the contents move through the
intestinal walls and into the bloodstream at rates proportional to the amounts
of each medicationin thetract. The kidneysclear medicationsfrom the blood-
stream at rates proportional to the amountsin the blood.

Here is a compartment diagram for this system:

I(t)

[

Gl tract
X(1)

ax(t)

Blood
y()

by(t)

—_—

The symbolsin this diagram have the following meanings:

I (t): The rate at which the dissolving capsule releases a medication (for
example, a decongestant) into the Gl tract
X(t): The amount of medication in the Gl tract at timet
ax(t): The clearance rate of the medication from the Gl tract, which equals
the entrance rate into the blood (a is a positive rate constant)
y(t): The amount of medication in the blood at timet
by(t): The clearance rate of the medication from the blood (b is a positive

rate constant)
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D Medication levelsin the
blood (easily measured) indicate
the levels in the tissues (hard to
measure), where the medication
does its good work.

D Screen 2.4 in Module 8
shows what happens if
a=0.6931hr %, Ty, =1 hr, and
b and A are adjustable

parameters.

[ ] oDE Architect tothe

rescue!

References

Applying the balance law to each compartment, we have a system of first-
order linear ODES:

X =1—ax
y = ax— by

If you know I (1), the rate constants a and b, and the initial amounts x(0) and
y(0) of medication in the Gl tract and the bloodstream, you can use ODE
Architect to track the flow of the medication through the body. From a phar-
macological point of view, the goa isto get the medication levelsin the blood
into the effective (but safe) zone as quickly as possible and then to keep them
there until the patient recovers.

There are two kinds of medication-rel ease mechanisms. continuous and
on-off. Inthefirst kind, the medication is released continuously at an approx-
imately constant rate, so | (t) is a positive constant. In the on-off case, each
capsul e releases the medication at a constant rate over abrief span of time and
then the process repeats when the next capsuleistaken. In this case we model
| (t) by asquare wave:

I(t) = A SqWave(t, Tper, Ton)

@)

which has amplitude A, period Tper, and “on” time Ton. For example, if the
capsule releases 6 units of medication over a half hour and the dosage is one
capsule every six hours, then

| (t) = 12 SqWave(t, 6, 0.5) ©)

Note that 12 (units’hr) x 0.5 (hr) = 6 units.

Compartment models described by equations such as (2) are called cas-
cades. They can be solved explicitly, one equation at atime, by solving the
first ODE, inserting the solution into the second ODE, solving it, and so on
down the cascade. Although this approach theoretically yields explicit solu-
tionformulas, in practicethe formulasfarther a ong in the cascade of solutions
get so complicated that they are difficult to interpret. That's one reason why
it pays to use a numerical solver, like the ODE Architect. Figure 8.2 shows
how the amounts of decongestant in the body change when administered by
the on-off method [equation (3)].

O By inspecting Figure 8.2 decide which of the clearance coefficients a or
bislarger.

Borrelli, R.L., and Coleman, C.S., Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Spitznagel, E., “Two-Compartment Phamacokinetic Models’ in C-ODE-E,
Fal, 1992, pp. 24, http://www.math.hnmc.edu/codee
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Figure 8.2: Decongestant levels in the Gl tract and in the blood.

[0 Lead in the Body

Lead getsinto the digestive and respiratory systems of the body via contami-

[ ] inancient timesleadwas  nated food, air, and water, aswell aslead-based paint, glaze, and crystalware.

used to sweeten wine. Lead moves into the bloodstream, which then distributes it to the tissues and
bones. From those two body compartmentsit leaks back into the blood. Lead
does the most damage to the brain and nervous system (treated here as tis-
sues). Hair, nails, and perspiration help to clear lead from the tissues, and the
kidneys clear lead from the blood. The rate at which lead leaves one compart-
ment and enters another has been experimentally observed to be proportional
to the amount that leaves the first compartment. Here is the compartment
diagram that illustrates the flow of lead through the body.

I

] kqX ksX
Tissue < Blood » Bones
Yy - X < z
koy kaz
lksy lkex

In the diagram, L is the inflow rate of lead into the bloodstream (from the
lungsand Gl tract), X, y, and z are the respective amounts of |ead in the blood,
tissues, and bones, and kg, . . . , ks are experimentally determined positive rate
constants. The amount of lead is measured in micrograms (1 microgram =
10-8 gram), and time (t) is measured in days.
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D System (4) isadriven
linear system with constant
coefficients, so

eigenval ue/eigenvector
techniques can be used to find
solution formulasif L isa
constant (see Chapter 6).

[] 1twasinthe1970'sand
'80s that most of the
environmental protection laws
were enacted.

See Screen 3.3in
Module 8 for the rate constants
and the inflow rate L.

2000

1500

1000

Lead in blood (micrograms)

500 T T T
0 200 400 600 800
Time t (days)

Figure 8.3: Five environmental clean-up scenarios for t > 400 days result in
five different steady-state lead levels in the blood.

Applying the balancelaw to each compartment, we havethelinear system
of ODEs that models the flow of lead through the body compartments:

X' = (L4 koy+ks2) — (ky + ka + ke) X
Y =kix— (k2 + ks)y 4
Z = ksx—kyz

Unlike the alergy relief system (2), system (4) is not a cascade. Lead moves
back and forth between compartments, so the system cannot be solved one
ODE at atime. ODE Architect can be used to find x(t), y(t), and z(t) if x(0),
y(0), z(0), L(t), and kq, ... , ke are known.

If the goal is to reduce the amount of lead in the blood (and therefore in
the tissues and bones), we can clean up the environment (which reduces the
inflow rate) or administer amedication that increases the clearance coefficient
ks. However, such medication carries its own risks, so most efforts today are
aimed at removing lead from the environment. A major step in this direction
was made in the 1970s and ' 80s when oil companies stopped adding lead to
gasoline and paint manufacturers began to use other spreading agentsin place
of lead. Figure 8.3 shows the effects of changing the lead intakerate L.

The Food and Drug Administration and the National Institutes of Health
have led the fight against lead pollution in the environment. They base their
efforts on dataacquired from several controlled studies of lead flow, wherethe
study groups were made up of human volunteersin urban areas. The numbers
we use in Submodule 3 of Module 8 and in this chapter come from one of
those studies. Some references on the lead problem are listed below.
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0 Equilibrium

[] TheEquilibrium tabsin
ODE Architect work for systems
such as (5), where the rate
functions don’t depend explicitly
ontime (i.e, the systems are
autonomous).

|:| You need to know about
matrices to tackle this one.

O Write down the systems of ODEs for the two compartment diagrams:

) 5 6z
X >
2 ax By 1 /

— X > Y > — X 4z| | Sy
X

l3x 3\* y

@ (b)

Batschelet, E., Brand, L., and Steiner, A., “On the kinetics of lead in the
human body,” J. Math. Bio., 8 (1979), pp. 15-23

Kessdl, |., and O’ Conner, J., Getting the Lead Out (1997: Plenum)

Rabinowitz, M., Wetherill, G., and Kopple, J., “Lead metabolism in the nor-
mal human: Stable isotope studies,” Science, 182 (1973), pp. 725-727.

In many compartment models, if the inflow rates from outside the system are
constant, then the substancelevelsin each compartment tend to an equilibrium
value as time goes on. Mathematically, we can find the equilibrium values by
setting each rate equal to zero and solving the resulting system of equations
simultaneously. For example, the equilibrium for the system

X =1-—2X

y =2x—3y ©)

isx=1/2, y=1/3, which isthe solution to the algebraic system 1 — 2x =0
and 2x — 3y = 0. If the system is complicated, you can use ODE Architect
to find the equilibrium values. Just use the Equilibrium tabs in the lower
left quadrant and in one of the right quadrants, and you will get approximate
valuesfor the equilibrium levels.

O Go to Things-to-Think-About 2 on Screen 3.5 of Module 8 for the lead
flow mode! with constant values for L and the coefficients k;. Use the Equi-
librium tabs in the tool screen to estimate the equilibrium lead levelsin the
blood, tissues, and bones for the given data.

0 Supposethat x is acolumn vector with n entries, b is a column vector of
n constants, and A is an n x n invertible matrix of real constants. Can you
explain why the linear system X' = Ax — b has a constant equilibrium x*?
Find aformulafor x* intermsof A~ and b.
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[0 The Autocatalator and a Hopf Bifurcation

So far the compartmentsin our model s have represented physical spacesthrough
which substances move. However, there are other ways to think about com-
partments. For exampl e, they can represent substancesthat transform into one
another, such as uranium 238 and all of its seventeen radioactive decay prod-
ucts, ending with stable lead 206. Or think of a chemical reactor in which
chemicalsreact with one another and produce other chemicals. The autocata-
lator isamathematical model for one of these chemical reactions.

In an autocatalytic reaction, a chemical promotes its own production.
For example, suppose that one unit of chemical X reacts with two units of
chemical Y to produce three units of Y, anet gain of one unit of Y:

X+ 2Y - 3y

where k is apositive rate constant. Thisis an example of autocatalysis. We'll
come back to autocatalysis, but first we need to make a quick survey of how
chemical reactions are modeled by ODEs.

Most chemical reactions are first-order in the sense that the rate of decay
of each chemical in the reaction is directly proportional to its own concentra-
tion:

dz

dt
where z(t) is the concentration of chemical Z at timet in thereactor and k is
apositive rate constant.

While a first-order reaction is modeled by a linear ODE, such as (6),
autocatalytic reactions are higher-order and the corresponding rate equations

are nonlinear. In order to build models of higher-order chemical reactions,
we will use abasic principle called the Chemical Law of Mass Action:

— —kz (6)

The Chemical Law of Mass Action. If molecules X, ..., X, react to
produce molecules Yy, . .. , Yy, in one step of the chemical reaction
k
X+ o+ Xy — Y+ + Yy
that occurs with rate constant k, then
X =—kxiXg-++Xy, 1<i<n
Yi=kxiXz:-Xn, 1< j<m

where x; and y; are, respectively, the concentrations of X; and Yj. The
chemical species X, ..., X, Y1, ..., Yymneed not bedistinct from each
other: more than one molecule of a given type may be involved in the
reaction.
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O “Check” your understanding by answering this question: If a particle
moves at a constant speed around a circle, does the acceleration vector from
the particle point to the inside of the circle or to the outside of the circle?

O Ifaparticle’'s acceleration vector is always tangent to its path, what is the
path?

