1. (10 points) On a lossless $50-\Omega$ transmission line terminated with a $\mathrm{Z}_{\mathrm{L}}=100+\mathrm{j} 40 \Omega$. If this transmission line is to be matched to the load using a shorted load stub. Determine the stub length and distance between the load and stub. Two possible answers. You only need to show one of them.
2. (10 points) A 50 cm long air spaced lossless $50-\Omega$ line $\left(\varepsilon_{\mathrm{r}}=1\right)$ is terminated in an unknown impedance. If the input impedance is $\mathrm{Zin}=40+\mathrm{j} 30-\Omega$ at frequency 5 GHz , Find (1) the reflection coefficient; (2) the standing wave ratio (S) and (3) the location of the first voltage maximum from the load.
(1) $\Gamma=0.25 \angle-35^{0}$
(2) $S=2.0$
(3) 0.455λ
(1) The wavelength is $\lambda=\frac{c}{f}=6 \mathrm{~cm}$. The length of the transmission line is 8.33λ, which is equivalent to 0.33λ.
$z_{i n}=\frac{Z_{\text {in }}}{Z_{0}}=0.8+j 0.6$, which is point A on Smith chart.
Z_{L} is point B on Smith chart. $\angle-35^{0}$
$|\Gamma|=\frac{|O C|}{|O D|}=0.25$
(2) $\mathrm{S}=2.0$
(3) 0.455λ

3. (10 points) For a vector filed $\vec{A}=3 r^{2} \hat{r}+3 r \phi \hat{\phi}-2 \hat{z}$, verify the divergence theorem $\oiint \int_{s} \vec{A} \cdot d \vec{s}=\iiint_{v}(\nabla \cdot \vec{A}) d v$, on a section of a cylinder bounded by

$$
r=1,-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}, \quad 1 \leq z \leq 3
$$

Solution:
(1) $\oiint \oiint_{s} \vec{A} \cdot d \vec{s}=\iint_{\text {top }} \vec{A} \cdot d \vec{s}+\iint_{\text {bottom }} \vec{A} \cdot d \vec{s}+\iint_{\text {outter }} \vec{A} \cdot d \vec{s}+\iint_{\text {left }} \vec{A} \cdot d \vec{s} \iint_{r i g h t} \vec{A} \cdot d \vec{s}$

$$
\begin{aligned}
& \iint_{\text {top }} \vec{A} \cdot d \vec{s}=\iint_{\text {top }}-\left.2 r d r d \phi\right|_{z=3}=-\iint_{\text {bottom }} \vec{A} \cdot d \vec{s} \\
& \iint_{\text {outter }} \vec{A} \cdot d \vec{s}=\left.\iint_{\text {outter }} 3 r^{2} r d \phi d z\right|_{r=1}=\int_{1}^{3} d z \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 3 d \phi=6 \pi
\end{aligned}
$$

$$
\iint_{\text {left }} \vec{A} \cdot d \vec{s}=-\left.\iint_{\text {left }} 3 r \phi d r d z\right|_{\phi=-\frac{\pi}{2}}=\frac{3 \pi}{2} \int_{1}^{3} d z \int_{0}^{1} r d r=\frac{3 \pi}{2}
$$

$$
\iint_{r i g h t} \vec{A} \cdot d \vec{s}=\left.\iint_{r i g h t} 3 r \phi d r d z\right|_{\phi=\frac{\pi}{2}}=\frac{3 \pi}{2} \int_{1}^{3} d z \int_{0}^{1} r d r=\frac{3 \pi}{2}
$$

$$
\oiint_{s} \vec{A} \cdot d \vec{s}=9 \pi
$$

(2) $\nabla \cdot \vec{A}=\frac{1}{r} \frac{\partial}{\partial r}\left(r 3 r^{2}\right)+\frac{1}{r} \frac{\partial}{\partial \phi}(3 r \phi)+\frac{\partial}{\partial z}(-2)=9 r+3$

$$
\begin{aligned}
& \iiint_{v}(\nabla \cdot \vec{A}) d v=\int_{1}^{3} d z \int_{0}^{1} d r \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r(9 r+3) d \phi \\
& =2 \pi \int_{0}^{1} r(9 r+3) d r=9 \pi
\end{aligned}
$$

