EECE. 3600 Exam I 10/03/2016

Name:

Signature:

1. (35%) An air spaced lossless $50-\Omega$ line $\left(\varepsilon_{\mathrm{r}}=1\right)$ is terminated in a load with impedance of $\mathrm{Z}_{\mathrm{L}}=60+\mathrm{j} 60-\Omega$ at frequency 5 GHz , Find (1) the reflection coefficient; (2) the voltage standing wave ratio (S) and (3) the location of the first voltage maximum from the load in centimeters.

Solutions:
(1) $\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{60+j 60-50}{60+j 60+50}=0.49 \angle 0.91$.
(2) $S=\frac{1+|\Gamma|}{1-|\Gamma|}=\frac{1+0.49}{1-0.49}=2.9$.
(3) $l_{\text {max }}=\frac{\theta_{r}}{4 \pi} \lambda=0.072 \lambda$.
$\lambda=\frac{c}{f}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{5 \times 10^{9} \mathrm{~Hz}}=6 \mathrm{~cm}$
$l_{\text {max }}=0.43 \mathrm{~cm}$.
2. (30%) A lossless $50-\Omega$ line is terminated with a load. The capacitance is unknown. The voltage standing wave ratio (S) was measured to be 3 at the frequency of 5 GHz , Find the capacitance.

Solution:

$$
\begin{aligned}
& S=\frac{1+|\Gamma|}{1-|\Gamma|}=3,|\Gamma|=0.5 \\
& |\Gamma|=\left|\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}\right|=\left|\frac{75+\frac{1}{j \omega C}-50}{75+\frac{1}{j \omega C}+50}\right|=\left|\frac{25+\frac{1}{j \omega C}}{125+\frac{1}{j \omega C}}\right|=\left[\frac{25^{2}+\left(\frac{1}{\omega C}\right)^{2}}{125^{2}+\left(\frac{1}{\omega C}\right)^{2}}\right]^{1 / 2} \\
& \frac{25^{2}+\left(\frac{1}{\omega C}\right)^{2}}{125^{2}+\left(\frac{1}{\omega C}\right)^{2}}=\frac{1}{4},\left(\frac{1}{\omega C}\right)^{2}=4375 \Omega^{2}, \\
& \omega C=0.015 \Omega^{-1}, C=\frac{0.015 \Omega^{-1}}{\omega}=0.48 p F .
\end{aligned}
$$

3. (35\%) A 5 GHz voltage source is connected to a lossless transmission line is terminated with $\mathrm{Z}_{\mathrm{L}}=-\mathrm{j} 75-\Omega$. The characteristic impedance of the transmission line is $50-\Omega$. Assuming the phase velocity of the transmission line is $0.8 c$, where c is the speed of light. (1) What's the voltage reflection coefficient? (2) Find out the location of the first $|\mathrm{V}|_{\text {min }}$ from the load, (3) What's the standing wave ratio S ? (4) how long the transmission line will make it equivalent to an open circuit?

Solutions:

(1) $\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{-j 75-50}{j 75+50}=1 \angle-1.18$.
(2) $l_{\min }=\frac{\theta_{r}}{4 \pi} \lambda+\frac{\lambda}{4}=0.16 \lambda, \lambda=\frac{0.8 c}{5 G H z}=4.8 \mathrm{~cm}$.
$l_{\text {min }}=0.16 \lambda=0.77 \mathrm{~cm}$.
(3) $S=\frac{1+|\Gamma|}{1-|\Gamma|}=\infty$.
(4)
$Z_{\text {in }}=\frac{Z_{L}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{L} \tan \beta l}=\infty$,
$Z_{0}+j Z_{L} \tan \beta l=0, Z_{0}+j Z_{L} \tan \beta l=0$
$50+75 \tan \beta l=0, \tan \beta l=-\frac{2}{3}, \tan (\pi-\beta l)=\frac{2}{3}, \pi-\beta l=0.588$,
$\beta l=\pi-0.588, l=\frac{\pi-0.588}{4 \pi} \lambda=1.97 \mathrm{~cm}$.
Another method:

$$
\begin{aligned}
& Z_{i n}=Z_{0} \frac{e^{j \beta l}+\Gamma e^{-j \beta l}}{e^{j \beta l}-\Gamma e^{-j \beta l}}=\infty, e^{j \beta l}-\Gamma e^{-j \beta l}=0, e^{j 2 \beta l}=\Gamma \\
& e^{j 2 \beta l}=e^{-j 1.18}, e^{j 2 \beta l}=e^{j(2 \pi-1.18)}, 2 \beta l=(2 \pi-1.18) \\
& l=\frac{(2 \pi-1.18)}{4 \pi} \lambda=1.97 \mathrm{~cm}
\end{aligned}
$$

Voltage maximum Voltage minimum	$\begin{aligned} & \|\widetilde{V}\|_{\max }=\left\|V_{0}^{+}\right\|[1+\|\Gamma\|] \\ & \|\widetilde{V}\|_{\min }=\left\|V_{0}^{+}\right\|[1-\|\Gamma\|] \end{aligned}$
Positions of voltage maxima (also positions of current minima) Position of first maximum (also position of first current minimum)	$\begin{aligned} & l_{\max }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{n \lambda}{2}, \quad n=0,1,2, \ldots \\ & l_{\max }= \begin{cases}\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}, & \text { if } 0 \leq \theta_{\mathrm{r}} \leq \pi \\ \frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{\lambda}{2}, & \text { if }-\pi \leq \theta_{\mathrm{r}} \leq 0\end{cases} \end{aligned}$
Positions of voltage minima (also positions of first current maxima) Position of first minimum (also position of first current maximum)	$\begin{aligned} & l_{\min }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{(2 n+1) \lambda}{4}, \quad n=0,1,2 \\ & l_{\min }=\frac{\lambda}{4}\left(1+\frac{\theta_{\mathrm{r}}}{\pi}\right) \end{aligned}$
Input impedance	$Z_{\text {in }}=Z_{0}\left(\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right)$
Positions at which $Z_{\text {in }}$ is real	at voltage maxima and minima
$Z_{\text {in }}$ at voltage maxima	$Z_{\text {in }}=Z_{0}\left(\frac{1+\|\Gamma\|}{1-\|\Gamma\|}\right)$
$Z_{\text {in }}$ at voltage minima	$Z_{\text {in }}=Z_{0}\left(\frac{1-\|\Gamma\|}{1+\|\Gamma\|}\right)$
$Z_{\text {in }}$ of short-circuited line	$Z_{\text {in }}^{\text {sc }}=j Z_{0} \tan \beta l$
$Z_{\text {in }}$ of open-circuited line	$Z_{\mathrm{in}}^{\text {oc }}=-j Z_{0} \cot \beta l$
$Z_{\text {in }}$ of line of length $l=n \lambda / 2$	$Z_{\text {in }}=Z_{\mathrm{L}}, \quad n=0,1,2, \ldots$
$Z_{\text {in }}$ of line of length $l=\lambda / 4+n \lambda / 2$ $Z_{\text {in }}$ of matched line	$\begin{aligned} & Z_{\text {in }}=Z_{0}^{2} / Z_{\mathrm{L}}, \quad n=0,1,2, \ldots \\ & Z_{\text {in }}=Z_{0} \end{aligned}$
$\left\|V_{0}^{+}\right\|=$amplitude of incident wave, $\Gamma=\|\Gamma\| e^{j \theta_{\mathrm{r}}}$ with $-\pi<\theta_{\mathrm{r}}<\pi ; \theta_{\mathrm{r}}$ in radians.	

$$
\begin{gathered}
\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \\
S=\frac{1+|\Gamma|}{1-|\Gamma|}
\end{gathered}
$$