Next, let’s use vectors to express Newton’s Laws of Motion.

[0 Forces and Newton’s Laws

Our environment creates forces that act on bodies in a way that causes the
|:| Deceleration is just bodies to accelerate or decelerate. Forces have magnitudes and directions and
negative acceleration. so can be represented by vectors. Newton formulated two laws that describe

how the forces on a body relate to its motion.

=

Newton's First Law. A body remains in a state of rest, or in a state
uniform motion in a straight line if there is no net external force acting
onit.

But the more interesting situation is when thésea net external force
acting on the body.

Newton’s Second Law. For a body with acceleratioa and constant
massm,

F=ma

whereF is the sum of all external forces acting on the body.

Sometimes it's easier to visualize Newton's Second Law in terms of the
X-, y-, and z-components of the position vect®r of the moving body. If
we project the acceleration vec®e= R” and the forces onto the, y-, and
z-axes, then for a body of massg

mx’ = the sum of the forces in thedirection
my’ = the sum of the forces in thgdirection
mZ’ = the sum of the forces in thedirection
We’'ll look at motion in a plane witlx measuring the horizontal distance and

measuring the vertical distance up from the ground. We don’t needdies
for our examples because the motion is entirely along a line or in a plane.
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[1 Dunk Tank

[] whatis the ball doing if
Op = /27

Imagine your favorite professor seated over a dunk tank. Let's construct a
model that will help you find the secret to hitting the target and giving your
teacher a swim!

You hurl a ball at the target from a height of 6 ft with spegdft/sec
and with a launch angle @ radians from the horizontal The target is cen-
tered 10 ft above the ground and 20 ft away. Let's suppose that air resistance
doesn’t have much effect on the ball over its short path, so that gravity, acting
downwards, is the only force acting on the ball.

Newton’s Second Law says that

mR” = —mg

wheremi s the ball's massR(t) is the position of the ball at timerelative to
your hand (which is 6 ft above the ground at the instaatO of launch), and
g = 32 ft/sed is the acceleration due to gravity. In coordinate terms,

mx' =0
my’ = —mg

Sincex' (0) = vgcosdy andy’(0) = vg Sinby, one integration of these second-
order ODEs gives us

X (t) = vpCcoshy

1
y (1) = vgsindy — gt (1)
Then becausg(0) = 0 andy(0) = 6, a second integration yields
X(t) = (vgCcoshp)t
(2)

y(t) = 6+ (voSindp)t — %gt2

To hit the target at some timewe wantx(T) = 20 andy(T) = 10. So values
of T > 0, 8p, andvg such that

X(T) =20= (vgcosty) T

3
y(T) = 10= 6+ (vosSind) T — %gTz 3

lead to hitting the target right in the bull’s eye and dunking your professor.
You can try to use system (3), or you can just adjust your launch angle
and pitching speed by intuition and experience. The screen shot in Figure 5.1
shows you how to get started with the latter approach. If you play the dunking
game on Screen 1.3 you'll find that you can dunk without hitting the target
head-on, but that a little up or a little down from the center works fine.

1The sin, cos and other trig functions in the ODE Architect Tool expect angles to be measured in
radians. Note thafy = 1 radian corresponds to 368t ~ 57.3 degrees. The multimedia modules
will accept angles measured in degrees.
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Figure 5.1: This ODE Architect screen shows paths of a ball thrown at ten
different angles 6,. Which paths lead to dunking the prof?

[0 Longer to Rise or to Fall?

Throw a ball straight up in the air and ask observers whether the ball takes
longer to rise or to fall. You'll get four answers:

1. Longer to rise

2. Longer to fall

3. Rise-time and fall-time are the same
4. It all depends. .

What's your answer?
A mathematical model and ODE Architect suggest the answer. The forces
acting on the ball of masware gravity and air resistance, so Newton’s Second

Law states that
mR”(t) = —mg + F

whereR is the position vector of the ball, arkdis the drag on the ball caused
by air resistance. In this casR(t) = y(t)J wherej iS a unit vector pointing
Earth upward (the positivey direction). If the drag is negligible, we can $et= 0.
For a light ball with an extended surface, like a whiffle ball, the drag, called
|:| Drag forces are usually ~ Viscous dragexerts a force approximately proportional to the ball’'s velocity

determined by observation. They pyt opposite in direction:
differ widely from one body to

another. F(v) = —kv= _ky,jA
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D ODE Architect only
accepts first-order ODEs, so
that's why we use the first-order
system form.

If the ball is solid and dense, like a baseball or a bowling ball, then we have
Newtonian dragwhich acts opposite to the velocity with magnitude propor-
tional to the square of the speed:

F(v) = —Klv[v = —KIY'ly]
Summarizing, we have the models
0 no drag
k .
Yy =—g— ay viscous
%NW Newtonian

or, in system form,

0 no drag

k .

/ —v viscous
k .
m'”'” Newtonian

To observe different rise times and fall times, you cary$e} = 0, v(0) = vg
and see what happens for various positive values,ofSee Figure 5.2 for
graphs ofy(t) with viscous damping, four different initial velocitiels{m =
2 sec’l, andg = 32 ft/seé. In this setting is the rate of change of, sov is
positive as the ball rises and negative as it falls.

0 Indiana Newton

You notice that Indiana Newton is about to jump from a ledge onto a boxcar of
a speeding train. His timing has to be perfect. He also gets to choose his drag:
none, viscous, or Newtonian. If you knew the train’s position at all times, and
how long it takes Indy to drop from the ledge to the top of the boxcar, then
you could give him good advice about which drag to choose.

The initial value problem that models Indy’s situation is

y=v y(0)=h
vV =-g— F(v)/m v(0) =0

wherem is his massF(v) is a drag functiong is the acceleration due to
gravity, andh is the height of the ledge above the boxcar. His life is in your
hands! Figure 5.3 shows Indy’s free-fall solution curyés from a height of
100 ft with three different drag functions.
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Figure 5.2: Height vs. time of a whiffle ball thrown straight up four times with
viscous damping and different initial velocities. Does the ball take longer to
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[0 Ski Jumping

D Check that this force is
perpendicular to velocity.

D The origin of thexy-plane
is at the edge of the ski jump
(x-horizontal,y-vertical). The
edge is horizontal so

X' (0) = vg > 0, buty (0) = 0.

References

When a ski jumper is aloft she is subject to gravitational, drag, and lift forces.
She can diminish the drag and increase the lift by her posture, ski angle, and
choice of clothingDrag acts opposite to velocity and its magnitude is usually
taken to be proportional to the skier’s velocRy:.

Drag force= —R’' = —8Xi — 8y

The lift force is what makes ski jumping fun. THit force is that force
which acts perpendicular to the velocity and enables the jumper to soar. Its
magnitude is usually taken to be proportional to the speed, so

Lift force = —AYi + AX]
Newton’s Second Law in the andj-directions gives us
mx = —8x' — 1y’ X (0) =vo, x(0)=0
my’ = —mg+ AX — 8y’ y'(0) =0, y(0)=0
wheremis the skier's mass ant] A, andvg are positive constants. Integration
of each of these ODEs yields
mX — Mug = —8X — Ay
my = —mgt+ AX — 8y
Divide by the mass to get the system IVP
X = —ax—by+ g X(0) =0
y = —gt+bx—ay y(0) =0
wherea = §/mandb = A /mare the drag and lift coefficients, respectively.
When Newtonian drag and lift occus,and A are not constants, so we

can no longer integrate once to gétandy’, and we must treat the original
second-order ODE differently:

X =v x(0) =0
v = —8v/m—Aw/m v(0) = vg
y=w y(0) =0
w' =—g+Av/m—Ssw/m w(0) =0

wherev andw are the velocities in the andf—directions, respectively.

We have assumed that the bottom edge of the ski jump is horizontal, but
everything can be modified to accommodate a tilt in the launch angle (see the
chapter cover figure and Exploration 5.4, Problem 1).

Halliday, D., and Resnick, RRhysics (1994: John Wiley & Sons, Inc.)

True, Ernest, “The flight of a ski jumper” i6:ODEE, Spring 1993, pp. 5-8,
http://www.math.hmc.edu/codee
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Exploration 5.1. Dunk Tank

Menu  Reference  Experiments  Backtrack Taols Help Exit

ODE gRCHITECT

Solution Curves vs. Time

x(f)

x'= vy cosfy 8, =] 300 oea
yi=vysinby-32¢ |w=[Twos L
£
@ Einstein .
@ Newton
@ Leibniz
@ solve @ Animate 5 03 04 06 08 1
=] Description t (sec)
[1.6] Dunk Tark / Experiment 4: Changing target size g a =

1. How big is the target?
Play the dunk tank game on Screen 1.6 of Module 5 and use various launch
angles and speeds to help you determine the heights and diameters of the Ein-
stein, Leibniz, and Newton targets, given that the ball has a 4-inch diameter.

2. One speed, two angle ranges for success.
Use the ODE Architect tool to find two quite different launch angles that will
dunk Einstein if the launch speed is 40 ft/sec. Repeat for Leibniz and Newton.
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Launch angles and speeds that dunk Einstein.

Find the region in thé&yvg plane for which the ball hits the target and dunks
Einstein.Hint: Start withug = 40 ft/sec and determine the rangesdgusing
ODE Architect by playing the dunk tank game. Then repeat for other values
of vo.

Solution formulas for the dunk tank model.

The position and velocity of the ball at tintés given by formula (2). Find

a formula that relates the launch angle to the initial speed and theTtime
needed to hit the bull's eye. If you had to choose between using your formula
and using ODE Architect computer simulations to find winning combinations
of speed and launch angle, which would you choose? Why?
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Exploration 5.2. Longer to Rise or to Fall?

1. Throw a ball up in the air.
Do just that, and determine as best you can the time it takes to rise and to
fall. You can use a whiffle ball for slower motion. Explain your results. (No
computers here, and no math, either!)

2. Longer to rise or to fall in a vacuum?
What if there were no air to slow the ball down? Use ODE Architect to de-
termine whether it takes the ball longer to rise or to fall. Try various initial
speeds between 5 and 60 ft/seBufigestionUse the Sweep feature.]
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Longer to rise or to fall with viscous drag?

Suppose that air exerts a viscous drag force on a whiffle ball (a reasonable
assumption). For various initial speeds, use the ODE Architect to determine
whether it takes longer to rise or to fall. Does your answer depend on the
initial speed? What physical explanation can you give for your results?