4. (10 points) Verify Stokes's theorem for the vector field $\vec{A}=\hat{x} 2 x y+\hat{y} y x$ along the path shown below:

See Hw solution
5. (10 points) If an electric field is given $\vec{E}=6 r \hat{r}+9 r \phi \hat{\phi}-2 r \hat{z}$ in the region $0 \leq r \leq 2,-\pi \leq \phi \leq \pi, \quad 0 \leq z \leq 4$, determine:
(1) The volume charge density in this region
(2) Total charge in the volume $0 \leq r \leq 2,-\pi \leq \phi \leq \pi, \quad 0 \leq z \leq 4$.
(1) $\rho=\nabla \cdot \vec{D}=\varepsilon \nabla \cdot \vec{E}=21 \varepsilon$
(2) $Q=\rho V=21 \varepsilon \pi 16$
6. (10 points) A coaxial capacitor with inner connector radius $\mathrm{r}_{1}=2 \mathrm{~mm}$, and outer connector radius $r_{3}=8 \mathrm{~mm}$, is filled with two different materials as shown in the following figure. The length of the capacitor is 2 cm . Calculate the capacitance of the capacitor.

Solution:
(1) Assuming surface charge density in the inner conductor is $\sigma 1$, then
$\vec{D}=\hat{r} \frac{\sigma_{1} r_{1}}{r},(\mathrm{r} 1<\mathrm{r}<\mathrm{r} 3)$,
(2) $\vec{E}_{1}=\hat{r} \frac{\sigma_{1} r_{1}}{\varepsilon_{1} r}(\mathrm{r} 1<\mathrm{r}<\mathrm{r} 2), \vec{E}_{2}=\hat{r} \frac{\sigma_{1} r_{1}}{\varepsilon_{2} r}(\mathrm{r} 2<\mathrm{r}<\mathrm{r} 3)$,
(3) $V=\frac{\sigma_{1} r_{1}}{\varepsilon_{1}} \ln \frac{r_{2}}{r_{1}}+\frac{\sigma_{1} r_{1}}{\varepsilon_{2}} \ln \frac{r_{3}}{r_{2}}$
(4) $C=\frac{L}{2 \pi}\left(\frac{1}{\varepsilon_{1}} \ln \frac{r_{2}}{r_{1}}+\frac{1}{\varepsilon_{2}} \ln \frac{r_{3}}{r_{2}}\right)$
7. (10 points) Determine the electric field intensity vectors in each layer.

Solutions:
Layer ε_{1} :

$$
E_{1 t}=E_{0 t}=\frac{\sqrt{2}}{2} E_{0}, \varepsilon_{1} E_{1 z}=\varepsilon_{0} E_{0 z}, E_{1 z}=\frac{\varepsilon_{0}}{\varepsilon_{1}} E_{0 z}=\frac{\sqrt{2}}{6} E_{0},
$$

Layer ε_{2} :
$E_{2 t}=E_{1 t}=\frac{\sqrt{2}}{2} E_{0}, \varepsilon_{2} E_{2 z}=\varepsilon_{1} E_{1 z}=\varepsilon_{0} E_{0 z}, E_{2 z}=\frac{\varepsilon_{0}}{\varepsilon_{2}} E_{0 z}=\frac{\sqrt{2}}{10} E_{0}$,
Layer ε_{3} :
$E_{3 t}=E_{2 t}=\frac{\sqrt{2}}{2} E_{0}, \varepsilon_{3} E_{3 z}=\varepsilon_{2} E_{2 z}=\varepsilon_{0} E_{0 z}, E_{3 z}=\frac{\varepsilon_{0}}{\varepsilon_{3}} E_{0 z}=\frac{\sqrt{2}}{14} E_{0}$,
Layer ε_{0} :
$E_{4 t}=E_{3 t}=\frac{\sqrt{2}}{2} E_{0}, \varepsilon_{0} E_{4 z}=\varepsilon_{3} E_{3 z}=\varepsilon_{0} E_{0 z}, E_{4 z}=\frac{\varepsilon_{0}}{\varepsilon_{0}} E_{0 z}=\frac{\sqrt{2}}{2} E_{0}$.
8. (10 points) In a certain conducting region, the magnetic field is given in cylindrical coordinates by $\vec{H}=\hat{\phi} \frac{4}{r}\left[1-(1+2 r) e^{-2 r}\right]$. Find out the current density \vec{J}.

$$
\begin{aligned}
& J=\nabla \times \vec{H}=\hat{z} \frac{1}{r} \frac{\partial}{\partial r}\left\{r \frac{4}{r}\left[1-(1+2 r) e^{-2 r}\right]\right\}=\hat{z} \frac{1}{r} \frac{\partial}{\partial r}\left\{4\left[1-(1+2 r) e^{-2 r}\right]\right\}=4 \frac{1}{r} \hat{z}\left\{2(1+2 r) e^{-2 r}-2 e^{-2 r}\right\} \\
& =\hat{z} 16 e^{-2 r}
\end{aligned}
$$

9. (10 points) Write down the Maxwell equations and their integral forms.

See class notes
10. (10 points) A conducting bar is put in a constant magnetic field $\mathrm{B}=0.1 \mathrm{~T}$. The circuit resistance is $\mathrm{R}=20 \Omega$. The bar width is 20 cm . The mass of the bar is $\mathrm{m}=1 \mathrm{~kg}$. If the bar has an initial speed $(t=0)$ of $V=4 \mathrm{~m} / \mathrm{s}$, determine
(1) the current generated in the bar at $t=0$;
(2) the force experienced by the conducting bar at $\mathrm{t}=0$;
(3) (extra 5 points) the speed of the bar at time $t=10 \mathrm{~s}$;
(4) (extra 5 points) the current generated at $t=10$ s?

	R			M			
X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X
X	X	X	X	X	X	X	X

(1) $I=4(\mathrm{~mA})$, counter clockwise
(2) $\mathrm{F}=8 \times 10^{-5}(\mathrm{~N})$, pointing to the left
(3) $F=-m \frac{d}{d t} v=\frac{B^{2} W^{2}}{R} v$,
$v=v_{0} e^{-\frac{W^{2} B^{2}}{m R} t}$
(4) $I=\frac{W B v_{0}}{R} e^{-\frac{W^{2} B^{2}}{m R} t}$

GRADIENT, DIVERGENCE, CURL, \& LAPLACIAN OPERATORS

CARTESIAN (RECTANGULAR) COORDINATES (x, y, z)
$\nabla V=\mathbf{x} \frac{\partial V}{\partial x}+\mathbf{y} \frac{\partial V}{\partial y}+\mathbf{z} \frac{\partial V}{\partial z}$
$\nabla \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}=\left|\begin{array}{ccc}\mathbf{x} & \mathbf{y} & \mathbf{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z}\end{array}\right|=\mathbf{x}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathbf{y}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{z}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)$
$\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$

CYLINDRICAL COORDINATES (r, ϕ, z)

$\nabla V=\mathbf{r} \frac{\partial V}{\partial r}+\phi \frac{1}{r} \frac{\partial V}{\partial \phi}+\mathbf{z} \frac{\partial V}{\partial z}$
$\nabla \cdot \mathbf{A}=\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}=\frac{1}{r}\left|\begin{array}{ccc}\mathbf{r} & \phi r & \mathbf{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{r} & r A_{\phi} & A_{z}\end{array}\right|=\mathbf{r}\left(\frac{1}{r} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right)+\phi\left(\frac{\partial A_{r}}{\partial z}-\frac{\partial A_{z}}{\partial r}\right)+\mathbf{z} \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{\phi}\right)-\frac{\partial A_{r}}{\partial \phi}\right]$
$\nabla^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$

