1. (35\%) A wave with the frequency of 1-MHz travels in the -z direction in air. Assume the wave travels at the speed of light ($c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in air). If the wave reaches a peak value of 1.2π at $\mathrm{z}=50 \mathrm{~m}$ when $\mathrm{t}=0$. Find:
1) Wavelength in air
2) Expression for the instantenous of the wave (time domain)
3) Expression for the wave in the phasor domain

Solution:

1) $\lambda f=c$

$$
\lambda=\frac{c}{f}=300(\mathrm{~m}) .
$$

2) $y(z, t)=1.2 \pi \cos \left(\omega t+\frac{2 \pi}{\lambda} z+\phi_{0}\right)$
$y(z=50, t=0)=1.2 \pi$
$\phi_{0}=-\frac{2 \pi}{\lambda} 50=-\frac{\pi}{3}$.
$y(z, t)=1.2 \pi \cos \left(\omega t+\frac{2 \pi}{\lambda} z-\frac{\pi}{3}\right)$
3) $\tilde{y}(z)=1.2 \pi e^{j\left(\frac{2 \pi}{\lambda} z-\frac{\pi}{3}\right)}$
2. (30\%) For a lossless transmission line, the characteristic impedance $Z_{0}=50 \Omega$. If the load is $\mathrm{Z}_{\mathrm{L}}=25+\mathrm{j} 25 \Omega$, (1) find out the reflection coefficient; (2) the VSWR?

Solution:
$\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{25+j 25-50}{25+j 25+50}=0.45 \angle 0.65 \pi$
$S=\frac{1+|\Gamma|}{1-|\Gamma|}=2.6$
3. (35\%) A 10 GHz voltage source is connected to a lossless transmission line is terminated with $\mathrm{Z}_{\mathrm{L}}=-\mathrm{j} 75-\Omega$. The characteristic impedance of the transmission line is $50-\Omega$. Assuming the phase velocity of the transmission line is $0.8 c$, where c is the speed of light. (1) What’s the voltage reflection coefficient? (2) Find out the location of the first $|\mathrm{V}|_{\text {min }}$ from the load, (2) What's the standing wave ratio S ? (3) how long the transmission line will make it equivalent to an open circuit?

Solution:
(1) $\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{-j 75-50}{-j 75+50}=1 \angle-0.37 \pi$.
(2) $|\mathrm{V}|$ min happens at: $2 \beta \mathrm{z}+\theta_{r}=(2 n+1) \pi$, i.e. $2 \beta z-0.37 \pi=(2 n+1) \pi$

To make the z negative, $\mathrm{n}=-1$.

$$
\begin{aligned}
& 2 \beta z=-\pi+0.37 \pi \\
& z=\frac{\lambda}{4 \pi}(-0.63 \pi)=-0.15 \lambda
\end{aligned}
$$

(3) $S=\infty$
(4) $Z_{\text {in }}=Z_{0} \frac{Z_{L}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{L} \tan \beta l}$

Open circuit means Z in $=\infty$, i.e. $Z_{0}+j Z_{L} \tan \beta l=0$.
$50+75 \tan \beta l=0$,
$\tan \beta l=-\frac{2}{3}$
$l=0.4 \lambda$

Table 2-3: Properties of standing waves on a lossless transmission line.

Voltage maximum Voltage minimum	$\begin{aligned} & \|\widetilde{V}\|_{\max }=\left\|V_{0}^{+}\right\|[1+\|\Gamma\|] \\ & \|\widetilde{V}\|_{\min }=\left\|V_{0}^{+}\right\|[1-\|\Gamma\|] \end{aligned} \quad \Gamma=\frac{Z_{L} \cdot Z_{0}}{Z_{L}+Z_{0}}$
Positions of voltage maxima (also positions of current minima) Position of first maximum (also position of first current minimum)	$\begin{aligned} & l_{\max }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{n \lambda}{2}, \quad n=0,1,2, \ldots \\ & l_{\max }= \begin{cases}\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}, & \text { if } 0 \leq \theta_{\mathrm{r}} \leq \pi \\ \frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{\lambda}{2}, & \text { if }-\pi \leq \theta_{\mathrm{r}} \leq 0\end{cases} \end{aligned}$
Positions of voltage minima (also positions of first current maxima) Position of first minimum (also position of first current maximum)	$\begin{aligned} & l_{\min }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{(2 n+1) \lambda}{4}, \quad n=0,1,2, \ldots \\ & l_{\min }=\frac{\lambda}{4}\left(1+\frac{\theta_{\mathrm{r}}}{\pi}\right) \end{aligned}$
Input impedance	$Z_{\text {in }}=Z_{0}\left(\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right)$
Positions at which $Z_{\text {in }}$ is real	at voltage maxima and minima
$Z_{\text {in }}$ at voltage maxima	$Z_{\text {in }}=Z_{0}\left(\frac{1+\|\Gamma\|}{1-\|\Gamma\|}\right)$
$Z_{\text {in }}$ at voltage minima	$Z_{\text {in }}=Z_{0}\left(\frac{1-\|\Gamma\|}{1+\|\Gamma\|}\right)$
$Z_{\text {in }}$ of short-circuited line	$Z_{\text {in }}^{\text {sc }}=j Z_{0} \tan \beta l$
$Z_{\text {in }}$ of open-circuited line	$Z_{\text {in }}^{\text {oc }}=-j Z_{0} \cot \beta l$
$Z_{\text {in }}$ of line of length $l=n \lambda / 2$	$Z_{\text {in }}=Z_{\mathrm{L}}, \quad n=0,1,2, \ldots$
$Z_{\text {in }}$ of line of length $l=\lambda / 4+n \lambda / 2$ $Z_{\text {in }}$ of matched line	$\begin{aligned} & Z_{\text {in }}=Z_{0}^{2} / Z_{\mathrm{L}}, \quad n=0,1,2, \ldots \\ & Z_{\text {in }}=Z_{0} \end{aligned}$
$\left\|V_{0}^{+}\right\|=$amplitude of incident wave, $\Gamma=\|\Gamma\| e^{j \theta_{\mathrm{r}}}$ with $-\pi<\theta_{\mathrm{r}}<\pi ; \theta_{\mathrm{r}}$ in radians.	

EE 16.360 Exam I 02/17/2016

Name:

Signature:

