1. (10 points) On a lossless $50-\Omega$ transmission line terminated with a $\mathrm{Z}_{\mathrm{L}}=100+\mathrm{j} 50 \Omega$. If this transmission line is to be matched to the load using a shorted load stub. Determine the stub length and distance between the load and stub. Two possible answers. You only need to show one of them.
2. (10 points) A 50 cm long air spaced lossless $50-\Omega$ line ($\varepsilon_{\mathrm{r}}=1$) is terminated in an unknown impedance. If the input impedance is $\mathrm{Zin}=20+\mathrm{j} 30-\Omega$ at frequency 10 GHz , Find (1) the reflection coefficient; (2) the location of the first voltage maximum from the load.
3. (10 points) A section of a sphere is described by $1 \leq R \leq 2,0 \leq \theta \leq \frac{\pi}{2},-\pi<\phi \leq \pi$. A vector field $\vec{E}=\frac{1}{2 \pi R^{2}} \hat{R}$. Verify divergence theorem by calculating: $\oiint_{s} \vec{E} \cdot d \vec{s}=\iiint_{v}(\nabla \cdot \vec{E}) d v$.
4. (10 points) Determine the line integral of $\vec{F}=2 \hat{x}+z \hat{y}+y \hat{z}$ from P1(-1,3,-2) via $\mathrm{P} 2(2,4,1)$ to $\mathrm{P} 3(3,5,6)$, where points are specified in rectangular coordinate system.
5. (10 points) A parallel-plate capacitor has two dielectric filling regions between the plate, $\mathrm{A} 1=10 \mathrm{~mm}^{2}, \mathrm{~A} 2=20 \mathrm{~mm}^{2}, \mathrm{~d}=10 \mathrm{~mm}, \mathrm{~V}=10 \mathrm{~V} \varepsilon_{r 1}=1.5, \varepsilon_{r 2}=3$, ignore fringing field effect. $\varepsilon_{0}=8.85 \times 10^{-10} \mathrm{~F} / \mathrm{m}$.

Determine:
(a) Electric field E_{1}, E_{2} of the two regions.
(b) The capacitance of the capacitor.
6. (10 points) In a certain conducting region, the magnetic field is given in cylindrical coordinates by $\vec{H}=\hat{\phi} \frac{4}{r}\left[1-(1+2 r) e^{-2 r}\right]$. Find out the current density \vec{J}.
7. (10 points) The $x-y$ plane separates two magnetic media with magnetic permeability: $\mu_{1}=\mu_{0}, \mu_{2}=2 \mu_{0}$, if we know $\vec{H}_{1}=3 \hat{x}+4 \hat{y}+5 \hat{z}(\mathrm{~A} / \mathrm{m}) . \mu_{0}=4 \pi \times 10^{-7}(\mathrm{H} / \mathrm{m})$.
(a) if no surface current, determine: \vec{H}_{2}
(b) if surface current $\vec{J}_{s}=1 \hat{x}+2 \hat{y}(\mathrm{~A} / \mathrm{m})$ determine \vec{H}_{2}.

μ_{2}
8. (10 points) Write down the Maxwell equations and their integral forms.
9. (10 points) A conducting bar is put in a constant magnetic field $\mathrm{B}=3 \mathrm{~T}$. The circuit resistance is $R=20 \Omega$. If the bar is moving at a speed of $V=10 \mathrm{~m} / \mathrm{s}$, determine (1) the current generated in the circuit; (2) the force experienced by the conducting bar.

	R			M			
x	X	X	x	X	X	x	X
x	x	x	x	x			x
X		X	X	X	x	x	X

10. (10 points) For an electromagnetic wave of a single frequency $\mathrm{f}=100 \mathrm{MHz}$, the magnetic filed is: $\vec{H}(t, z)=\hat{x} \cos (2 \pi f t-k z)$. If $\varepsilon=2 \varepsilon_{0}=1.8 \times 10^{-11} \mathrm{~F} / \mathrm{m}$ and $\mu=\mu_{0}=4 \pi \times 10^{-7}(\mathrm{H} / \mathrm{m})$.
Find out: (1) k; (2) electric field $\mathrm{E}(\mathrm{t})$;

GRADIENT, DIVERGENCE, CURL, \& LAPLACIAN OPERATORS

CARTESIAN (RECTANGULAR) COORDINATES (x, y, z)
$\nabla V=\mathbf{x} \frac{\partial V}{\partial x}+\mathbf{y} \frac{\partial V}{\partial y}+\mathbf{z} \frac{\partial V}{\partial z}$
$\nabla \cdot \mathbf{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}=\left|\begin{array}{ccc}\mathbf{x} & \mathbf{y} & \mathbf{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z}\end{array}\right|=\mathbf{x}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathbf{y}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{z}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)$
$\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$

CYLINDRICAL COORDINATES (r, ϕ, z)

$\nabla V=\mathbf{r} \frac{\partial V}{\partial r}+\phi \frac{1}{r} \frac{\partial V}{\partial \phi}+\mathbf{z} \frac{\partial V}{\partial z}$
$\nabla \cdot \mathbf{A}=\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z}$
$\nabla \times \mathbf{A}=\frac{1}{r}\left|\begin{array}{ccc}\mathbf{r} & \phi r & \mathbf{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{r} r & r A_{\phi} & A_{z}\end{array}\right|=\mathbf{r}\left(\frac{1}{r} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right)+\phi\left(\frac{\partial A_{r}}{\partial z}-\frac{\partial A_{z}}{\partial r}\right)+\mathbf{z} \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{\phi}\right)-\frac{\partial A_{r}}{\partial \phi}\right]$
$\nabla^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$

SPHERICAL COORDINATES (R, θ, ϕ)

$$
\begin{aligned}
\nabla V & =\mathbf{R} \frac{\partial V}{\partial R}+\theta \frac{1}{R} \frac{\partial V}{\partial \theta}+\phi \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi} \\
\nabla \cdot \mathbf{A} & =\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} A_{R}\right)+\frac{1}{R \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{R \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \\
\nabla \times \mathbf{A} & =\frac{1}{R^{2} \sin \theta}\left|\begin{array}{ccc}
\mathbf{R} & \theta R & \phi R \sin \theta \\
\frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
A_{R} & R A_{\theta} & (R \sin \theta) A_{\phi}
\end{array}\right| \\
& =\mathbf{R} \frac{1}{R \sin \theta}\left[\frac{\partial}{\partial \theta}\left(A_{\phi} \sin \theta\right)-\frac{\partial A_{\theta}}{\partial \phi}\right]+\theta \frac{1}{R}\left[\frac{1}{\sin \theta} \frac{\partial A_{R}}{\partial \phi}-\frac{\partial}{\partial R}\left(R A_{\phi}\right)\right]+\phi \frac{1}{R}\left[\frac{\partial}{\partial R}\left(R A_{\theta}\right)-\frac{\partial A_{R}}{\partial \theta}\right] \\
\nabla^{2} V & =\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \frac{\partial V}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}
\end{aligned}
$$

EE 16.360 Final Exam 05/15/2006

Name:

Signature:

