EECE.3600 Exam I

10/16/2017

Name:

Signature: _____

1. (30%) For a wave with frequency f = 1 MHz, the amplitude phasor at different position z can be written as: $\tilde{A}(z) = 5e^{-j100z}$. (1) What is the instantaneous value of the amplitude A(z,t) at different position z? (2) What is the direction the wave travels? (3) What is the wavelength of the wave?

Solution:

(1)
$$\widetilde{A}(z) = 5e^{-j100z} = \operatorname{Re}\left[5e^{-j100z}e^{j\omega t}\right] = 5\cos(\omega t - 100z) = 5\cos(2\pi 10^6 t - 100z).$$

(2) The wave travels in the +z direction.

(3)
$$\beta = \frac{2\pi}{\lambda} = 100, \ \lambda = \frac{2\pi}{100} = 0.0628(m).$$

2. (30%) An air spaced lossless 50- Ω line ($\varepsilon_r = 1$) is terminated in a load with impedance of $Z_L = 60 + j60-\Omega$ at frequency 5GHz, Find (1) the reflection coefficient; (2) the voltage standing wave ratio (S) and (3) the location of the first voltage maximum from the load in centimeters.

(1)
$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{60 + j60 - 50}{60 + j60 + 50} = 0.49 \angle 0.91$$
.
(2) $S = \frac{1 + |\Gamma|}{1 - |\Gamma|} = \frac{1 + 0.49}{1 - 0.49} = 2.9$.
(3) $l_{\text{max}} = \frac{\theta_r}{4\pi} \lambda = 0.072\lambda$.
 $\lambda = \frac{c}{f} = \frac{3 \times 10^8 \, m/s}{5 \times 10^9 \, Hz} = 6 cm$
 $l_{\text{max}} = 0.43 cm$.

3. (40%) A lossless 50- Ω line is terminated with a load. The capacitance is unknown. The voltage standing wave ratio (S) was measured to be S=3 at the frequency of 5GHz. (1) Find the capacitance; (2) what is the shortest length of the transmission line to make the Z_{in} real?

$$Z_0 = 50 \Omega$$
 $R_L = 75 \Omega$
C = ?

Solution:

$$(1) S = \frac{1+|\Gamma|}{1-|\Gamma|} = 3, |\Gamma| = 0.5.$$

$$|\Gamma| = \left|\frac{Z_L - Z_0}{Z_L + Z_0}\right| = \left|\frac{75 + \frac{1}{j\omega C} - 50}{75 + \frac{1}{j\omega C} + 50}\right| = \left|\frac{25 + \frac{1}{j\omega C}}{125 + \frac{1}{j\omega C}}\right| = \left[\frac{25^2 + \left(\frac{1}{\omega C}\right)^2}{125^2 + \left(\frac{1}{\omega C}\right)^2}\right]^{1/2}$$

$$\frac{25^2 + \left(\frac{1}{\omega C}\right)^2}{125^2 + \left(\frac{1}{\omega C}\right)^2} = \frac{1}{4}, \left(\frac{1}{\omega C}\right)^2 = 4375\Omega^2, \left(\frac{1}{\omega C}\right) = 66.1\Omega$$

$$\omega C = 0.015\Omega^{-1}, C = \frac{0.015\Omega^{-1}}{\omega} = 0.48 \, pF.$$

$$(2) Z_L = 75 + \frac{1}{j\omega C}\Omega = 75 + j66.1\Omega$$

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = \left|\frac{75 + j66.1 - 50}{75 + j66.1 + 50}\right| = 0.5 \angle 0.72.$$

Z_{in} is real at $|V|_{max}$ or $|V|_{min}$.

$$l_{\max} = \frac{\theta_r}{4\pi} \lambda = 0.057\lambda, \ l_{\min} = \frac{\theta_r}{4\pi} \lambda + \frac{1}{4} \lambda = 0.307\lambda$$

Voltage maximum	$ \widetilde{V} _{\max} = V_0^+ [1+ \Gamma]$
Voltage minimum	$ \widetilde{V} _{\min} = V_0^+ [1 - \Gamma]$
Positions of voltage maxima (also positions of current minima)	$l_{\max} = \frac{\theta_{\mathrm{r}}\lambda}{4\pi} + \frac{n\lambda}{2}, n = 0, 1, 2, \dots$
Position of first maximum (also position of first current minimum)	$l_{\max} = \begin{cases} \frac{\theta_{\rm r}\lambda}{4\pi}, & \text{if } 0 \le \theta_{\rm r} \le \pi\\ \frac{\theta_{\rm r}\lambda}{4\pi} + \frac{\lambda}{2}, & \text{if } -\pi \le \theta_{\rm r} \le 0 \end{cases}$
Positions of voltage minima (also positions of first current maxima)	$l_{\min} = \frac{\theta_{\rm r}\lambda}{4\pi} + \frac{(2n+1)\lambda}{4}, n = 0, 1, 2, \dots$
Position of first minimum (also position of first current maximum)	$l_{\min} = \frac{\lambda}{4} \left(1 + \frac{\theta_{\rm r}}{\pi} \right)$
Input impedance	$Z_{\rm in} = Z_0 \left(\frac{Z_{\rm L} + j Z_0 \tan \beta l}{Z_0 + j Z_{\rm L} \tan \beta l} \right)$
Positions at which Z_{in} is real	at voltage maxima and minima
Z_{in} at voltage maxima	$Z_{\rm in} = Z_0 \left(\frac{1 + \Gamma }{1 - \Gamma } \right)$
Z_{in} at voltage minima	$Z_{\rm in} = Z_0 \left(\frac{1 - \Gamma }{1 + \Gamma } \right)$
$Z_{\rm in}$ of short-circuited line	$Z_{\rm in}^{\rm sc} = j Z_0 \tan \beta l$
$Z_{\rm in}$ of open-circuited line	$Z_{\rm in}^{\rm oc} = -j Z_0 \cot \beta l$
$Z_{\rm in}$ of line of length $l = n\lambda/2$	$Z_{\rm in} = Z_{\rm L}, n = 0, 1, 2, \dots$
$Z_{\rm in}$ of line of length $l = \lambda/4 + n\lambda/2$	$Z_{\rm in} = Z_0^2 / Z_{\rm L}, \qquad n = 0, 1, 2, \dots$
Z _{in} of matched line	$Z_{\rm in} = Z_0$

 $|V_0^+| =$ amplitude of incident wave, $\Gamma = |\Gamma|e^{j\theta_r}$ with $-\pi < \theta_r < \pi$; θ_r in radians.

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$$
$$S = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$