Longer to rise or to fall with your own drag?

Repeat Problem 3, but make up several of your own formulas for the drag
force. Include Newtonian drag as one case. This isn't as outlandish an idea
as it may seem, since the drag force depends very much on the nature of the
moving body, e.g., rough or smooth surface, holes through the body, and so
on. Discuss your results.
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Exploration 5.3. Indiana Newton

1. Indiana Newton lands on the boxcar (no drag).
Indiana Newton jumps from a heightof 100 ft and intends to land on the
boxcar of a train moving at a speed of 30 ft/sec. Assuming that there is no air
resistance, use Screen 2.6 of Module 5 to find the time window of opportunity
for jumping from the ledge.

2. Indiana Newton lands on the boxcar (Newtonian drag).
Repeat Problem 1 but with Newtonian drag (coefficienin = 0.05 ft~1).
Compare fall-times with the no-drag and also with the viscous-dcagn &
0.05 sec?) cases. Find nonzero values of the coefficients so that Indiana
Newton hits the train sooner with Newtonian drag than with viscous drag.
How do the fall-times change as Indy’s jump heiphtaries?
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3. How long is the boxcar?
Use computer simulations of Indiana Newton jumping onto the boxcar and
estimate the length of the boxcar.

4. Indiana Newton floats down.
First, explore Indiana’s fall-times in the viscous- and Newtonian-drag cases
where the coefficierit/ m has magnitudes ranging from 0 to 0.5 s&cThen
find a formula in terms of, k/m, andt for Indiana’s position after he jumps:
firstin the viscous-drag case, then in the Newtonian-drag &sggestionin
the viscous case, first solvé= —32— kv/m, v(0) = 0, and then integrate
and usey(0) = hto gety(t). In the Newtonian-drag case proceed similarly
but withv' = —32— kv?. (This one is hard!) Choose values of the parameters
in each case, and compare the graphs of the height fungtiorfrom your
formula with the graphs obtained by the ODE Architect. Any differences?
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Exploration 5.4. Ski Jumping

1. Tilt the edge of the ski jump upward.
Use the first Things-to-Think-About on Screen 3.7 of Module 5 to see what
happens to the ski jumper’s path if the edge of the ski jump structure is tilted
upward at 0.524 radians (about"30Seta = 0.01 sec?, andv, = 85 ft/sec,
and sweep on the lift coefficiemtfrom 0 to 1.0 in 20 steps. Compare your
graphs of the jumper’s path with the chapter cover figure. Then animate your
graphs. Now fixb at the value 0.02 seé and sweep 08 (in radians) to see
the effect of the tilt angle on the jumper’s path. Explain your results.

2. Loop-the-loop.
The second Things-to-Think-About on Screen 3.7 of Module 5 asks you to
use the ODE Architect to estimate the smallest value of the viscous damping
coefficientb that will allow the ski jumper to loop-the-loop. #= 0.01 sec?
andvg = 85 ft/sec, estimate that value. Then increbd® increments from
that value upward all the way to the unrealistic value of 5.0'$aad describe
what you see.
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3

D You need to know about
matrices and eigenvalues to
complete this part. See also
Chapter 6.

Complex eigenvalues and loop-the-loops.
The system matrix of the viscous drag/lift model for ski jumping is

—a —-b
T
Explain why the eigenvalues of this matrix are complex conjugates with neg-
ative real parts ifhandb are any positive real numbers. Explain why you are
more likely to see loop-the-loopsdfis small andb is large. Do some simula-
tions with the ODE Architect for various values afandb that support your

explanation. If you plot a loop-the-loop path over a long enough time interval,
you will see no loops at all near the end of the interval. Any explanation?

Newton on skis.

The fourth Things-to-Think-About on Screen 3.7 of Module 5 puts Indiana
Newton on skis with Newtonian drag (of course!). This situation takes you to
the expert solver in the ODE Architect, where you are asked to explore every
scenario you can think of and to explain what you see in the graphs.
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Oscillating displacements (t) andx(t) of two coupled springs play

off against each other.

This chapter outlines some of the main facts concerning systems of first-order
linear ODEs, especially those with constant coefficients. You’ll have the opportu-
nity to work with physical problems that have two or more dependent variables.
Such problems can be modeled using systems of differential equations, which
can always be written as systems of first-order equations, as can higher-order dif-
ferential equations. The eigenvalues and eigenvectors of a matrix of coefficients
help us understand the behavior of solutions of these systems.

Linear systems; pizza and video; coupled springs; connected tanks; linearized dou-
ble pendulum; matrix; component; component plot; phase space; phase plane;
phase portrait; eigenvalue; eigenvector; saddle point; node; spiral; center; source;

sink

See also Chapter 5 for definitions of vector mathematics.
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[0 Background

Many applications involve a single independent variable (usually time) and
two or more dependent variables. Some examples of dependent variables are
e the concentrations of a chemical in organs of the body
e the voltage drops across the elements of an electrical network
the populations of several interacting species
the profits of businesses in a mall

Applications with more than one dependent variable lead naturalgyse
temsof ordinary differential equations. Such systems, as well as higher-order
ODEs, can be rewritten as systems of first-order ODEs.

[] Howtoconverta Here’s how to reduce a second-order ODE to a system of first-order ODEs
second-order ODE to a system of (see also Chapter 4). Let's look at the the second-order ODE
first-order ODEs. ,
y'=ftyy) 1)
Introduce the variables, = y andx, = y'. Then we get the first-order system
X = %o (2)
X/Z = f(t, X1, X2) (3)

ODE (2) follows from the definition ok; andx,, and ODE (3) is ODE (1)
rewritten in terms ok; andx..

O “Check” your understanding now by reducing the second-order ODE
y” 4+ 5y + 4y = 0 to a system of first-order ODEs.

[0 Examples of Systems: Pizza and Video, Coupled Springs

Module 6 shows how to model the profitét) andy(t) of a pizza parlor and
a video store by a system that looks like this:

X =ax+by+c
y = fx+gy+h

wherea, b, ¢, f, g, andh are constants. Take another look at Screens 1.1-1.4
in Module 6 to see how ODE Architect handles these systems.

Module 6 also presents a model system of second-order ODEs for oscil-
lating springs and masses. A pair of coupled springs with spring congtants

kg m ko P andk; are connected to mass®s andm, that glide back forth on a table. As
shown in the “Coupled Springs” submodule, if damping is negligible then the

“ w“ second-order linear ODEs that model the displacements of the masses from
equilibria are

m1X/l/ = — (kg + ko) X1 + koxo
MpXs = koXg — KoXo



Linear Systems with Constant Coefficients 95

[] Asystemoffistorder  Let's setmy =4, mp =1, ky = 3, andk, = 1. Then, setting} = vy, X, = vz,
ODEs isautonomousf the terms  the corresponding autonomous system of four first-order ODEs is

on the right-hand sides of the
equations do not explicitly X1=n

depend on time. 1

U& =—X1+ ZXZ

X/2 = VU2

vy = X1 — Xp
[] Trajectories of an The cover figure of this chapter shows hayandx, play off against each
autonomous system can’t other whenx; (0) = 0.4, v1(0) = 1, x2(0) = 0, andv,(0) = 0. The trajecto-

U;;el;:i;:icn{?;ir:gsiopsrgxgjd ries for this IVP are defined in the 4-dimensiomad; x,v,-space and cannot
that only one trajectory can pass INtersect themselves. However, the projections of the trajectories onto any

through a given point. planecanintersect, as we see in the cover figure.

[0 Linear Systems with Constant Coefficients

The model first-order systems of ODEs for pizza and video and for coupled
springs have the special form of linear systems with constant coefficients.
Now we shall see just what linearity means and how it allows us (sometimes)
to construct solution formulas for linear systems.

Lett (time) be the independent variable andAgtx,, ... , X, denote the
|:| Dependent variables are  dependent variables. Then a general system of first-order lo@aogeneous
also calledstate variables ODEs with constant coefficients has the form
|:| Homogeneoumeans that Xy = 811X + 812X + -+ + @1nXn
there are no freg terms, that is, X/2 = Ap1X1 + AxoXo + - - - + AonXn
terms that don't involve any. . (4)

Xn = @n1X1 + @mX2 + -+ + @nnXn

whereasy, aio, ..., ann are given constants. To find a unique solution, we
need a set of initial conditions, one for each dependent variable:

X1(to) = a1, ..., Xn(to) =an (5)
wherety is a specific time andy, . .. , oy are given constants. The system (4)
and the initial conditions (5) together constitutdmitial value problem(IVP)
|:| An equilibrium point ofan  for Xy, ... , X, as functions of. Note thatx; = - -- = x, = 0 is an equilibrium
autonomous system of ODEs is a point of system (4).
point where all the rates are zero; - Tha model on Screen 1.4 of Module 6 for the profits of the pizza and
it COFI’ESpOI’]dS to a constant . .
video stores is the system

solution.
X' = 0.06x+ 0.01y — 0.013
[] 1fn=2,we often use y = 0.04x+ 0.05y — 0.013

andy for the dependent variables. Lo .
with the initial conditions

x(0) = 0.30, y(0)=0.20 (7)

(6)
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D A change of variables puts
the equilibrium point at the
origin.

D Vectors and matrices
appear as bold letters.

D A is called thdinear
system matrixor theJacobian
matrix.

D The vectorx(t) is called
the stateof system (10) at timé.
X1 X

Xn X,

The ODEs (6) are honhomogeneous due to the presence of the free term
—0.013 in each equation. The coordinates of an equilibrium point of a sys-
tem are values of the dependent variables for which all of the derivatives
X1, ..., X, are zero. For the system (6) the only equilibrium poirffi, 0.1).

The translationX = x — 0.2, Y = y — 0.1 transforms the system (6) into the
system

X' =0.06X + 0.01Y
Y’ = 0.04X + 0.05Y

which is homogeneous and has the same coefficients as the system (6). Ir
terms ofX andY, the initial conditions (7) become

X(0)=0.1, Y(0) =01 9)

Although we have converted a nonhomogeneous system to a homogeneou:s
system in this particular case, it isn't always possible to do so.

It is useful here to introduce matrix notation: it saves space and it ex-
presses system (4) in the form of a single equation.xLet the vector with
componentsy, Xy, ... , X, and letA be the matrix of the coefficients, where
a;j is the element in theth row andjth column ofA. The derivative of the
vectorx, writtendx/dt, or x” is defined to be the vector with the components

(8)

dx./dt, ..., dx,/dt. Therefore we can write the system (4) in the compact
form
a1 -+ Qi
xX'=Ax, where A= : : (10)
Qo1 - nn

In vector notation, the initial conditions (5) become
X(ty) = « (11)

wherea is the vector with components, ..., an.
O Find the linear system matrix for system (8).

A solution of the initial value problem (10) and (11) is a set of functions

X1 = Xa(t)
(12)
Xn = Xn(1)
that satisfy the differential equations and initial conditions. Using our new
notation, ifx(t) is the vector whose components ait), ..., Xn(t), then

X = X(t) is a solution of the corresponding vector IVP, (10) and (11). The
systemx’ = Ax is homogeneous, while a honhomogeneous system would
have the fornx’ = Ax + F, whereF is a vector function of or else a constant
vector.
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[0 Solution Formulas: Eigenvalues and Eigenvectors

To find a solution formula for system (10) let's look for an exponential solu-
tion of the form

X = vel' (13)

wherea is a constant andis a constant vector to be determined. Substituting
X as given by (13) into the ODE (10), we find thaind A must satisfy the
algebraic equation

Av = AV (14)
Equation (14) can also be written in the form
(A—xlv=0 (15)

wherel is theidentity matrixand O is the zero vectorwith zero for each
component. Equation (15) has nonzero solutions if and orilyisfa root of
thenth-degree polynomial equation

The determinant of a
nlgtrix is denoted by det. det(A —Ah)=0 (16)
called thecharacteristic equatiorior the system (10). Such a root is called
[[] Thekeys to finding a aneigenvaluef the matrixA. We will denote the eigenvalues by, ... , An.
solution formula fox' = Axare  For each eigenvaluk there is a corresponding nonzero solutich, called
g]leAe'gem’a'”es and eigenvectors 5 aigenvectar The eigenvectors are not determined uniquely but only up to
' an arbitrary multiplicative constant.
For each eigenvalue-eigenvector péis, v(") there is a corresponding
vector solutiornv’ett of the ODE (10). If the eigenvalués, ... , A, are all
different, then there ane such solutions,

vDeht oyt

|:| Formula (17) is called the  In this case thgeneral solutiorof system (10) is the linear combination
general solution formula of

system (10) because every X — Clv(l)e?nlt 4t Cnv(n)e)‘”t (17)
solution has the form of (17) for
some choice of the constar(.

The other way around, every The gr_bitrary constan'@l_, ..., C,can always _be_ chosen to satisfy the initial_
choice of the constants yields a conditions (11). If the eigenvalues are not distinct, then the general solution
solution of system (10). takes on a slightly different (but similar) form. The texts listed in the refer-

ences give the formulas for this case. If some of the eigenvalues are complex,
then the solution given by formula (17) is complex-valued. However, if all
of the coefficientsa;; are real, then the complex eigenvalues and eigenvec-
tors occur in complex conjugate pairs, and it is always possible to express
the solution formula (17) in terms of real-valued functions. Look ahead to
formulas (20) and (21) for a way to accomplish this feat.
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[1 Calculating Eigenvalues and Eigenvectors

Here's how to find the eigenvalues and eigenvectors ok&2eal matrix

A2

First define theraceof A (denoted by tA) to be the suna+ d of the diagonal
entries, and thdeterminanbf A (denoted by dei) to be the numbeaid— bc.
Then the characteristic equation fris

a—A\ b
detA —Al) :det[ c d—A]

=12—(a+d)r+ad—bc
= A2 — (trA)A + detA
=0

The eigenvalues & are the roota 1 anda., of this quadratic equation. We as-
sumei; # A,. For the eigenvalug; we can find a corresponding eigenvector
v(Y by solving the vector equation

AV = v

for viY, In a similar fashion we can find an eigenvect&? corresponding to
the eigenvalue.,.

Example: Take a look at the system

r . 0 1 X
X = AX, A_[_Z 3}, X—[XZ] (18)

Since
trA=0+3=3 and deA=0-3-1-(-2)=2
the characteristic equation is
A2 — (trA)A+detA=12-31+2=0

The eigenvalues are; = 1 andi, = 2. To find an eigenvector® for A1,

let’s solve
0 1l a_ @ _ @
[ > 3} v =V =V

for v, Denoting the components ofY by « andg, we have

0 1f|a|_ B |
-2 3||B| |-2«+38| |8
This gives two equations far andg:
B=a, —2a+38=¢
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x1
x2

Figure 6.1: Graphs of five solutions x; (t) (left), x,(t) (right) of system (18).

The second equation is equivalent to the first, so we may as welksgt= 1,
which gives us an eigenvectotr. In a similar way for the eigenvalue, we
can find an eigenvectm® with components: = 1, g = 2. So the general
solution ofx’ = Ax in this case is

x = Cov Vet 4 Cov@ett
_ 1 1]
—C1|:1]e —1—C2|:2j|e2

X1 = Ci€' + Coe®
Xo = Clet + ZCZEZt

whereC; andC, are arbitrary constants.

or in component form

O Find a formula for the solution of system (18Xif(0) = 1, x»(0) = —1.
Figure 6.1 shows graphs gf(t) andx,(t) wherex; (0) =1, x2(0) =0, +0.5,
+1. Which graphs correspond ¥(0) = 1, X»(0) = —1? What happens as
t— +00? Ast > —00?

[0 Phase Portraits

We can view solutions graphically in several ways. For example, we can draw
plots of x; () vs.t, xo(t) vs.t, and so on. These plots are callemmponent
plots(see Figure 6.1). Alternatively, we can interpret equations (12) as a set
of parametric equations withas the parameter. Then each specific value of
t corresponds to a set of values far, ... , X,. We can view this set of val-

|:| Another term for phase  UeS as coordinates of a pointxqx; - - - X,-space, called thphase space(|f

space istate space n= 2 it's called thephase plang For an interval of-values, the correspond-
ing points form a curve in phase space. This curve is callpdase plota
trajectory, or anorbit.
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D Trajectories starting on
either line att = 0 stay on the
line.

D Eigenvalues of opposite
signs imply asaddle

Phase plots are particularly usefuhit= 2. In this case it is often worth-
while to draw several trajectories starting at different initial points on the same
set of axes. This producesgpaase portrait which gives us the best possible
overall view of the behavior of solutions. Whatever the valua,dhe trajec-
tories of system (10) can never intersect because system (10) is autonomous.

If A in system (10) is a % 2 matrix, then it is useful to examine and
classify the various cases that can arise. There aren’t many cases whzn
but even so these cases give important information about higher-dimensional
linear systems, as well as nonlinear systems (see Chapter 7). We won't con-
sider here the cases where the two eigenvalues are equal, or where one or bot
of them are zero.

A direction field(or vector field for an autonomous system whee= 2 is
afield of line segments. The slope of the segment at the poink,) is x,/X; .

The trajectory througlix,, x,) is tangent to the segment. An arrowhead on the
segment shows the direction of the flow. See Figures 6.2—6.5 for examples.

Real Eigenvalues
If the eigenvalue&; anda, are real, the general solution is

x = Cv ettt 4 Cov @it (19)

whereC, andC, are arbitrary real constants.

Let’s first look at the case where, and A, have opposite signs, with
A1 > 0 andi, < 0. The term in formula (19) involving.; dominates as
t — +o00, and the term involving , dominates as— —oco. Thus ag — 400
the trajectories approach the line that goes through the origin and has the same
slope asvY, and ast — —oo, they approach the line that goes through the
origin and has the same slopewd$. A typical phase portrait for this case is
shown in Figure 6.2. The origin is calledsaddle pointand it isunstable
since most solutions move away from the point.

Now suppose that; and i, are both negative, with, < A; < 0. The
solution is again given by formula (19), but in this case both terms approach

~— e e o~ = o

~ e e o~ o o

Figure 6.2: Phase portrait of a sad- Figure 6.3: Phase portrait of a nodal
dle: X; = X1 — Xz, X, = —Xo. sink: X3 = —3%1 + Xp, X, = —Xo.
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zero ag — +oo. However, for large positive the factore*?! is much smaller
thane*t!, so forC; # 0 the trajectories approach the origin tangent to the line
with the same slope ag®, and ifC; = 0 the trajectory lies on the line with the
same slope ag'?. For large negative the term involving', is the dominant
one and the trajectories approach asymptotes that have the same si&pe as
A typical phase portrait for this case is shown in Figure 6.3. The origin attracts
all solutions and is called aasymptotically stable nodé is also called @ink

[] Both eigenvalues negative because all nearby orbits get pulled intas +oc.

imply anodal sink If both eigenvalues are positive, the situation is similar to when both
eigenvalues are negative, but in this case the direction of motion on the tra-
jectories is reversed. For example, suppose that\Q < X,: then the trajec-
tories are unbounded &s- +oo and asymptotic to lines parallel t¢®. As
t — —oo the trajectories approach the origin either tangent to the line through
the origin with the same slope a&&” or lying on the line through the origin
with the same slope ag?. A typical phase portrait for this case looks like
Figure 6.3 but with the arrows reversed. The origin isiagtable nodelt is

|:| Both eigenvalues positive also called aourcebecause all orbits (except= 0 itself) flow out and away

imply anodal source from the origin ag increases from-oo.

O Findthe eigenvalues and eigenvectors of the systems of Figures 6.2 and 6.3
and interpret them in terms of the phase plane portraits.

Complex Eigenvalues

Now suppose that the eigenvalues are complex conjugatesa + i8 and

A2 = a — i8. The exponential form (13) of a solution remains valid, but usu-
ally it is preferable to use Euler’s formula:

e = cog Bt) + i sin(Bt) (20)

This allows us to write the solution in terms of real-valued functions. The
result is

x = Ce”'[acog Bt) — bsin(pt)] + Ce*'[bcog pt) + asin(pt)]  (21)

wherea andb are the real and imaginary parts of the eigenvectbrassoci-
ated withi,, andC; andC; are constants. The trajectories are spirals about
the origin. If @ > 0, then the spirals grow in magnitude and the origin is
[[] complex eigenvalues with called aspiral sourceor anunstable spiral pointA typical phase portrait in
nonzero real parts implyspiral  this case looks like Figure 6.4. éf < 0, then the spirals approach the origin
sinkor aspiral source ast — 400, and the origin is called spiral sinkor anasymptotically stable
spiral point In both cases the spirals encircle the origin and may be directed
in either the clockwise or counterclockwise direction (but not both directions
in the same system).
Finally, consider the case = +iB, wherep is real and positive. Now
the exponential factors in solution formula (21) are absent so the trajectory
is bounded as — +o00, but it does not approach the origin. In fact, the
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D Pure imaginary
eigenvalues imply aenter

trajectories are ellipses centered on the origin (see Figure 6.5), and the origin
is called acenter It is stable but not asymptotically stable.

O Find the eigenvalues of the systems of Figures 6.4 and 6.5, and interpret
them in terms of the phase plane portraits. Why can’t you “see” the eigenvec-
tors in these portraits?

There is one other graphing technique that is often usefal=f2, ODE
Architect can draw a plot of the solution ix; x,-space. If we project this
curve onto each of the coordinate planes, we obtain the two component plots
and the phase plot (Figure 6.6).

[0 Using ODE Architect to Find Eigenvalues and Eigenvectors

D Use this Architect feature
to calculate the eigenvalues,
eigenvectors.

ODE Architect will find equilibrium points of a system and the eigenvalues
and eigenvectors of the Jacobian matrix of an autonomous system at an equi-
librium point. Here are the steps:

e Enter an autonomous system of first-order ODEs.

e Click onthe lower left Equilibrium tab; enter a guess for the coordinates
of an equilibrium point.

e The Equil. tab at the lower right will bring up a window with calculated
coordinates of an equilibrium point close to your guess.

e Double click anywhere on the boxed coordinates of an equilibrium in
the window (or click on the window’s editing icon) to see the eigenval-
ues, eigenvectors, and the Jacobian matrix.

If you complete the above steps for a system of two first-order, autonomous
ODEs, ODE Architect will insert a symbol at the equilibrium point in the
phase plane: An open square for a saddle, a solid dot for a sink, an open dot
for a source, and a plus sign for a center (Figures 6.2—6.5). The symbols can
be edited using the Equilibrium tab on the edit window.
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Figure 6.5: Phase portrait of a cen-
ter: x| = X1+ 2%, X, = —Xg — Xo.

Figure 6.4: Phase portrait of a spiral
source: X; = Xp, X, = X + 0.4%;.
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Figure 6.6: Solution curve of x; = X, X, = —10025x+ %, x1(0) =1, %(0) =1,
the two component curves, and the trajectory in the x;x,-phase plane.

O Use ODE Architectto find the eigenvalues and eigenvectors of the system
in Figure 6.2.

[ Separatrices

A trajectoryT of a planar autonomous system iseparatrixif the long-term
behavior of trajectories on one side bfis quite different from the behavior

of those on the other side. Take a look at the feadldle separatriceis Fig-

ure 6.2, each of which is parallel to an eigenvector of the system matrix. The
two separatrices that approach the saddle poirtiasreases are thetable
separatricesand the two that leave are thastable separatrices

[0 Parameter Movies

The eigenvalues of a 2 2 matrix A depend on the values ofArand def\,

and the behavior of the trajectories xif= Ax depends very much on the
eigenvalues. So it makes sense to see what happens to trajectories as we vary
the values of tA and deA. When we do this varying, we can make the
eigenvalues change sign, or move into the complex plane, or become equal.
As the changes occur the behavior of the trajectories has to change as well.
Take a look at the “Parameter Movies” part of Module 6 for some surprising
views of the changing phase plane portraits as we follow along a path in the
parameter plane of & and def.
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Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 6.1. Eigenvalues, Eigenvectors, and Graphs

1. Each of the phase portraits in the graphs below is associated with a planar
autonomous linear system with equilibrium point at the origin. What can you
say about the eigenvalues of the system ma&r{g.g., are they real, complex,
positive)? Sketch by hand any straight line trajectories. What can you say
about the eigenvectors?
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2. What does the phase portraitxdf= Ax look like if A is a 2x 2 matrix with
one eigenvalue zero and the other nonzero? How many equilibrium points are
there? Include portraits of specific examples.

3. Using Figure 6.6 as a guide, make your own gallery of 2D and 3D graphs
to illustrate solution curves, component curves, trajectories, and phase-plane
portraits of the systems = Ax, whereA is a 2x 2 matrix of constants. List
eigenvalues and eigenvectorsfof Include examples of the following types
of equilibrium points:

e Saddle

e Nodal sink

e Nodal source

e Spiral sink

e Spiral source

e Center

e Eigenvalues oA are equal and negative



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 6.2. Pizza and Video

Sometimes business enterprises are strongly affected by periodic (e.g., sea-
sonal) influences. We can illustrate this in the case of Diffey and Cue.

The model describing Diffey’s and Cue’s profits on Screen 1.4 in Mod-
ule6is

X =0.06x+ 0.01y — 0.013

22
y = 0.04x + 0.05y — 0.013 (22)

Let’s introduce a periodic fluctuation in the coefficient of x in the first ODE
and in the coefficient of y in the second ODE.

Sine and cosine functions are often used to model periodic phenomena.
We’ll use sin(2rt) so that the fluctuations have a period of one time unit. We
will also include a variable amplitude parameter a so that the intensity of the
fluctuations can be easily controlled. We have the modified system

1
X =0.06 (l + 5asin(2:rt)> x+0.01y — 0.013
(23)

y = 0.04x + 0.05<1+ %asin(Znt)) y—0.013

Note that if a = 0, we recover system (22), and that as a increases the ampli-
tude of the fluctuations in the coefficients also increases.

1. Interpret the terms involving s{@rt) in the context of Diffey’s and Cue’s
businesses. Use ODE Architect to solve the system (23) subject to the initial
conditionsx(0) = 0.3, y(0) =0.2fora= 1. Use thetime interval & t < 10,
or an even longer interval. Platvs.t, yvs.t, andy vs.x. Compare the plots
with the corresponding plots for the system (22). What is the effect of the
fluctuating coefficients on the solution? Repeat with the same initial data, but
sweepinga from 0 to 5 in 11 steps. What is the effect of increasingn the
solution?
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2. Use ODE Architect to solve the system (23) subject to the initial conditions
x(0) = 0.25, y(0) = 0 fora= 3. Draw a plot ofy vs.x only. Be sure to use a
sufficiently larget-interval to make clear the ultimate behavior of the solution.
Repeat using the initial conditiong0) = 0.2, y(0) = —0.2. Explain what
you see.

3. For the two initial conditions in Problem 2 you should have found solu-
tions that behave quite differently. Consider initial points on the line joining
(0.25,0) and (0.2, —0.2). Fora = 3, estimate the coordinates of the point
where the solution changes from one type of behavior to the other.
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Exploration 6.3. Control of Interconnected Water Tanks

Consider two interconnected tanks containing salt water. Initially Tank 1 con-
tains 5 gal of water and 3 oz of salt while Tank 2 contains 4 gal of water and

|:| Take a look at 5 oz of salt.
Chapter 8 for a way to Water containing p; oz of salt per gal flows into Tank 1 at a rate of
diagram this

2 gal/min. The mixture in Tank 1 flows out at a rate of 6 gal/min, of which
half goes into Tank 2 and half leaves the system.

Water containing p, oz of salt per gal flows into Tank 2 at a rate of
3 gal/min. The mixture in Tank 2 flows out at a rate of 6 gal/min: 4 gal/min
goes to Tank 1, and the rest leaves the system.

“compartment” model.

1. Draw a diagram showing the tank system. Does the amount of water in each
tank remain the same during this flow process? Explaim,(f) andg,(t)
are the amounts of salt (in 0z) in the respective tanks attjsleow that they
satisfy the system of differential equations:

G =2p1— 2+
o = 3p2+ gm - %QZ
What are the initial conditions associated with this system of ODEs?

2. Suppose thap; = 1 oz/gal andp, = 1 oz/gal. Solve the IVP, plai, (t) vs.t,
and estimate the limiting valug thata,(t) approaches after a long time. In
a similar way estimate the limiting valug for g»(t). Repeat for your own
initial conditions, but remember that (0) and g2(0) must be nonnegative.
How areq; andqj; affected by changes in the initial conditions? Now use
ODE Architect to findg; andg;. [Hint: Use the Equilibrium tab.] Is the
equilibrium point a source or a sink? A node, saddle, spiral, or center?
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Exploration 6.3

4.

The operator of this system (you) can control it by adjusting the input param-
etersp; and p,. Note thatg; andd; depend orp; and p,. Find values ofp;

and p, so thatg; = ¢5. Can you find values op; and p; so thatqg; = 1.5q5?

So thatg; = 1.507?

Let c; andc} be the limiting concentrations of salt in each tank. Expifss
andc} in terms ofq; andqj, respectively. Findo; and p,, if possible, so as
to achieve each of the following results:
(@ci=c; (b) ¢; = 1.5¢5 (c) c; = 1.5¢;

Finally, consider all possible (nonnegative) valueppand p,. Describe
the set of limiting concentratior andc; that can be obtained by adjusting

p1 and p.
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Now it is your turn to examine some options and try some alternate scenarios
in the Explorations that follow.

[0 How to Model in Eight Steps

Modeling a situation mathematically involves many ideas and activities, but
modeling is not always straightforward. There are many times when you may
be puzzled, confused, and frustrated and you must retrace or rethink the steps
involved. We summarize the steps in an order that alows for easy reference,
but keep in mind the need to retreat, reassess, and redefine your thinking.

State the problem and its context.

Identify and assign variables.

State the laws that govern the relationships between the variables.
Trandate the lawsinto equations.

. Solve the resulting equations.

. Interpret and test the solutionsin the context of the natural environment.
. Refine the model until it predictsthe empirical data.

. Interpret the implications of the model.

© N OA®N R
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Chapter 1




Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 1.1. Constant Harvesting of a Biomass

1. No harvesting.
Let’s examine the rate of growth (the derivative) of the sardine biomass using
the logistic model of ODE (3). To do thiswe'll ook at the values of sardin€
as afunction of sardine biomass size. Go to the equations quadrant and type
in the ODE

sardin€ =r * sardinex (6 — sardine) /6
r=0.20

Click the Enter box.

To create a plot of sardine vs. sarding, select the 2D tab (if necessary),
place the cursor over the lower right graph, press the right-most mouse button,
and select Edit. For the X-Axis use the down arrow to select sardine. For Y-
Axis 1, select sarding. Click now on the Titles tab at the top of the edit
window. Type Rate of Growth vs. Biomass as the Graph Title, Sardine as
the X-axis label and Sardine’ asthe Y-axislabel. Click OK. Place the cursor
over the lower right graph again, press the right-most mouse button and select
Auto Scales: Both (if necessary). Next set the IC for sardineto 1. Click
Clear and select Clear All Runs (if necessary), then click the Solve icon.

The top graph shows (by default) sardine vs. time. Notice in the lower
graph that the sardine growth rate, sardin€, is maximized somewhere near a
midsized sardine population of about 3 million tons. Rescalethe Y-axis of the
top graph (if necessary) to Minimum = 0; Maximum = 6; Number of Ticks
= 6. Verify that the sardine biomass grows at the rate of approximately 10%
to 40% per year, depending upon the size of the biomass.
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Exploration 1.1

D Clearing a 2D custom
graph. The same procedure clears
a 3D custom graph.

Constant harvesting.

Let's analyze the effect of constant harvesting on the logistic sardine popula-

tion of Problem 1. Since the sardine biomass was 2.71 million tonsin 1941,

reset the sardine | C to 2.71 and keep the sardine vertical scale set on the range

0to 6 and re-solve to observe the relative stabilization of the population.
Now insert a constant harvesting term in the model by modifying the

ODE in the equation quadrant to read

sardin€ = r * sardine x (6 — sardine) /6 — harvest

Try a harvest value that is slightly less than the biomass growth amount for
2.71 million tons by setting a constant harvest in the equation quadrant. For
example you could try harvest = 0.28 (280,000 tons per year) and solve the
model. (Be sureto click on the Enter box first.)

Now click on the 2D tab in the lower graph quadrant. Clear the graph
in that quadrant by setting all axesto <None> in the Plots tab of the Edit
box, then going to the Titles tab and deleting al titles. For the upper right
graph you can set up and run a sweep of harvest over the values 0.1 (100,000
tons/year) to 0.7 (700,000 tons/year) using 7 points in the sweep. Describe
the biomass behavior for harvest levelsof 0.1; 0.3; 0.5; 0.7. From your explo-
ration, determine what constant harvest amount provides a large harvest yet
does not jeopardize the long-term viahility of the Pacific sardine population.
Did the harvest level s suggested by fishery researchers stand up?

How does the | C affect the optimum harvest level ?

Isthe optimum harvest level that you determined in Problem 2 affected by the
initial biomass of the sardine in 19417 Try some different values for the IC
and explain what you learn about the relationship between initial biomass and
the optimum constant harvest amount.



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 1.2. Constant Effort Harvesting

1. Using a constant effort harvesting function.
Another model for harvesting is to land a certain percentage of the existing
biomass each year. Thisis called constant effort harvesting. Introduce con-
stant effort harvesting into ODE (5) by setting

harvest = 0.25 x sardine

to harvest 25% of the sardine population each year. Try arun. What happens?
Go back and revise the harvest function to

harvest = k x sardine

and sweep through several values of your choosing for the harvest percentage
k. Summarize your results. What is the optimum harvest percentage?
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Exploration 1.2

How does the | C affect the optimum harvest percentage?

Run some experiments to determine if the optimum harvest percentage you
select in Problem 1 is sensitive to the initial biomass of the sardine in 1941.
Explain your results. How do your results compareto the results of Problem 3
in Exploration 1.1?



Answer questions in the space provided, or on Name/Date

attached sheets with carefully labeled graphs. A

notepad report using the Architect is OK, too. Course/Section

Exploration 1.3. Investigating a harvesting function

1

A unifying harvest strategy.

We can combine the strategies used in Explorations 1.1 (Problem 2) and 1.2
(Problem 1) by using a function that approximates each strategy at the ap-
propriate time: proportiona harvest for small sardine biomass and constant
harvest for sufficiently large sardine biomass. A function suitable to this pur-
poseis

a *x sardine

B+ sardine

Use some agebra to demonstrate that the function does behave as claimed.

Approximately what is the proportion? Approximately what is the constant
harvest level ?

harvest =
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Exploration 1.3

Testing the function.

Determine values for o and g suitable for the Pacific sardine based on what
you learned from Explorations 1.1 (Problem 2) and 1.2 (Problem 1). Isthe
optimal choice of « and 8 dependent on the initial biomass of the sardine?



Answer questions in the space provided, or on Name/Date

attached sheets with carefully labeled graphs. A

notepad report using the Architect is OK, too. Course/Section

Exploration 1.4. The Ricker Growth Rate Model

|:| Compare the Ricker
with the logistic function:
R=rP(1- P/K) for positive
constants r and K.

Biologists commonly use the Ricker function to model fish population repro-
duction. The Ricker function is R= «Pet®~P/Pm where R is the reproduction
rate, « is a constant, P is the parental or spawning stock population, B, is
the stock size at which R= P, and PR, is the stock size that yields maximum
reproduction in the absolute sense. Calibrated for the Pacific sardine during
the time period 1941 through 1951, this function is: R= 0.15Pg@4-P/17,

The Ricker population model.
Replace the logistic term in ODE (5) with the Ricker function to obtain

sardin€ = 0.15x* (sardine) * exp((2.4 — sardine) /1.7)

This function exhibits “compensatory behavior” that biologists know many
fish populations exhibit. Plot two sardine populations vs. time on the same
set of axes for comparison: sardinel’ as per the Ricker function above and
sardine2’ as per the logistics growth model used earlier. You have to select
the 2D tab on the graphics window when defining the graph to get both pop-
ulations on the same graph. To compare their respective growth patterns, plot
the two sardine popul ationsfrom 1920 to 1960 (# Points=40) withIC setto 1
on both plots and with no harvesting. Based upon this comparison, speculate
what “ compensatory” behavior is as envisioned by the biologists and reflected
by the Ricker function.
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Exploration 1.4

Repeat the harvest experiments.

Repeat Exploration 1.1, Problem 2, using the Ricker function in the sardine
ODE. What harvest level would provide a stable sustainable Pacific sardine
population? Test whether the optimal harvest rate depends on the popula
tion IC. Are the results significantly different than when you used the logistic
function?
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A slope field and some solution curvesfor y = ysin(t + ).

Overview Ordinary differential equations (ODEs) model many natural processes, so solu-
tions of ODEs can be used to predict the behavior of those processes.
This chapter will investigate ODEs and initial value problems, their solutions,
and their solution curves, along with some methods for finding solution formulas.
Slope fields are introduced and used as guides to the behavior of solution curves.
The path of a juggler’s ball and the descent of a sky diver are modeled by ODEs.

Key words Differential equation; solution; integration; separation of variables; initial values;
modeling; slope field; direction field; juggling; sky diving; free fall; parachute;
gravity; Newton’s Second Law

See also Chapter 1 for more on modeling, and Chapter 5 for more on models of motion.
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Chapter 2

[0 Differential Equations

Differential equations were first used in the seventeenth century to describe
physical phenomena, such as the motion of orbiting planets or swinging pen-
dulums. Since then they have been applied to processes, such as the growth
of biological populations, the management of investment portfolios, and many
other dynamical systems.

An ordinary differential equation is an equation involving an unknown
function of one variable and one or more of its derivatives. For example, the
ODE

dy
i ycost

is a statement about an unknown function y (the dependent variable) whose
independent variableist. To solve the ODE we need to find all the functions
y(t) that satisfy the ODE (we will discuss what we mean by a solution in the
next section).

O “Check” your understanding by identifying the independent and depen-
dent variables and the order of each ODE (i.e., the highest-order derivative
that appears):

dy
= 2y+2x
d’z  dz .

[0 Solutions to Differential Equations

D Most ODEs have infinitely
many solutions.

A function is a solution of an ODE if it yields a true statement when substi-
tuted into the equation. For example, y = 2t? is a solution of the equation

dy
=4 (1)

0 Canyou find another solution of ODE (1)?

Actually, ODE (1) has infinitely many solutions. A single solution is
called a particular solution. The set of al solutions is called the general
solution. For example, the general solution of ODE (1) is y = 2t? 4+ C, where
C isany constant, while y = 2t? + 3 isa particular solution.
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[0 Solving a Differential Equation

Solving a differentia equation involves finding a function, just as solving an
algebraic equation involves finding a number.

An ODE such as dy/dt = 2ty gives us information about an unknown
function y in terms of its derivative(s). In your differential equations class,
you'll learn some methods for finding solutions of ODEs. The section “Find-
ing a Solution Formula” later in this chapter also describes two techniques.

[0 Slope Fields

One useful way to get information about solutions of an ODE is to graph

|:| Slopes for y = ycost: them; graphs of solutions are called solution curves. For first-order ODEs,
Point  Slope you can actually get a good idea of what solution curves look like without

Eg’gi ’ solving the equation! Notice that for the ODE y' = ycost the slope of the

0.2) > solution curve passing t.hrou_gh the pc_Ji nt (t, y) isgiven by ycost. E\_/ery first-

0-1 -1 order ODE gives you direct information about the slope of the solution curve

(79,72) -2 through a point, so you can visualize solution curves by drawing small line

2:Y) 0 segments with the correct slopes on a grid of fixed points. With patience (or

a computer), you can draw many such line segments (as in the chapter cover
figure). Thisiscalled aslopefield. (Some bookscall it adirectionfield.) With
|:| Each segment of aslope practice you’ll be able to imagine some of the line segments running together
fieldistangent at itsmidpoint o to make agraph. This approximatesthe graph of asolutionto the ODE, that is,

xiﬁi‘ﬁt@” curvethroughthal - 5 5ol ution curve. Figure 2.1 shows a slope field with several solution curves.

Figure 2.1: Slope field and seven solution curves for y' = ycost.
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[ Initial Values

We have seen that an ODE can have many solutions. In fact, the general
solution formula involves an arbitrary constant. What happens if we spec-
ify that the solution must satisfy another property, such as passing through a
given point? For example, al functions y = 2t? + C are solutions of the ODE
dy/dt = 4t, but only the specific solution y = 2t2 + 3 satisfies the condition
that y=5whent = 1. So, if we graph solution curves in the ty-plane, only
the graph of the solution y = 2t? + 3 goes through the point (1, 5).

The requirement that y(1) = 5 is an example of aninitial condition, and

the combination of the ODE and an initial condition
dy
ot 4, y)=>5 )

iscalled aninitial value problem (IVP). Its solutionis y = 2t% + 3.

