EECE. 3600 Final Exam 12/20/2017

Name:

Signature:

1. (10 points) On a lossless $50-\Omega$ transmission line terminated with a $\mathrm{Z}_{\mathrm{L}}=150+\mathrm{j} 100 \Omega$. If this transmission line is matched to the load using a shorted load stub. Determine the stub length and distance between the load and stub. Two possible answers. You only need to show one of them.

Solution:

See Smith Chart

2. (10 points) A $20-\mathrm{cm}$ long air spaced lossless $50-\Omega$ line $\left(\varepsilon_{r}=1\right)$ is terminated in an unknown impedance. If the input impedance is $Z_{\text {in }}=60+j 30-\Omega$ at frequency 5 GHz , Find (1) the reflection coefficient; (2) the standing wave ratio (S) and (3) the location of the first voltage maximum from the load.
$\lambda=\frac{c}{f}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{5 \times 10^{9} \mathrm{~Hz}}=6 \mathrm{~cm} . z_{\text {in }}=\frac{Z_{\text {in }}}{Z_{0}}=1.2+j 0.6$
$l=\frac{20 \mathrm{~cm}}{6 \mathrm{~cm}}=3.333 \lambda . S=1.7, \Gamma=0.3 \angle-68^{0}$. Location at 0.41λ from load.
3. (10 points) For a vector filed $\vec{A}=r^{2} \hat{r}+3 r \phi \hat{\phi}-2 \hat{z}$, verify the divergence theorem
$\oiint_{s} \vec{A} \cdot d \vec{s}=\iiint_{v}(\nabla \cdot \vec{A}) d v$, on a section of a cylinder bounded by $r=1,-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}, \quad 1 \leq z \leq 3$.

Solution:

$$
\begin{aligned}
& \oiint \oiint_{s} \vec{A} \cdot d \vec{s}=\iint_{\text {top }} \vec{A} \cdot d \vec{s}+\iint_{\text {botom }} \vec{A} \cdot d \vec{s}+\iint_{\text {side }} \vec{A} \cdot d \vec{s}+\iint_{\text {left }} \vec{A} \cdot d \vec{s}+\iint_{\text {right }} \vec{A} \cdot d \vec{s}, \\
& \iint_{\text {top }} \vec{A} \cdot d \vec{s}=\iint_{\text {top }}-2 \hat{z} \cdot \hat{z} r d r d \phi=-\pi, \iint_{\text {bottom }} \vec{A} \cdot d \vec{s}=\iint_{\text {botom }}-2 \hat{z} \cdot(-\hat{z}) r d r d \phi=\pi, \\
& \iint_{\text {side }} \vec{A} \cdot d \vec{s}=\left.\iint_{\text {side }} r^{2} \hat{r} \cdot \hat{r} r d \phi d z\right|_{r=1}=2 \pi, \\
& \iint_{\text {left }} \vec{A} \cdot d \vec{s}=\left.\iint_{l e f t} 3 r \phi \hat{\phi} \cdot \hat{\phi} d r d z\right|_{\phi=\pi / 2}=\frac{3 \pi}{2}, \\
& \iint_{\text {right }} \vec{A} \cdot d \vec{s}=\left.\iint_{\text {right }} 3 r \phi \hat{\phi} \cdot(-\hat{\phi}) d r d z\right|_{\phi=-\pi / 2}=\frac{3 \pi}{2}, \\
& \oiint_{s} \vec{A} \cdot d \vec{s}=\iint_{\text {top }} \vec{A} \cdot d \vec{s}+\iint_{\text {botom }} \vec{A} \cdot d \vec{s}+\iint_{\text {side }} \vec{A} \cdot d \vec{s}+\iint_{l e f t} \vec{A} \cdot d \vec{s}+\iint_{r i g h t} \vec{A} \cdot d \vec{s}=5 \pi
\end{aligned}
$$

$$
\nabla \cdot \vec{A}=\frac{1}{r} \frac{\partial}{\partial r}\left(r r^{2}\right)+\frac{1}{r} \frac{\partial}{\partial \phi}(3 r \phi)=3 r+3
$$

$$
\iiint_{v}(\nabla \cdot \vec{A}) d v=\int_{1}^{3} d z \int_{-\pi / 2}^{-\pi / 2} d \phi \int_{0}^{1}(3 r+3) r d r=\left.2 \pi\left(r^{3}+\frac{3}{2} r^{2}\right)\right|_{0} ^{1}=5 \pi
$$

$$
\oiint_{s} \vec{A} \cdot d \vec{s}=\iiint_{v}(\nabla \cdot \vec{A}) d v
$$

4. (10 points) Verify Stokes's theorem for the vector field $\vec{A}=\hat{x} y^{3}+\hat{y} x^{3}$ along the path shown below:

Solution:

$$
\begin{aligned}
& \oint \vec{A} \cdot d \vec{l}=\int_{L_{1}} \vec{A} \cdot d \vec{l}+\int_{L_{2}} \vec{A} \cdot d \vec{l}+\int_{L_{3}} \vec{A} \cdot d \vec{l} . \\
& \int_{L_{1}} \vec{A} \cdot d \vec{l}=\left.\int_{L_{1}}\left(\hat{x} y^{3}+\hat{y} x^{3}\right) \cdot \hat{x} d x\right|_{y=0}=\left.\int_{L_{1}} y^{3} d x\right|_{y=0}=0 . \\
& \int_{L_{2}} \vec{A} \cdot d \vec{l}=\left.\int_{2}^{1}\left(\hat{x} y^{3}+\hat{y} x^{3}\right) \cdot \hat{x} d x\right|_{y=2-x}+\left.\int_{0}^{1}\left(\hat{x} y^{3}+\hat{y} x^{3}\right) \cdot \hat{y} d y\right|_{x=2-y} \\
& =\int_{2}^{1}(2-x)^{3} d x+\int_{0}^{1}(2-y)^{3} d y \\
& =\int_{1}^{2}(2-x)^{3} d(2-x)-\int_{0}^{1}(2-y)^{3} d(2-y) \\
& =\left.\frac{1}{4}(2-x)^{4}\right|_{1} ^{2}-\left.\frac{1}{4}(2-y)^{4}\right|_{0} ^{1} \\
& =-\frac{1}{4}-\frac{1}{4}(1-16)=\frac{14}{4}
\end{aligned}
$$

$$
\int_{L_{3}} \vec{A} \cdot d \vec{l}=\left.\int_{1}^{0}\left(\hat{x} y^{3}+\hat{y} x^{3}\right) \cdot \hat{x} d x\right|_{y=x}+\left.\int_{1}^{0}\left(\hat{x} y^{3}+\hat{y} x^{3}\right) \cdot \hat{y} d y\right|_{x=y}
$$

$$
=\int_{1}^{0} x^{3} d x+\int_{1}^{0} y^{3} d y
$$

$$
=-\left.\frac{1}{4} x^{4}\right|_{0} ^{1}-\left.\frac{1}{4} y^{4}\right|_{0} ^{1}
$$

$$
=-\frac{2}{4}
$$

$$
\oint \vec{A} \cdot d \vec{l}=\int_{L_{1}} \vec{A} \cdot d \vec{l}+\int_{L_{2}} \vec{A} \cdot d \vec{l}+\int_{L_{3}} \vec{A} \cdot d \vec{l}=0+\frac{14}{4}-\frac{2}{4}=3 .
$$

$$
\begin{aligned}
& \nabla \times \vec{A}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{3} & x^{3} & 0
\end{array}\right|=\hat{x} 0+\hat{y} 0+\hat{z}\left(3 x^{2}-3 y^{2}\right) \\
& \iint_{s}(\nabla \times \vec{A}) \cdot d \vec{s}=\iint_{s} \hat{z}\left(3 x^{2}-3 y^{2}\right) \cdot \hat{z} d x d y \\
& =\int_{0}^{1} d x \int_{0}^{x}\left(3 x^{2}-3 y^{2}\right) d y+\int_{1}^{2} d x \int_{0}^{2-x}\left(3 x^{2}-3 y^{2}\right) d y \\
& =\int_{0}^{1} 2 x^{3} d x+\int_{1}^{2}\left[3 x^{2}(2-x)-(2-x)^{3}\right] d x \\
& =\frac{2}{4}+\int_{1}^{2} 3 x^{2}(2-x) d x-\int_{1}^{2}(2-x)^{3} d x \\
& =\frac{2}{4}+2 x^{3}\left|\begin{array}{l}
2 \\
1
\end{array}-\frac{3}{4} x^{4}\right| \begin{array}{l}
2 \\
1
\end{array}+\left.\frac{1}{4}(2-x)^{4}\right|_{1} ^{2} \\
& =\frac{2}{4}+14-\frac{3}{4} 15-\frac{1}{4} \\
& =3 \\
& \oint \vec{A} \cdot d \vec{l}=\int_{s}(\nabla \times \vec{A}) \cdot d \vec{s}
\end{aligned}
$$

