EECE. 3600 Exam I

03/05/2018

Name:

Signature:

1. (30%) A wave with the frequency of $1-\mathrm{MHz}$ travels in the -z direction in air. Assume the wave travels at the speed of light $\left(\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right.$ in air). If the wave reaches a peak value of 1.5 at z $=100 \mathrm{~m}$ when $\mathrm{t}=0.2 \mu \mathrm{~s}$. Find:
1) (10 points) Wavelength in air
2) (10 points) Expression for the instantaneous of the wave (time domain)
3) (10 points) Expression for the wave in the phasor domain

Solution:
1). $\lambda f=c, \lambda=\frac{c}{f}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{10^{6} \mathrm{~Hz}}=300 \mathrm{~m}$
2). $y(z, t)=1.5 \cos \left(\omega t+\frac{2 \pi}{\lambda} z+\varphi_{0}\right)$
$1.5=1.5 \cos \left(2 \pi 10^{6} \times 0.2 \times 10^{-6}+\frac{2 \pi}{300} 100+\varphi_{0}\right) \varphi_{0}=0.933 \pi$
$y(z, t)=1.5 \cos \left(\omega t+\frac{2 \pi}{\lambda} z+0.933 \pi\right)$
3) $\tilde{y}(z)=1.2 \pi e^{j\left(\frac{2 \pi}{\lambda} z+0.933 \pi\right)}$ $\mathrm{Z}_{\mathrm{L}}=100+\mathrm{j} 60-\Omega$ at frequency 5 GHz . Find (1) the reflection coefficient; (2) the voltage standing wave ratio (S) and (3) the location of the first voltage maximum from the load in centimeters.

Solutions:
(1) $\Gamma=\frac{100+j 60-50}{100+j 60+50}=0.48 \angle 28.4^{\circ}$
(2) $\mathrm{S}=\frac{1+|\Gamma|}{1-|\Gamma|}=2.85$
(3) $l_{\text {max }}=\frac{\theta_{r}}{4 \pi} \lambda=0.04 \lambda=0.24 \mathrm{~cm}$
3. (35\%) A lossless $50-\Omega$ line $\lambda / 8$ is terminated in an unknown impedance. If the input impedance is $\mathrm{Z}_{\mathrm{in}}=-\mathrm{j} 60-\Omega$. Find the load Z_{L}.

Solutions:

$$
\begin{aligned}
& \beta \mathrm{L}=\frac{2 \pi}{\lambda} \frac{\lambda}{8}=\frac{\pi}{4}, \\
& \frac{Z_{i n}}{Z_{0}}=\frac{Z_{L}+j Z_{0} \tan \beta L}{Z_{0}+j Z_{L} \tan \beta L}=\frac{Z_{L}+j Z_{0}}{Z_{0}+j Z_{L}}=-j 1.2 \\
& Z_{L}=j 550 \Omega
\end{aligned}
$$

Voltage maximum Voltage minimum	$\begin{aligned} & \|\widetilde{V}\|_{\max }=\left\|V_{0}^{+}\right\|[1+\|\Gamma\|] \\ & \|\widetilde{V}\|_{\min }=\left\|V_{0}^{+}\right\|[1-\|\Gamma\|] \end{aligned}$
Positions of voltage maxima (also positions of current minima) Position of first maximum (also position of first current minimum)	$\begin{aligned} & l_{\max }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{n \lambda}{2}, \quad n=0,1,2, \ldots \\ & l_{\max }= \begin{cases}\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}, & \text { if } 0 \leq \theta_{\mathrm{r}} \leq \pi \\ \frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{\lambda}{2}, & \text { if }-\pi \leq \theta_{\mathrm{r}} \leq 0\end{cases} \end{aligned}$
Positions of voltage minima (also positions of first current maxima) Position of first minimum (also position of first current maximum)	$\begin{aligned} & l_{\min }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{(2 n+1) \lambda}{4}, \quad n=0,1,2, \\ & l_{\min }=\frac{\lambda}{4}\left(1+\frac{\theta_{\mathrm{r}}}{\pi}\right) \end{aligned}$
Input impedance	$Z_{\text {in }}=Z_{0}\left(\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right)$
Positions at which $Z_{\text {in }}$ is real	at voltage maxima and minima
$Z_{\text {in }}$ at voltage maxima	$Z_{\text {in }}=Z_{0}\left(\frac{1+\|\Gamma\|}{1-\|\Gamma\|}\right)$
$Z_{\text {in }}$ at voltage minima	$Z_{\text {in }}=Z_{0}\left(\frac{1-\|\Gamma\|}{1+\|\Gamma\|}\right)$
$Z_{\text {in }}$ of short-circuited line	$Z_{\text {in }}^{\text {sc }}=j Z_{0} \tan \beta l$
$Z_{\text {in }}$ of open-circuited line	$Z_{\text {in }}^{\text {oc }}=-j Z_{0} \cot \beta l$
$Z_{\text {in }}$ of line of length $l=n \lambda / 2$	$Z_{\text {in }}=Z_{\mathrm{L}}, \quad n=0,1,2, \ldots$
$Z_{\text {in }}$ of line of length $l=\lambda / 4+n \lambda / 2$ $Z_{\text {in }}$ of matched line	$\begin{aligned} & Z_{\text {in }}=Z_{0}^{2} / Z_{\mathrm{L}}, \quad n=0,1,2, \ldots \\ & Z_{\text {in }}=Z_{0} \end{aligned}$
$\left\|V_{0}^{+}\right\|=$amplitude of incident wave, $\Gamma=\|\Gamma\| e^{j \theta_{\mathrm{r}}}$ with $-\pi<\theta_{\mathrm{r}}<\pi ; \theta_{\mathrm{r}}$ in radians.	

$$
\begin{gathered}
\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \\
S=\frac{1+|\Gamma|}{1-|\Gamma|}
\end{gathered}
$$

