Answer 5 all questions. Each problem is worth 20 points. Box in your answer(s) to each question. Good luck.

1. Set up the appropriate form of a particular solution y_{p} of the differential equation

$$
y^{(5)}-y^{(3)}=e^{x}+2 x^{2}-5 .
$$

Do not determine the value of the coefficients.
2. Find the solution of the system of differential equations with given initial conditions

$$
\begin{aligned}
x^{\prime} & =x+3 y+4 t \\
y^{\prime} & =x-y
\end{aligned}
$$

Assume $x(0)=5, y(0)=0$.
3. Given the differential equation

$$
x^{\prime \prime}+4 x^{\prime}+4 x=10 \cos (3 t),
$$

find the steady periodic solution and express it in the form $x_{s p}=C \cos (\omega t-\alpha)$. Determine C and α to four decimal place accuracy (if using a calculator).
4. Consider two 10 gallon tanks of water and suppose they are both filled with salty water - however, do not assume that the concentrations of salt in both tanks are identical.

Suppose that fresh water flows into Tank A at the rate of $1 \mathrm{gal} / \mathrm{min}$ and into Tank B at the rate of $2 \mathrm{gal} / \mathrm{min}$. At the same time $3 \mathrm{gal} / \mathrm{min}$ of salty water flows out of Tank A. Finally suppose that well mixed solutions are exchanged between the two tanks as follows:
$1 \mathrm{gal} / \mathrm{min}$ is pumped from Tank A to Tank B
$3 \mathrm{gal} / \mathrm{min}$ is pumped from Tank B to Tank A.
Let $x(t)$ represent the amount of salt in Tank A at time t and $y(t)$ the amount of salt in Tank B at time t.
(a) Without doing any solving of DE's, but just from common sense, can you anticipate what is going to happen to $x(t)$ and $y(t)$ as $t \rightarrow \infty$?
(b) Express this exchange of salt between Tanks A and B as a linear system of differential equations.
(c) Using any of the methods which we have developed, determine the general solution. Note: you should obtain $x(t)$ and $y(t)$ which depend on only two parameters c_{1} and c_{2} which cannot be determined until $x(0)$ and $y(0)$ are specified.
(d) Does the answer above correspond to your answer in (a); i.e., determine the limit as $t \rightarrow \infty$ of your expressions for $x(t), y(t)$.
5. Consider the following spring system
(a) Determine the spring constant k of a spring stretched 0.5 m by a force of 2 N .
(b) Suppose for that spring, a 2 kg mass is attached to the spring and released from rest from the stretched position $x_{0}=1 \mathrm{~m}$ from the relaxed length. Suppose the damping constant c for the system is $4(\mathrm{~N} \mathrm{sec} / \mathrm{m})$ (i.e. the resistance force when stretched to x is given by $-4 x^{\prime} \mathrm{N}$.). Find the position $x(t)$ of this mass at time t. The $D E$ is $2 x^{\prime \prime}+4 x^{\prime}+4 x=0$ with $I C ' s x(0)=1, x^{\prime}(0)=0$. Then $x(t)=$ $e^{-t}(\cos t+\sin t)$.