SPHERICAL COORDINATES (R, θ, ϕ)

$$
\begin{aligned}
\nabla V & =\mathbf{R} \frac{\partial V}{\partial R}+\theta \frac{1}{R} \frac{\partial V}{\partial \theta}+\phi \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi} \\
\nabla \cdot \mathbf{A} & =\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} A_{R}\right)+\frac{1}{R \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{R \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \\
\nabla \times \mathbf{A} & =\frac{1}{R^{2} \sin \theta}\left|\begin{array}{ccc}
\mathbf{R} & \theta R & \phi R \sin \theta \\
\frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
A_{R} & R A_{\theta} & (R \sin \theta) A_{\phi}
\end{array}\right| \\
& =\mathbf{R} \frac{1}{R \sin \theta}\left[\frac{\partial}{\partial \theta}\left(A_{\phi} \sin \theta\right)-\frac{\partial A_{\theta}}{\partial \phi}\right]+\theta \frac{1}{R}\left[\frac{1}{\sin \theta} \frac{\partial A_{R}}{\partial \phi}-\frac{\partial}{\partial R}\left(R A_{\phi}\right)\right]+\phi \frac{1}{R}\left[\frac{\partial}{\partial R}\left(R A_{\theta}\right)-\frac{\partial A_{R}}{\partial \theta}\right] \\
\nabla^{2} V & =\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}
\end{aligned}
$$

Table 2-3: Properties of standing waves on a lossless transmission line.

Voltage maximum Voltage minimum	$\begin{aligned} & \|\widetilde{V}\|_{\max }=\left\|V_{0}^{+}\right\|[1+\|\Gamma\|] \\ & \|\widetilde{V}\|_{\min }=\left\|V_{0}^{+}\right\|[1-\|\Gamma\|] \end{aligned} \quad \Gamma=\frac{Z_{L} \cdot Z_{0}}{Z_{L}+Z_{0}}$
Positions of voltage maxima (also positions of current minima) Position of first maximum (also position of first current minimum)	$\begin{aligned} & l_{\max }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{n \lambda}{2}, \quad n=0,1,2, \ldots \\ & l_{\max }= \begin{cases}\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}, & \text { if } 0 \leq \theta_{\mathrm{r}} \leq \pi \\ \frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{\lambda}{2}, & \text { if }-\pi \leq \theta_{\mathrm{r}} \leq 0\end{cases} \end{aligned}$
Positions of voltage minima (also positions of first current maxima) Position of first minimum (also position of first current maximum)	$\begin{aligned} & l_{\min }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{(2 n+1) \lambda}{4}, \quad n=0,1,2, \ldots \\ & l_{\min }=\frac{\lambda}{4}\left(1+\frac{\theta_{\mathrm{r}}}{\pi}\right) \end{aligned}$
Input impedance	$Z_{\text {in }}=Z_{0}\left(\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right)$
Positions at which $Z_{\text {in }}$ is real	at voltage maxima and minima
$Z_{\text {in }}$ at voltage maxima	$Z_{\text {in }}=Z_{0}\left(\frac{1+\|\Gamma\|}{1-\|\Gamma\|}\right)$
$Z_{\text {in }}$ at voltage minima	$Z_{\text {in }}=Z_{0}\left(\frac{1-\|\Gamma\|}{1+\|\Gamma\|}\right)$
$Z_{\text {in }}$ of short-circuited line	$Z_{\text {in }}^{\text {sc }}=j Z_{0} \tan \beta l$
$Z_{\text {in }}$ of open-circuited line	$Z_{\mathrm{in}}^{\mathrm{oc}}=-j Z_{0} \cot \beta l$
$Z_{\text {in }}$ of line of length $l=n \lambda / 2$	$Z_{\text {in }}=Z_{\mathrm{L}}, \quad n=0,1,2, \ldots$
$Z_{\text {in }}$ of line of length $l=\lambda / 4+n \lambda / 2$ $Z_{\text {in }}$ of matched line	$\begin{aligned} & Z_{\text {in }}=Z_{0}^{2} / Z_{\mathrm{L}}, \quad n=0,1,2, \ldots \\ & Z_{\text {in }}=Z_{0} \end{aligned}$
$\left\|V_{0}^{+}\right\|=$amplitude of incident wave, $\Gamma=\|\Gamma\| e^{j \theta_{\mathrm{r}}}$ with $-\pi<\theta_{\mathrm{r}}<\pi ; \theta_{\mathrm{r}}$ in radians.	

Table 3-1: Summary of vector relations.