5. (10 points) A coaxial capacitor with inner connector radius $r_{1}=2 \mathrm{~mm}$, and outer connector radius $r_{3}=8 \mathrm{~mm}$, is filled with two different materials as shown in the following figure. The length of the capacitor is 2 cm . Calculate (1) if the surface charge density $\sigma=1.0 \times 10^{-10} \mathrm{C}^{2} \mathrm{~cm}^{2}$, calculate the electric field inside the capacitor; (2) the capacitance of the capacitor. $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$.

Solution:
Using Guass's Law, the E fields are:

$$
\vec{E}= \begin{cases}\frac{\sigma r_{1}}{\varepsilon_{1} r}, & r_{1}<r<r_{2} \\ \frac{\sigma_{1}}{\varepsilon_{2} r}, & r_{2}<r<r_{3}\end{cases}
$$

The voltage is:

$$
\begin{aligned}
& V_{\text {drop }}=\oint \vec{E} \cdot \hat{r} d r=\frac{\sigma r_{1}}{\varepsilon_{1}} \ln \left(\frac{r_{2}}{r_{1}}\right)+\frac{\sigma r_{1}}{\varepsilon_{2}} \ln \left(\frac{r_{3}}{r_{2}}\right), \\
& Q=2 \pi r_{1} L \sigma, \\
& C=\frac{2 \pi r_{1} \sigma L}{\frac{\sigma r_{1}}{\varepsilon_{1}} \ln \left(\frac{r_{2}}{r_{1}}\right)+\frac{\sigma r_{1}}{\varepsilon_{2}} \ln \left(\frac{r_{3}}{r_{2}}\right)}=\frac{2 \pi L}{\frac{1}{\varepsilon_{1}} \ln \left(\frac{r_{2}}{r_{1}}\right)+\frac{1}{\varepsilon_{2}} \ln \left(\frac{r_{3}}{r_{2}}\right)}=\frac{2 \pi \varepsilon_{0} L}{\frac{1}{4} \ln \left(\frac{r_{2}}{r_{1}}\right)+\frac{1}{8} \ln \left(\frac{r_{3}}{r_{2}}\right)}=4.3 \mathrm{pF} .
\end{aligned}
$$

6. (10 points) A Capacitor shown in the following figure consists of two dielectric layers. $\mathrm{d} 1=\mathrm{d} 2=10 \mathrm{~cm}$, and $\mathrm{A}=200 \mathrm{~cm}^{\wedge} 2$. Determine the capacitance of the capacitor. $\varepsilon_{1}=4 \varepsilon_{0}=3.5 \times 10^{-11} \mathrm{~F} / \mathrm{m}, \varepsilon_{2}=2 \varepsilon_{0}=1.8 \times 10^{-11} \mathrm{~F} / \mathrm{m}$.

Solution:
Assuming the surface charge density of σ, the flux density D is:
$\vec{D}_{1}=\vec{D}_{2}=-\hat{z} \sigma$.
$\vec{E}_{1}=-\hat{z} \frac{\sigma}{\varepsilon_{1}}, \vec{E}_{2}=-\hat{z} \frac{\sigma}{\varepsilon_{2}} . V=\vec{E}_{1} d_{1}+\vec{E}_{2} d_{2}=\frac{\sigma d_{1}}{\varepsilon_{1}}+\frac{\sigma d_{2}}{\varepsilon_{2}}$
$C=\frac{Q}{V}=\frac{A \sigma}{\frac{\sigma d_{1}}{\varepsilon_{1}}+\frac{\sigma d_{2}}{\varepsilon_{2}}}=\frac{A}{\frac{d_{1}}{\varepsilon_{1}}+\frac{d_{2}}{\varepsilon_{2}}}$
$C=\frac{A}{\frac{d_{1}}{\varepsilon_{1}}+\frac{d_{2}}{\varepsilon_{2}}}=\frac{200 \times 10^{-4} \mathrm{~m}^{2}}{\frac{10 \times 10^{-2} \mathrm{~m}}{3.5 \times 10^{-11} \mathrm{~F} / \mathrm{m}}+\frac{10 \times 10^{-2} \mathrm{~m}}{1.8 \times 10^{-11} \mathrm{~F} / \mathrm{m}}}=\frac{2 \times 10^{-11} \mathrm{~F}}{\frac{10}{3.5}+\frac{10}{1.8}}=2.4 \mathrm{pF}$.
7. (10 points) Determine the electric field intensity vectors in each layer.

Solutions:
Layer ε_{1} :
$E_{1 t}=E_{0 t}=\frac{\sqrt{2}}{2} E_{0}, \varepsilon_{1} E_{1 z}=\varepsilon_{0} E_{0 z}, E_{1 z}=\frac{\varepsilon_{0}}{\varepsilon_{1}} E_{0 z}=\frac{\sqrt{2}}{6} E_{0}$,
Layer ε_{2} :
$E_{2 t}=E_{1 t}=\frac{\sqrt{2}}{2} E_{0}, \varepsilon_{2} E_{2 z}=\varepsilon_{1} E_{1 z}=\varepsilon_{0} E_{0 z}, E_{2 z}=\frac{\varepsilon_{0}}{\varepsilon_{2}} E_{0 z}=\frac{\sqrt{2}}{10} E_{0}$,
Layer ε_{3} :
$E_{3 t}=E_{2 t}=\frac{\sqrt{2}}{2} E_{0}, \varepsilon_{3} E_{3 z}=\varepsilon_{2} E_{2 z}=\varepsilon_{0} E_{0 z}, E_{3 z}=\frac{\varepsilon_{0}}{\varepsilon_{3}} E_{0 z}=\frac{\sqrt{2}}{14} E_{0}$,
Layer ε_{0} :
$E_{4 t}=E_{3 t}=\frac{\sqrt{2}}{2} E_{0}, \varepsilon_{0} E_{4 z}=\varepsilon_{3} E_{3 z}=\varepsilon_{0} E_{0 z}, E_{4 z}=\frac{\varepsilon_{0}}{\varepsilon_{0}} E_{0 z}=\frac{\sqrt{2}}{2} E_{0}$.
8. (10 points) If the inner conductor of a coaxial cable carries a current of I, calculate the magnetic field inside the coaxial cable. The inner radius of the coaxial cable is r_{1}, and the outer radius is r_{2}. Assuming the permeability of material inside the coaxial cable is μ_{0}.

Solution:

Applying Ampere's law:
$\oint \vec{H} \cdot d \vec{l}=I, H(r) 2 \pi r=I$,
$H(r)=\frac{I}{2 \pi r}, r_{1}<r<r_{2}$
$\vec{H}=\hat{\phi} \frac{I}{2 \pi r}, r_{1}<r<r_{2}$
$\vec{B}=\mu_{0} \vec{H}=\hat{\phi} \frac{I \mu_{0}}{2 \pi r}, r_{1}<r<r_{2}$
9. (10 points) Write down the Maxwell equations and their integral forms.
10. (10 points) A conducting bar is put in a constant magnetic field $\mathrm{B}=0.1 \mathrm{~T}$. The circuit resistance is $\mathrm{R}=20 \Omega$. The bar width is 20 cm . The mass of the bar is $\mathrm{m}=1 \mathrm{~kg}$. The circuit and the metal bar are on a flat horizontal surface. If the bar has an initial speed $(t=0)$ of $\mathrm{V} 0=4 \mathrm{~m} / \mathrm{s}$, determine:
(1) the current generated in the bar at $t=0$;
(2) the force experienced by the conducting bar at $\mathrm{t}=0$;
(3) (extra 5 points) the speed of the bar at time $t=20 \mathrm{~s}$;
(4) (extra 5 points) the current generated at $t=20 \mathrm{~s}$?
(5) (extra 5 points) prove that the kinetic energy loss of the metal bar is converted to the resistor heating power with a 100% energy conversion efficiency.

(1) $V=-\frac{\partial}{\partial t}(B \cdot W \cdot L(t))=B W v_{0}$

$$
I=\frac{V}{R}=\frac{B W v_{0}}{R}=4(m A), \text { counter clockwise }
$$

(2) $F=B W I=8 \times 10^{-5}(\mathrm{~N})$, pointing to the left.
(3) $F=-m \frac{d}{d t} v=\frac{B^{2} W^{2}}{R} v$,
$v=v_{0} e^{-\frac{W^{2} B^{2}}{m R} t}$
(4) $I=\frac{W B v_{0}}{R} e^{-\frac{W^{2} B^{2}}{m R} t}$

Voltage maximum Voltage minimum	$\begin{aligned} & \|\widetilde{V}\|_{\max }=\left\|V_{0}^{+}\right\|[1+\|\Gamma\|] \\ & \|\widetilde{V}\|_{\min }=\left\|V_{0}^{+}\right\|[1-\|\Gamma\|] \end{aligned}$
Positions of voltage maxima (also positions of current minima) Position of first maximum (also position of first current minimum)	$\begin{aligned} & l_{\max }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{n \lambda}{2}, \quad n=0,1,2, \ldots \\ & l_{\max }= \begin{cases}\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}, & \text { if } 0 \leq \theta_{\mathrm{r}} \leq \pi \\ \frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{\lambda}{2}, & \text { if }-\pi \leq \theta_{\mathrm{r}} \leq 0\end{cases} \end{aligned}$
Positions of voltage minima (also positions of first current maxima) Position of first minimum (also position of first current maximum)	$\begin{aligned} & l_{\min }=\frac{\theta_{\mathrm{r}} \lambda}{4 \pi}+\frac{(2 n+1) \lambda}{4}, \quad n=0,1,2, \ldots \\ & l_{\min }=\frac{\lambda}{4}\left(1+\frac{\theta_{\mathrm{r}}}{\pi}\right) \end{aligned}$
Input impedance	$Z_{\text {in }}=Z_{0}\left(\frac{Z_{\mathrm{L}}+j Z_{0} \tan \beta l}{Z_{0}+j Z_{\mathrm{L}} \tan \beta l}\right)$
Positions at which $Z_{\text {in }}$ is real	at voltage maxima and minima
$Z_{\text {in }}$ at voltage maxima	$Z_{\text {in }}=Z_{0}\left(\frac{1+\|\Gamma\|}{1-\|\Gamma\|}\right)$
$Z_{\text {in }}$ at voltage minima	$Z_{\text {in }}=Z_{0}\left(\frac{1-\|\Gamma\|}{1+\|\Gamma\|}\right)$
$Z_{\text {in }}$ of short-circuited line	$Z_{\text {in }}^{\text {sc }}=j Z_{0} \tan \beta l$
$Z_{\text {in }}$ of open-circuited line	$Z_{\mathrm{in}}^{\text {oc }}=-j Z_{0} \cot \beta l$
$Z_{\text {in }}$ of line of length $l=n \lambda / 2$	$Z_{\text {in }}=Z_{\mathrm{L}}, \quad n=0,1,2, \ldots$
$Z_{\text {in }}$ of line of length $l=\lambda / 4+n \lambda / 2$ $Z_{\text {in }}$ of matched line	$\begin{aligned} & Z_{\text {in }}=Z_{0}^{2} / Z_{\mathrm{L}}, \quad n=0,1,2, \ldots \\ & Z_{\text {in }}=Z_{0} \end{aligned}$
$\left\|V_{0}^{+}\right\|=$amplitude of incident wave, $\Gamma=\|\Gamma\| e^{j \theta_{\mathrm{r}}}$ with $-\pi<\theta_{\mathrm{r}}<\pi ; \theta_{\mathrm{r}}$ in radians.	

$$
\begin{gathered}
\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}} \\
S=\frac{1+|\Gamma|}{1-|\Gamma|}
\end{gathered}
$$

GRADIENT, DIVERGENCE, CURL, \& LAPLACIAN OPERATORS

CARTESIAN (RECTANGULAR) COORDINATES (x, y, z)

$$
\begin{aligned}
\nabla V & =\mathbf{x} \frac{\partial V}{\partial x}+\mathbf{y} \frac{\partial V}{\partial y}+\mathbf{z} \frac{\partial V}{\partial z} \\
\nabla \cdot \mathbf{A} & =\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
\nabla \times \mathbf{A} & =\left|\begin{array}{ccc}
\mathbf{x} & \mathbf{y} & \mathbf{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right|=\mathbf{x}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathbf{y}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{z}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \\
\nabla^{2} V & =\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}
\end{aligned}
$$

CYLINDRICAL COORDINATES (r, ϕ, z)

$$
\begin{aligned}
\nabla V & =\mathbf{r} \frac{\partial V}{\partial r}+\phi \frac{1}{r} \frac{\partial V}{\partial \phi}+\mathbf{z} \frac{\partial V}{\partial z} \\
\nabla \cdot \mathbf{A} & =\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial z} \\
\nabla \times \mathbf{A} & =\frac{1}{r}\left|\begin{array}{ccc}
\mathbf{r} & \phi r & \mathbf{z} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\
A_{r} & r A_{\phi} & A_{z}
\end{array}\right|=\mathbf{r}\left(\frac{1}{r} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right)+\phi\left(\frac{\partial A_{r}}{\partial z}-\frac{\partial A_{z}}{\partial r}\right)+\mathbf{z} \frac{1}{r}\left[\frac{\partial}{\partial r}\left(r A_{\phi}\right)-\frac{\partial A_{r}}{\partial \phi}\right] \\
\nabla^{2} V & =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}
\end{aligned}
$$

SPHERICAL COORDINATES (R, θ, ϕ)

$$
\nabla V=\mathbf{R} \frac{\partial V}{\partial R}+\theta \frac{1}{R} \frac{\partial V}{\partial \theta}+\phi \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi}
$$

$$
\nabla \cdot \mathbf{A}=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} A_{R}\right)+\frac{1}{R \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{R \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}
$$

$$
\nabla \times \mathbf{A}=\frac{1}{R^{2} \sin \theta}\left|\right|
$$

$$
=\mathbf{R} \frac{1}{R \sin \theta}\left[\frac{\partial}{\partial \theta}\left(A_{\phi} \sin \theta\right)-\frac{\partial A_{\theta}}{\partial \phi}\right]+\theta \frac{1}{R}\left[\frac{1}{\sin \theta} \frac{\partial A_{R}}{\partial \phi}-\frac{\partial}{\partial R}\left(R A_{\phi}\right)\right]+\phi \frac{1}{R}\left[\frac{\partial}{\partial R}\left(R A_{\theta}\right)-\frac{\partial A_{R}}{\partial \theta}\right]
$$

$$
\nabla^{2} V=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}
$$

Table 3-1: Summary of vector relations.

	Cartesian Coordinates	Cylindrical Coordinates	- $\begin{gathered}\text { Spherical } \\ \text { Coordinates }\end{gathered}$
Coordinate variables	x, y, z	r, ϕ, z	R, θ, ϕ
Vector representation, $\mathrm{A}=$	$\hat{\mathbf{x}} A_{x}+\hat{\mathbf{y}} A_{y}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{r}} A_{r}+\hat{\phi} A_{\phi}+\hat{\mathbf{z}} A_{z}$	$\hat{\mathbf{R}} A_{R}+\hat{\theta} A_{\theta}+\hat{\boldsymbol{\phi}} A_{\phi}$
Magnitude of $\mathbf{A},\|A\|=$	$\sqrt[+]{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{r}^{2}+A_{\phi}^{2}+A_{z}^{2}}$	$\sqrt[+]{A_{R}^{2}+A_{\theta}^{2}+A_{\phi}^{2}}$
Position vector $\overrightarrow{O P_{1}}=$	$\begin{aligned} & \hat{\mathbf{x}} x_{1}+\hat{\mathbf{y}} y_{1}+\hat{\mathbf{z}} z_{1}, \\ & \text { for } P\left(x_{1}, y_{1}, z_{1}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \hat{\mathbf{r}} r_{1}+\hat{\mathbf{z}} z_{1}, \\ \text { for } P\left(r_{1}, \phi_{1}, z_{1}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hat{\mathbf{R}} R_{1}, \\ \text { for } P\left(R_{1}, \theta_{1}, \phi_{1}\right) \end{gathered}$
Base vectors properties	$\begin{aligned} \hat{\mathbf{x}} \cdot \hat{\mathbf{x}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{x}} \cdot \hat{\mathbf{y}}=\hat{\mathbf{y}} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{x}}=0 \\ \hat{\mathbf{x}} \times \hat{\mathbf{y}}=\hat{\mathbf{z}} \\ \hat{\mathbf{y}} \times \hat{\mathbf{z}}=\hat{\mathbf{x}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{x}}=\hat{\mathbf{y}} \end{aligned}$	$\begin{aligned} \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\hat{\phi} \cdot \hat{\phi}=\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}=1 \\ \hat{\mathbf{r}} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{z}}=\hat{\mathbf{z}} \cdot \hat{\mathbf{r}}=0 \\ \hat{\mathbf{r}} \times \hat{\boldsymbol{\phi}}=\hat{\mathbf{z}} \\ \hat{\phi} \times \hat{\mathbf{z}}=\hat{\mathbf{r}} \\ \hat{\mathbf{z}} \times \hat{\mathbf{r}}=\hat{\phi} \end{aligned}$	$\begin{gathered} \hat{\mathbf{R}} \cdot \hat{\mathbf{R}}=\hat{\theta} \cdot \hat{\theta}=\hat{\phi} \cdot \hat{\phi}=1 \\ \hat{\mathbf{R}} \cdot \hat{\theta}=\hat{\theta} \cdot \hat{\phi}=\hat{\phi} \cdot \hat{\mathbf{R}}=0 \\ \hat{\mathbf{R}} \times \hat{\theta}=\hat{\phi} \\ \hat{\theta} \times \hat{\phi}=\hat{\mathbf{R}} \\ \hat{\phi} \times \hat{\mathbf{R}}=\hat{\theta} \end{gathered}$
Dot product, $\mathbf{A} \cdot \mathrm{B}=$	$A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$	$A_{r} B_{r}+A_{\phi} B_{\phi}+A_{z} B_{z}$	$A_{R} B_{R}+A_{\theta} B_{\theta}+A_{\phi} B_{\phi}$
Cross product, $\mathrm{A} \times \mathrm{B}=$	$\left\|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{r}} & \hat{\boldsymbol{\phi}} & \hat{\mathbf{z}} \\ A_{r} & A_{\phi} & A_{z} \\ B_{r} & B_{\phi} & B_{z}\end{array}\right\|$	$\left\|\begin{array}{ccc}\hat{\mathbf{R}} & \hat{\theta} & \hat{\phi} \\ A_{R} & A_{\theta} & A_{\phi} \\ B_{R} & B_{\theta} & B_{\phi}\end{array}\right\|$
Differential length, $d \mathbf{l}=$	$\hat{\mathbf{x}} d x+\hat{\mathbf{y}} d y+\hat{\mathbf{z}} d z$	$\hat{\mathbf{r}} d r+\hat{\boldsymbol{\phi}} r d \phi+\hat{\mathbf{z}} d z$	$\hat{\mathbf{R}} d R+\hat{\theta} R d \theta+\hat{\boldsymbol{\phi}} R \sin \theta d \phi$
Differential surface areas	$\begin{aligned} & d \mathbf{s}_{x}=\hat{\mathbf{x}} d y d z \\ & d \mathbf{s}_{y}=\hat{\mathbf{y}} d x d z \\ & d \mathbf{s}_{z}=\hat{\mathbf{z}} d x d y \end{aligned}$	$\begin{aligned} d \mathbf{s}_{r} & =\hat{\mathbf{r}} r d \phi d z \\ d \mathbf{s}_{\phi} & =\hat{\phi} d r d z \\ d \mathbf{s}_{z} & =\hat{\mathbf{z}} r d r d \phi \end{aligned}$	$\begin{aligned} d \mathbf{s}_{R} & =\hat{\mathbf{R}} R^{2} \sin \theta d \theta d \phi \\ d \mathbf{s}_{\theta} & =\hat{\theta} R \sin \theta d R d \phi \\ d \mathbf{s}_{\phi} & =\hat{\boldsymbol{\phi}} R d R d \theta \end{aligned}$
Differential volume, $d \nu=$	$d x d y d z$	$r d r d \phi d z$	$R^{2} \sin \theta d R d \theta d \phi$

Boundary conditions:

$$
\begin{aligned}
& D_{1 n}-D_{2 n}=\rho_{s} \\
& H_{1 x}-H_{2 x}=J_{y} \\
& H_{1 y}-H_{2 y}=-J_{x}
\end{aligned}
$$

