1. (35%) A wave with the frequency of 1-MHz travels in the -z direction in air. Assume the wave travels at the speed of light (c = 3.0×10^8 m/s in air). If the wave reaches a peak value of 1.2 π at z =50 m when t=0. Find:

1) Wavelength in air

- 2) Expression for the instantenous of the wave (time domain)
- 3) Expression for the wave in the phasor domain

Solution:

1)
$$\lambda f = c$$

 $\lambda = \frac{c}{f} = 300(m)$.
2) $y(z,t) = 1.2\pi \cos\left(\omega t + \frac{2\pi}{\lambda}z + \phi_0\right)$
 $y(z = 50, t = 0) = 1.2\pi$
 $\phi_0 = -\frac{2\pi}{\lambda}50 = -\frac{\pi}{3}$.
 $y(z,t) = 1.2\pi \cos\left(\omega t + \frac{2\pi}{\lambda}z - \frac{\pi}{3}\right)$
3) $\tilde{y}(z) = 1.2\pi e^{j\left(\frac{2\pi}{\lambda}z - \frac{\pi}{3}\right)}$

2. (30%) For a lossless transmission line, the characteristic impedance $Z_0 = 50 \Omega$. If the load is $Z_L=25+j25 \Omega$, (1) find out the reflection coefficient; (2) the VSWR?

Solution:

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{25 + j25 - 50}{25 + j25 + 50} = 0.45 \angle 0.65\pi$$
$$S = \frac{1 + |\Gamma|}{1 - |\Gamma|} = 2.6$$

3. (35%) A 10GHz voltage source is connected to a lossless transmission line is terminated with $Z_L = -j75 \cdot \Omega$. The characteristic impedance of the transmission line is 50- Ω . Assuming the phase velocity of the transmission line is 0.8*c*, where *c* is the speed of light. (1) What's the voltage reflection coefficient? (2) Find out the location of the first $|V|_{min}$ from the load, (2) What's the standing wave ratio S? (3) how long the transmission line will make it equivalent to an open circuit?

Solution:

(1)
$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{-j75 - 50}{-j75 + 50} = 1 \angle -0.37\pi$$
.

(2) |V|min happens at: $2\beta z + \theta_r = (2n+1)\pi$, i.e. $2\beta z - 0.37\pi = (2n+1)\pi$ To make the z negative, n = -1.

$$2\beta z = -\pi + 0.37\pi$$
$$z = \frac{\lambda}{4\pi}(-0.63\pi) = -0.15\lambda$$

(3) $S = \infty$

(4)
$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l}$$

Open circuit means $Zin = \infty$, i.e. $Z_0 + jZ_L \tan \beta l = 0$.
 $50 + 75 \tan \beta l = 0$,
 $\tan \beta l = -\frac{2}{3}$

 $l = 0.4\lambda$

Voltage maximum	$ \widetilde{V} _{\max} = V_0^+ [1+ \Gamma] \qquad = \frac{Z_L \cdot Z_{\bullet}}{2}$	C-11+1
Voltage minimum	$ \tilde{V} _{\min} = V_0^+ [1 - \Gamma]$ 2.180	5-1-1510
Positions of voltage maxima (also positions of current minima)	$l_{\max} = \frac{\theta_{\rm r}\lambda}{4\pi} + \frac{n\lambda}{2}, n = 0, 1, 2, \dots$	
Position of first maximum (also position of first current minimum)	$l_{\max} = \begin{cases} \frac{\theta_{\rm r}\lambda}{4\pi}, & \text{if } 0 \le \theta_{\rm r} \le \pi\\ \frac{\theta_{\rm r}\lambda}{4\pi} + \frac{\lambda}{2}, & \text{if } -\pi \le \theta_{\rm r} \le 0 \end{cases}$	
Positions of voltage minima (also positions of first current maxima)	$l_{\min} = \frac{\theta_{\rm r}\lambda}{4\pi} + \frac{(2n+1)\lambda}{4}, n = 0, 1, 2, \dots$	
Position of first minimum (also position of first current maximum)	$l_{\min} = \frac{\lambda}{4} \left(1 + \frac{\theta_{\rm r}}{\pi} \right)$	
Input impedance	$Z_{\rm in} = Z_0 \left(\frac{Z_{\rm L} + j Z_0 \tan \beta l}{Z_0 + j Z_{\rm L} \tan \beta l} \right)$	
Positions at which Z_{in} is real	at voltage maxima and minima	
Z_{in} at voltage maxima	$Z_{\rm in} = Z_0 \left(\frac{1 + \Gamma }{1 - \Gamma } \right)$	
Z_{in} at voltage minima	$Z_{\rm in} = Z_0 \left(\frac{1 - \Gamma }{1 + \Gamma } \right)$	
$Z_{\rm in}$ of short-circuited line	$Z_{\rm in}^{\rm sc} = j Z_0 \tan \beta l$	
Z _{in} of open-circuited line	$Z_{\rm in}^{\rm oc} = -jZ_0 \cot\beta l$	
$Z_{\rm in}$ of line of length $l = n\lambda/2$	$Z_{\rm in} = Z_{\rm L}, \qquad n = 0, 1, 2, \dots$	
$Z_{\rm in}$ of line of length $l = \lambda/4 + n\lambda/2$	$Z_{\rm in} = Z_0^2 / Z_{\rm L}, \qquad n = 0, 1, 2, \dots$	
$Z_{\rm in}$ of matched line	$Z_{\rm in} = Z_0$	
$ V_0^+ =$ amplitude of incident wave, $\Gamma = \Gamma e^{j\theta_{\rm r}}$ with $-\pi < \theta_{\rm r} < \pi$; $\theta_{\rm r}$ in radians.		

 Table 2-3: Properties of standing waves on a lossless transmission line.

EE 16.360 Exam I 02/17/2016

Name:

Signature: _____