0 Replace the condition y(1) = 5in IVP (2) by y(2) = 3 and find the
solution of this new initial value problem. How many solutions are there?

[ Finding a Solution Formula

D A table of integrals comes
in handy here.

An ODE usually has many solutions. How can you find a solution, and how
can you describe it? A solution formula provides a useful description, but
graphs and tables generated by ODE Architect are also useful, especialy in
the all-too-frequent case where no formula can be found. Two techniques to
find solution formulas are summarized here, and others are in your textbook.

Integration

If f(t) isacontinuousfunction, then the general solution of the ODE
dy
— = f(t
ot (t)

isy(t) = F(t) + C, where F(t) is an antiderivative of f. For example, the
general solution of dy/dt = sintisy = — cost + C.

Separation of Variables

If you can write a differential equation in the form

dy
= _f
at (gy)
then wherever g(y) # 0 you can rewriteit as
1 dy

g(y) dt

1
— dy= f(t)dt
fg(y) y /()

f(t)

so that
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|:| Keep that table of integrals
handy!

2 ty
1.5
1 7\/\/\/
0.5
> 0
0.5
1
15 ,W

Figure 2.2: Four solution curves of dy/dt = sint/(3y? + 1) through the marked
initial points.

If H(y) is an antiderivative of 1/g(y) and F(t) is an antiderivative of f(t),
then asolution y(t) of the ODE solvesthe equation

Hiyt)=F®+C

for some constant C.
Here's an example of a separable ODE:

d_y _sint
dt  3y2+4+1
Separating the variables and finding the antiderivatives, we see that

)

dy
(3y2+l)a =sint
y>+y=—cost+C (4)

We won't attempt to express a solution y(t) directly in terms of t (and C),
but we can check that formula (4) is correct by differentiating each side with
respect tot. Thisgives

ody dy
3y at " dt
which has the form of ODE (3) if we divide each side by 3y? + 1. Fig-
ure 2.2 shows solution curves of ODE (3) through the initial points (0, —1.5),
(0, -1), (0,0, (0,1). The curves were plotted by using ODE Architect to
solve ODE (3) with the given initia data.
Solution formulas are useful but they exist only for a small number of
ODEs of special forms. That's where numerical solvers like ODE Architect
come in—they don’t need solution formulas.

sint
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Chapter 2

[1 Modeling

D The eight steps are
described in Chapter 1.

[0 The Juggler

D So the juggler’s ODE for
vertical motionish” = —32.

A mathematical model isasystem of mathematical equationsrelating specific
variables that represent some aspect of a natural process. Modeling involves
several steps:

© N g~ wwDdPRE

State the problem and its context.

Identify and assign variables.

State the laws that govern the relationships between the variables.
Trandate the lawsinto equations.

Solve the resulting equations.

Interpret and test the solutionsin the context of the natural environment.
Refine the model until it predicts the empirical data.

Interpret the implications of the model.

The models we consider all involve ODEs.

You can observe the modeling process in the following juggler problem.

1

Find an ODE that describes the height of a ball between the time it
leaves the juggler's hand, moving vertically upward, and the time it
falls back into the hand.

Let t =time (inseconds), h = height of the ball above the floor (infeet),
v = velocity (in ft/sec), and a = acceleration (in ft/sec?).

Apply Newton's Second Law of Motion to the ball: the mass m of a
body times its acceleration is equal to the sum of all of the forces acting
on the body. We treat the ball as a point mass encoutering negligible
air resistance (drag) so the only force acting on the ball is that due to
gravity, which pulls the ball downward.

By Newton's Second L aw, we havethat ma = —mg, where g = 32 ft/sec
is the acceleration due to gravity near the surface of the earth and the
minus sign indicates the downward direction of the gravitational force.
Sincethe ball’s accelerationisa = v’ where v isitsvelocity,and v = h/,
we can model the ball’s motion by h” = —32. The initial height hy of
the ball is that of the juggler's hand above the floor when the ball is
launched upward, and that is easy to measure. Theinitial velocity vg is
harder to measure directly; it is simpler to solve the model first and then
experiment to deduce a reasonable value for vy.

Solving and testing are up to you. See Figure 2.3 for graphs of h(t)
corresponding to hy = 4 ft and five values of vg.

2
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[0 The Sky Diver

[ ] Thiskind of air resistance
is called viscous damping.

16

14

=
N
|

Ball's height (feet)
)
|

[e)
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0 0.5 1 15 2
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Figure 2.3: Five tosses of the juggler’s ball: initial velocities vy range from 5
to 25 ft/sec. Which time-height curve corresponds to vy = 25?

0 How must you revise the process when the ball is thrown to the juggler's
other hand? (The result appears on Screen 3.4.)

You might think that the path of a sky diver in free fall looks like the down-
ward path of the ball in the simplest juggler problem of vertical motion. How-
ever, as the sky diver’s velocity becomes large the effects of air resistance (or
drag) become noticeable and must beincluded in the model. A revised model
(starting with Step 3) follows:

3. Inthis case, Newton's Second Law says that mass times acceleration is
equal to the force due to gravity plus that due to air resistance. Expe-
rience has shown that the force of air resistance can be modeled fairly
well by aterm that is proportional to velocity and opposite in direction.

4. We have mh” = mv’ = —mg — kv, where k is a constant coefficient of
air resistance. Theinitial velocity of the sky diver is vg = 0 ft/sec; the
initial height when the sky diver jumps from the planeis hg ft.

5. We solve the second-order ODE for h in two steps, first for v (by sep-
arating the variables) and then for h (by integrating the expression we
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D Cisan arbitrary constant.

D So the sky diver’s free fall
ODEish” = —32 — (k/5)v.

find for v, since v = h’). Here are the steps:

k
=-g-—v v0=

_ 1 d_
g+kv/mdt

/g+kv/m /dt

(m/kyIn(g+kv/m)=—-t+C

In(g+ kv/m) = (k/m)(—t+ C)
Exponentiating and setting K = exp(kC/m) we obtain

g+ kv/m= Ke~®/mt
Since v =0whent = 0, wefind that K = g. Solving for v we obtain
—mg mge (k/myt
k k
That meansthat h(t) solvesthe IVP
W =v="2+ e ¥ h©) = ho

We find the formula for h(t) by integration and the fact that h = hg at
t=0:

V= ——

—Mg, P9 yme, MPY
ke T
In our example of freefall (Screen 4.3), these equations become

h= + hg

k .
h”:v’:—32—§v if m= 5dlugs
—160 160 s

h/=‘U= _—

k k
1
h= %t - %e‘(kﬁ’)t + % + 13500 5)

See Figure 2.4 for some time-height curves.

Since the mass m of the sky diver doesn't drop out of the ODE when
damping is added, we have to use appropriate units for the mass. In English
units (which the English have been wise enough to discard) we have

force weight  Ibs

mass = accderation gravity  ft/sec? = slugs

Opening the Parachute

If we wish to model what happens when the parachute opens, we'll need to
ater the model slightly to account for the sudden change in drag—that is, for
how the value of k suddenly changes.
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|:| Opening the chute changes
k from k¢¢ to Kp.

References
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Figure 2.4: Six sky divers in free fall from 13,500 ft: viscous damping con-
stants range from 0.5 to 1.5 slug/sec. Which sky diver has the smallest damp-
ing constant?

4. We can use experimental values for the drag coefficients: in free fall,
k¢t = 0.86 and, after the parachute opens, k, = 6.71, both in slugs/sec.
The parachute opens at time t,, when h is 2500 feet. It's hard to calcu-
late t, from formula (5) for h, so we can approximateit by reading the
graphof hvs. t.

We noticed in Experiment 2 on Screen 4.5 that an instantaneous opening
of the parachute would exert an enormousforce on the sky diver, so the model
was further revised to allow the chute to open over a few seconds (a more
realistic model), and we let k grow gradually, in alinear way, as it goes from
Ktf to Kp. Take alook at Exploration 2.4, Problem 3.

Borrelli, R. L., and Coleman, C. S,, Differential Equations: A Modeling Per-
spective, (1998: John Wiley & Sons, Inc.)

Boyce, W. E., and DiPrima, R. C., Elementary Differential Equations and
Boundary Value Problems, 6th ed. (1997: John Wiley & Sons, Inc.)

Hale, M., and Skidmore, A., A Guided Tour of Differential Equations, (1997:
Prentice-Hall)

C-ODEE Newsdletter, http://www.math.hmc.edu/codee, for articles on model-
ing with ODEs

IDEA (Internet Differential Equations Activities), created by Thomas LoFaro
and Kevin Cooper, offers an interactive virtual lab book with models.
http://www.sci.wsu.edu/idea
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Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 2.1. ODEs and Their Solutions

1. Whereisthat constant?
Solution formulas for first-order ODES often involve an arbitrary constant C,
and it can show up in al sorts of strange placesin the formulas. Solve each of
the following ODEsfor y intermsof t and C.

@y=1+snt (b)y=-y/3 (y=t/y (d)y=2y/Iny

2. Let'scheck out the ODE Architect.

You can see how good the ODE Architect solver is by creating initial value
problems for the ODEs of Problem 1 and using the Architect to solve them
and graph the solutions. Then compare the solver graphs with those obtained
using the solution formula. For example, use ODE Architect to solve and
plot the solution of the IVP y = —y/3, y(0) = 1. Then graph the solution
y = e/3 and compare. To do this, enter the following two equations on the
editor screen:

y =-y/3

u=g3

Next enter the initial condition for the ODE, then solve and plot the solution
on one of the graphics screens. Use the custom 2D plot tab to overlay the
graph of u. Do the graphs match? Repeat with your own initial data for each
of the other three ODEs in Problem 1.



36 Exploration 2.1

3. How manysolutions does this VP have?
Find formulas for two different solutions for the IVP y = y*3, y(0) = 0.
Which solution does ODE Architect give? Repeat with y = y%/3, y(0) = 0.
[Hint: Isy(t) = O0for al t asolution?]

4. The effect of a singularity in the differential equation.
The ODE y = y/t has asingularity at the point (0, 0) because at that point,
y/t = 0/0, which is undefined. Find aformula for all solutions of the ODE.
DoesthelVP Y = y/t, y(0) = 0, have any solutions? Use ODE Architect for
y = y/t, y(1) = a, for various positive values of a and then solve backward
in time to see what happens ast gets near zero. Explain.

1Usually an IVP has asingle solution, but in this Exploration you will see some exceptions. You
can find out why by reading about “existence” and “uniqueness’ in your text.



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 2.2. Slope Fields

1.  What happensin the long term?
The following ODEs are given in Screen 2.2 (Experiment 1). Using ODE
Architect, describe what the solutions do ast getsvery large. Include sketches
or printouts of your solution curves and their slope fields.

@y=y-1 (b)y =t/4 @y =(y—-1vH/10

2. Morelong-term behavior.
Repeat Problem 1 with the following ODEs.

@y =ty (b) y = (Y~ 4/10 ©y=(@y-3/5
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3. Sill morelong-term behavior.
Using ODE Architect, describe the long-term behavior of the solutions of

y =ysint+y).

4. Srange solutions.
Make up your own ODEs, especially ones whose solution curves or slope
fields form strange patterns. Use ODE Architect to display your results. De-
scribe the long-term behavior of solution curves. Attach printouts of your

graphs.



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 2.3. The Juggler

Second-order ODEs of the form y” = f(t,y, y) are to be solved in Explo-
rations 2.3 and 2.4. Since ODE Architect only accepts first-order ODEs, we
will replace y’ = f by an equivalent pair of first-order ODEs. We do this by
introducing v = y’ as another dependent variable:

y=v
vV = f(t,y,v)

1.  What goes up must come down.
Use ODE Architect to find the position of the ball at several different timest
for several different initial velocities. Assume no air resistance and that the
ball movesin avertical line. What is the name for the shapes of the solution
curvesin the ty-plane? Doesit take longer for the ball to rise or to fall? Show
and explain the difference (if thereisone!).

2. Hand-to-hand motion of the ball.
For agiveninitial speed v, find the range of values of the angle 6, so that the
ball goes from one hand to the other. Now increase the initial speed. What
happens to the range of successful values of 6¢? Explain. [Suggestion: First
takealook at Screen 3.5 (Experiment 2 in Module 2); then enter the equations
in ODE Architect and vary 6 with fixed vg to find the ranges. You may also
want to take alook at Screens 1.2 and 1.3 in Module 5.]
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4.

3. Raiseyour hand!

Suppose the juggler raises his catching hand one foot higher. Repeat Prob-
lem 2 in this setting.

Juggling two balls.

Construct model ODEs for tossing two balls, one after the other, from one

hand to the other. Use ODE Architect to find the positions of both balls at
timet.



Answer questions in the space provided, or on Name/Date
attached sheets with carefully labeled graphs. A
notepad report using the Architect is OK, too. Course/Section

Exploration 2.4. The Sky Diver

Second-order ODEs of the form y” = f(t,y, y) are to be solved in Explo-
rations 2.3 and 2.4. Since ODE Architect only accepts first-order ODEs, we
will replace y’ = f by an equivalent pair of first-order ODEs. We do this by
introducing v = y’ as another dependent variable:

y=v
vV = f(t,y,v)

1. Terminal speed of a falling body.
Use ODE Architect and determine the sky diver’sterminal speeds for several
different values of the viscous damping coefficient (usem =5 dugsand g =
32ft/sec?). Isthereany differenceif the sky diver jumps at 25,000 feet instead
of 13,500 feet? [Suggestion: After entering the ODE and solving, click on a
Datatab in either of the two graphics windows and use approximate data you
find there]

2. Sow down!
If a sky diver can survive a free-fall jump only if she hits the ground at no
more than 30 ft/sec, what values of the viscous drag coefficient k make this
possible? Are these k-values realistic? (Use m = 5 slugs and g = 32 ft/sec?.)
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D A Step function is one of
the engineering functions. You
can find them by going to ODE
Architect and clicking on Help,
Topic Search, and Engineering
Functions.

A Modeling Challenge!

Let’s construct a model for a parachute that opens over a 3 second time span.
The ODEsfor this model are given on Screen 4.5 (Experiment 2), but we have
to define k(t). Assume that the sky diver has a mass of 5 slugs and that she
jumps from 13,500 ft. The parachute starts to open after 65 seconds of free
fall and the damping coefficient changes linearly from k¢ = 0.86 slugs/ft to
kp = 6.71 lugg/ft as the chute opens. In other words,

Kt, t <65
K(t) = { kes + K2t —65), 65<t<68
Kp, t > 68
(@) Write an expression for k(t) using the properties of stepfunctions. Hint:

1, 65<t<68
Step(t, 65) — Step(t, 68) = {0 othgrwi_se

(b) Use ODE Architect to plot the sky diver's acceleration, velocity, and
height vs. time, using your expression for k(t).
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A room heats up in the morning, and the air conditioner in the room
starts its on-off cycles.

In this chapter, we’ll use Newton’s law of cooling to build mathematical models
of a number of situations that involve the variation of temperature in a body with
time. Some of our models involve ODEs that can be solved analytically; others will
be solved numerically by ODE Architect. We’ll compare the analytical solutions
and the numerical results and see how both can be used to verify predictions
made by the models.

Modeling; Newton’s law of cooling (and warming); initial conditions; general solu-
tion; separation of variables; integrating factor; heat energy; melting; air condition-
ing

Chapter 1 for more on modeling and Chapter 2 for the technique of separation of
variables.
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[J Newton’s Law of Cooling

D This becomes a“law of
warming” if the surroundings are
hotter than the object.

Have you ever gotten an order of piping hot French fries, only to find them
ice cold in what seems like a matter of moments? Whenever an object (or
substance) is warmer than its surroundings, it cools because it loses heat en-
ergy. The greater the temperature difference between the object and its sur-
roundings, the faster the object cools. The temperature of a body rises if its
surroundings are at a higher temperature than it is. What happens to the ice
cream in acone on a hot day?

Although it is an oversimplification, we will assume that the temperature
isuniform at al points in the objects we wish to model, but the temperature
may change with time. Let’s assume that the rate of change of the object’s
temperature is proportional to the difference between its temperature and that
of its surroundings. Stated mathematically, we have:

Newton’slaw of cooling. If T(t) isthetemperature of an object at time
t and Tout(t) isthe temperature of its surroundings, then

dT
a = k(Tout - T) (1)

where k is a positive constant called the cooling coefficient.

[0 Cooling an Egg

What happens to the temperature of a hard-boiled egg when you take it out
of a pot of boiling water? At first, the egg is the same temperature as the
boiling water. Onceyou takeit out of the water the egg beginsto cool, rapidly
at first and then more slowly. The temperature of the egg, T(t), drops at a
rate proportional to the difference between the temperature of the air, Toyt,
and T(t). Notice from ODE (1) that if Ty < T(t), the rate of change of
temperature, dT/dt, is negative, so T(t) decreases and your egg coals.

O “Check” your understanding by answering this question: What happens
to the temperature of an egg if it is boiled at 212°F and then transferred to an
oven at 400°F?

[0 Finding a General Solution

D See Chapter 2 for how to
solve a separable ODE.

Equation (1) is afirst-order ODE and its general solution contains one arbi-
trary constant. We can seethis asfollows:. If Ty is aconstant, then ODE (1)
is separable, and separating the variables we have

dT
= | kdt
/ Touw—T /
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|:| Why are the absolute value
signs needed?

Finding an antiderivative for each side we obtain
—In|Tout = T®)| =kt+ K

where K is an arbitrary constant. Multiplying through by —1 and exponenti-
ating gives us

|Tou — T()] = & Ke™
or, after dropping the absolute value signs, we have that

T(t) = Tow+ Ce™ @)
where C = +e K is now the arbitrary constant. The solution formula (2) is

called the general solution of ODE (1).

0 How doesthetemperature T(t) in (2) behaveast — +o00? Why can the
constant C be positive or negative?

Given an initial condition, we can determine C uniquely and identify a
single solution from the general solution (2). If wetake T(0) = To, then since
T(0) = Tout + C we seethat C = Tp — Toye and we get the unique solution

T() = Tou+ (To — Tow)e ™™ ©)

The constant of proportionality, k, in ODE (1) determines the rate at
which the body cools. It can be evaluated in a number of ways, for exam-
ple, by measuring the body’s temperature at two different times and using
formula (3) to solve for Tp and k. Figure 3.1 shows temperature curves corre-
sponding to Ty = 70°F, To = 212°F, and five values of k.

220

Egg temperatures (degrees Fahrenheit)
=
N
o

T T T
0 12 24 36 48 60

Time (minutes)

Figure 3.1: The cooling coefficient k ranges from 0.03 to 0.3 min~! for eggs
of different sizes. Which is the k = 0.03 egg?
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D ODE Architect helps out
again.

O An object isinitialy at 212°F and cools to 190°F after 5 minutes in a
room that is at 72°F. Find the coefficient of cooling, k, and determine how
long it will take to cool to 100°F.

Finding the general solutionformula(2) for ODE (1) was straightforward.
However, the vast majority of ODEs are not so simple to solve and we have
to use numerical methods. To demonstrate the accuracy of such methods,
you can compare the numerical solutions from ODE Architect with a known
solution formula.

O How long will it take for a 212°F egg to cool to 190°F in a 72°F room
if k= 0.03419 min—1? Use ODE Architect and formula (3) and compare the
results.

[0 Time-Dependent Outside Temperature

D Every ODE text discusses
integrating factors and first-order
linear ODEs.

When considering the cooling of an egg, ODE (1) is separable because Toy
is constant in this instance. Let's consider what happens when the outside
temperature changes with time.

We can still use Newton's law of cooling, so that if T(t) is the egg's
temperature and Ty () isthe room’s temperature, then

dT

i K(Tout(t) — T) 4)
Note that ODE (4) is not separable (because Toy: varies with time) but it is
linear, so we can find its general solution as follows. Rearrange the terms to

givethelinear ODE in standard form:

(jj_-{ + KT = KToue (1)
Multiply both sides by €, so that
ekt (%—I + kT) = KTour (1) € (5)
Since the left-hand side of ODE (5) is (d/dt) (€T (t)), it can be rewritten:
% (eT) = KTou (D)€" (6)

Integrate both sides of ODE (6) we have that
T = / KTout(t)€'dt 4 C

where C is an arbitrary constant. The magic factor 1 (t) = € that enabled us
to do thisis called an integrating factor. So ODE (4) has the general solution

Tt)=e ™ ( / KTout (1) €dt + C)
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