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Coordinate variables	x, y, z	r, ϕ, z	R, θ, ϕ
Vector representation, $\mathrm{A}=$	$\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{r}} A_{r}+\hat{\phi} A_{\phi}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{R}} A_{R}+\hat{\theta} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}$
Magnitude of $\mathbf{A},\|A\|=$	$\sqrt[+]{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{r}^{2}+A_{\phi}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{R}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}$
Position vector $\overrightarrow{O P_{1}}=$	$\begin{aligned} & \hat{\mathbf{x}} x_{1}+\hat{\mathbf{y}} y_{1}+\hat{\mathbf{z}} z_{1}, \\ & \text { for } P\left(x_{1}, y_{1}, z_{1}\right) \end{aligned}$	$\begin{gathered} \hat{\mathbf{r}} r_{1}+\hat{\mathbf{z}} z_{1}, \\ \text { for } P\left(r_{1}, \phi_{1}, z_{1}\right) \end{gathered}$	$\begin{gathered} \hat{\mathbf{R}} R_{1}, \\ \text { for } P\left(R_{1}, \theta_{1}, \phi_{1}\right) \end{gathered}$
Base vectors properties	$\begin{gathered} \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}=0 \\ \hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}} \\ \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \end{gathered}$	$\begin{aligned} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\hat{\boldsymbol{\phi}} \cdot \hat{\phi}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{r}} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=0 \\ \hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{z}} \\ \hat{\phi} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}}=\hat{\phi} \end{aligned}$	$\begin{gathered} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}}=\hat{\theta} \cdot \hat{\theta}=\hat{\phi} \cdot \hat{\phi}=1 \\ \hat{\mathbf{R}} \cdot \hat{\theta}=\hat{\theta} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{R}}=0 \\ \hat{\mathbf{R}} \times \hat{\theta}=\hat{\phi} \\ \hat{\theta} \times \hat{\phi}=\hat{\mathbf{R}} \\ \hat{\phi} \times \hat{\mathbf{R}}=\hat{\theta} \end{gathered}$
Dot product, $\mathbf{A} \cdot \mathrm{B}=$	$A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$	$A_{r} B_{r}+A_{\phi} B_{\phi}+A_{z} B_{z}$	$A_{R} B_{R}+A_{\theta} B_{\theta}+A_{\phi} B_{\phi}$
Cross product, $\mathrm{A} \times \mathrm{B}=$	$\left\|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{z} \\ B_{r} & B_{\phi} & B_{z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{R}} & \hat{\theta} & \hat{\phi} \\ A_{R} & A_{\theta} & A_{\phi} \\ B_{R} & B_{\theta} & B_{\phi}\end{array}\right\|$
Differential length, $d \mathbf{l}=$	$\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z$	$\hat{\mathbf{r}} d r+\hat{\boldsymbol{\phi}} r d \phi+\hat{\mathbf{z}} d z$	$\hat{\mathbf{R}} d R+\hat{\theta} R d \theta+\hat{\boldsymbol{\phi}} R \sin \theta d \phi$
Differential surface areas	$\begin{aligned} & d \mathbf{s}_{x}=\hat{\mathbf{x}} d y d z \\ & d \mathbf{s}_{y}=\hat{\mathbf{y}} d x d z \\ & d \mathbf{s}_{z}=\hat{\mathbf{z}} d x d y \end{aligned}$	$\begin{aligned} d \mathbf{s}_{r} & =\hat{\mathbf{r}} r d \phi d z \\ d \mathbf{s}_{\phi} & =\hat{\phi} d r d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} r d r d \phi \end{aligned}$	$\begin{aligned} d \mathbf{s}_{R} & =\hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi \\ d \mathbf{s}_{\theta} & =\hat{\theta} R \sin \theta d R d \phi \\ d \mathbf{s}_{\phi} & =\hat{\boldsymbol{\phi}} R d R d \theta \end{aligned}$
Differential volume, $d \nu=$	$d x d y d z$	$r d r d \phi d z$	$R^{2} \sin \theta d R d \theta d \phi$

Boundary conditions:

$$
\begin{aligned}
& D_{1 n}-D_{2 n}=\rho_{s} \\
& H_{1 x}-H_{2 x}=J_{y}
\end{aligned}
$$

$$
H_{1 y}-H_{2 y}=-J_{x}
$$

EE 16.360 Final Exam 12/17/2010

Name:

Signature:

