EECE.3600 Exam II

04/06/2018

Name:

Signature:

1. (35%) On a lossless 50- Ω transmission line terminated with a $Z_L = 100$ -j100 Ω . If this transmission line is to be matched to the load using a shorted load stub. Determine the stub length and distance between the load and stub. Two possible answers. You only need to show one of them.

3. (35%) Verify Stokes's theorem for the vector field $\vec{A} = \hat{r}r\cos\phi + \hat{\phi}\sin\phi$ along the contour shown below:

Solution:

$$\begin{split} \oint \mathbf{B} \cdot d\mathbf{l} &= \int_{L_1} \mathbf{B} \cdot d\mathbf{l} + \int_{L_2} \mathbf{B} \cdot d\mathbf{l} + \int_{L_3} \mathbf{B} \cdot d\mathbf{l} + \int_{L_4} \mathbf{B} \cdot d\mathbf{l}, \\ \mathbf{B} \cdot d\mathbf{l} &= (\hat{\mathbf{r}} \mathbf{r} \cos \phi + \hat{\mathbf{\phi}} \sin \phi) \cdot (\hat{\mathbf{r}} dr + \hat{\mathbf{\phi}} r d\phi + \hat{\mathbf{z}} dz) = r \cos \phi \, dr + r \sin \phi \, d\phi, \\ \int_{L_1} \mathbf{B} \cdot d\mathbf{l} &= \left(\int_{r=1}^2 r \cos \phi \, dr\right) \Big|_{\phi=0, z=0} + \left(\int_{\phi=0}^{0} r \sin \phi \, d\phi\right) \Big|_{z=0} \\ &= \left(\frac{1}{2}r^2\right)\Big|_{r=1}^2 + 0 = \frac{3}{2}, \\ \int_{L_2} \mathbf{B} \cdot d\mathbf{l} &= \left(\int_{r=2}^2 r \cos \phi \, dr\right)\Big|_{z=0} + \left(\int_{\phi=\pi/2}^{\pi/2} r \sin \phi \, d\phi\right)\Big|_{r=2, z=0} \\ &= 0 + (-2 \cos \phi)\Big|_{\phi=\pi/2}^{\pi/2} = 2, \\ \int_{L_3} \mathbf{B} \cdot d\mathbf{l} &= \left(\int_{r=1}^1 r \cos \phi \, dr\right)\Big|_{z=0} + \left(\int_{\phi=\pi/2}^0 r \sin \phi \, d\phi\right)\Big|_{r=1, z=0} \\ &= 0 + (-\cos \phi)\Big|_{\phi=\pi/2}^{\phi=0} = -1, \\ \oint \mathbf{B} \cdot d\mathbf{l} &= \frac{3}{2} + 2 + 0 - 1 = \frac{5}{2}. \\ \nabla \times \mathbf{B} &= \nabla \times (\hat{\mathbf{r}} r \cos \phi + \hat{\mathbf{\phi}} \sin \phi) \\ &= \hat{\mathbf{r}} \left(\frac{1}{r} \frac{\partial}{\partial \phi} 0 - \frac{\partial}{\partial z} (\sin \phi)\right) + \hat{\mathbf{\phi}} \left(\frac{\partial}{\partial z} (r \cos \phi) - \frac{\partial}{\partial r} 0\right) \\ &+ \hat{\mathbf{z}} \frac{1}{r} \left(\frac{\partial}{\partial r} (r (\sin \phi)) - \frac{\partial}{\partial \phi} (r \cos \phi)\right) \\ &= \hat{\mathbf{r}} 0 + \hat{\mathbf{\phi}} 0 + \hat{\mathbf{z}} \frac{1}{r} (\sin \phi + (r \sin \phi)) = \hat{\mathbf{z}} \sin \phi \left(1 + \frac{1}{r}\right), \\ \iint \nabla \times \mathbf{B} \cdot d\mathbf{s} &= \int_{\phi=0}^{\pi/2} \int_{r=1}^2 (\hat{\mathbf{z}} \sin \phi \left(1 + \frac{1}{r}\right)\right) \cdot (\hat{\mathbf{z}} r \, dr \, d\phi) \\ &= \int_{\phi=0}^{\pi/2} \int_{r=1}^2 \sin \phi (r+1) \, dr \, d\phi \\ &= \left(\left(-\cos \phi (\frac{1}{2}r^2 + r)\right)\Big|_{r=1}^2\right)\Big|_{\phi=0}^{\pi/2} = \frac{5}{2}. \end{split}$$

	Cartesian	Cylindrical	Spherical
	Coordinates	Coordinates	
Coordinate variables	x, y, z	r, ϕ, z	R, θ, φ
Vector representation, A =	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\mathbf{r}}A_r + \boldsymbol{\phi}A_{\phi} + \hat{\mathbf{z}}A_z$	$\frac{\mathbf{R}A_R + \boldsymbol{\theta}A_\theta + \boldsymbol{\phi}A_\phi}{\sqrt{2}}$
Magnitude of A, $ A =$	$\sqrt[+]{A_x^2 + A_y^2 + A_z^2}$	$\sqrt[+]{A_r^2 + A_\phi^2 + A_z^2}$	$\sqrt[+]{A_R^2 + A_\theta^2 + A_\phi^2}$
Position vector $\overrightarrow{OP_1} =$	$\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}z_1,$ for $P(x_1, y_1, z_1)$	$\hat{\mathbf{r}}r_1 + \hat{\mathbf{z}}z_1,$ for $P(r_1, \phi_1, z_1)$	$\hat{\mathbf{R}}R_1,$ for $P(R_1, \theta_1, \phi_1)$
Base vectors properties	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$ $\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{x}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$	$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$ $\hat{\mathbf{r}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{r}} = 0$	$\hat{\mathbf{R}} \cdot \hat{\mathbf{R}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\phi}} \cdot \hat{\boldsymbol{\phi}} = 1$ $\hat{\mathbf{R}} \cdot \hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}} = \hat{\boldsymbol{\phi}} \cdot \hat{\mathbf{R}} = 0$
	$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{z}}$	$\hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}} = \hat{\mathbf{z}}$	$\hat{\mathbf{R}} imes \hat{ heta} = \hat{oldsymbol{\phi}}$
	$\hat{\mathbf{x}} \times \hat{\mathbf{y}} = \hat{\mathbf{x}}$	$\hat{\phi} imes \hat{\mathbf{z}} = \hat{\mathbf{r}}$	$\hat{\theta} \times \hat{\phi} = \mathbf{R}$
	$\hat{\mathbf{z}} \times \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{z}} \times \hat{\mathbf{r}} = \hat{\boldsymbol{\phi}}$	$\phi \times \mathbf{R} = \theta$
Dot product, $\mathbf{A} \cdot \mathbf{B} =$	$A_x B_x + A_y B_y + A_z B_z$	$A_r B_r + A_\phi B_\phi + A_z B_z$	$A_R B_R + A_\theta B_\theta + A_\phi B_\phi$
Cross product, A × B =	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$\begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\boldsymbol{z}} \\ A_r & A_\phi & A_z \\ B_r & B_\phi & B_z \end{vmatrix}$	$egin{array}{cccc} \hat{f R} & \hat{m heta} & \hat{m \phi} \ A_R & A_ heta & A_\phi \ B_R & B_ heta & B_\phi \end{array}$
Differential length, $d\mathbf{l} =$	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}} dr + \hat{\boldsymbol{\phi}} r d\phi + \hat{\mathbf{z}} dz$	$\hat{\mathbf{R}} dR + \hat{\boldsymbol{\theta}} R d\theta + \hat{\boldsymbol{\phi}} R \sin \theta d\phi$
Differential surface areas	$d\mathbf{s}_x = \hat{\mathbf{x}} dy dz$	$d\mathbf{s}_r = \hat{\mathbf{r}}r \ d\phi \ dz$	$d\mathbf{s}_R = \mathbf{R}R^2 \sin\theta d\theta d\phi$
Directorium Surface - a surface	$d\mathbf{s}_{y} = \hat{\mathbf{y}} dx dz$ $d\mathbf{s}_{z} = \hat{\mathbf{z}} dx dy$	$d\mathbf{s}_{\phi} = \hat{\boldsymbol{\phi}} dr dz$ $d\mathbf{s}_{z} = \hat{\mathbf{z}}r dr d\phi$	$d\mathbf{s}_{\theta} = \boldsymbol{\theta} R \sin \theta \ dR \ d\phi$ $d\mathbf{s}_{\phi} = \hat{\boldsymbol{\phi}} R \ dR \ d\theta$
Differential volume, $dv =$	dx dy dz	r dr dφ dz	$R^2\sin\thetadRd\thetad\phi$

G R A D I E N T , D I V E R G E N C E , C U R L , & L A P L A C I A N O P E R A T O R S CARTESIAN (RECTANGULAR) COORDINATES (x, y, z)

$$\nabla V = \mathbf{x} \frac{\partial V}{\partial x} + \mathbf{y} \frac{\partial V}{\partial y} + \mathbf{z} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \begin{vmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \mathbf{x} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \mathbf{y} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \mathbf{z} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

$$\nabla V = \mathbf{r} \frac{\partial V}{\partial r} + \mathbf{\phi} \frac{1}{r} \frac{\partial V}{\partial \phi} + \mathbf{z} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \frac{1}{r} \left| \frac{\mathbf{r}}{\partial r} \frac{\mathbf{\phi} \mathbf{r}}{\partial \phi} \frac{\partial}{\partial z} \right| = \mathbf{r} \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \mathbf{\phi} \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) + \mathbf{z} \frac{1}{r} \left[\frac{\partial}{\partial r} (rA_{\phi}) - \frac{\partial A_r}{\partial \phi} \right]$$

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$$

SPHERICAL COORDINATES (R, θ, ϕ)

$$\nabla V = \mathbf{R} \frac{\partial V}{\partial R} + \mathbf{\theta} \frac{1}{R} \frac{\partial V}{\partial \theta} + \mathbf{\phi} \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 A_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

$$\nabla \times \mathbf{A} = \frac{1}{R^2 \sin \theta} \begin{vmatrix} \mathbf{R} & \mathbf{\theta} R & \mathbf{\phi} R \sin \theta \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_R & RA_\theta & (R \sin \theta) A_\phi \end{vmatrix}$$

$$= \mathbf{R} \frac{1}{R \sin \theta} \left[\frac{\partial}{\partial \theta} (A_\phi \sin \theta) - \frac{\partial A_\theta}{\partial \phi} \right] + \mathbf{\theta} \frac{1}{R} \left[\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial}{\partial R} (RA_\phi) \right] + \mathbf{\phi} \frac{1}{R} \left[\frac{\partial}{\partial R} (RA_\theta) - \frac{\partial A_R}{\partial \theta} \right]$$

$$\nabla^2 V = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$