Quiz \#1, 09/20/2017

Name: \qquad Signature: \qquad

A wave with the frequency of $2-\mathrm{MHz}$ travels in the -z direction in air. Assume the wave travels at the speed of light $\left(\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right.$ in air). If the wave reaches a peak value of 1.2π at $\mathrm{z}=50 \mathrm{~m}$ when $\mathrm{t}=0$. Find:

1) Wavelength in air
2) Expression for the instantaneous of the wave (time domain)
3) Expression for the wave in the phasor domain

Solution:
(1) $\lambda f=c, \lambda=\frac{c}{f}=150(m)$.
(2) $y(z, t)=1.2 \pi \cos \left(2 \pi 2 \times 10^{6} t+\frac{2 \pi}{\lambda} z+\phi_{0}\right)$
$y(z, t)=1.2 \pi \cos \left(\frac{2 \pi}{\lambda} 50+\phi_{0}\right)=1.2 \pi, \phi_{0}=-\frac{2 \pi}{3}$
$y(z, t)=1.2 \pi \cos \left(4 \pi 10^{6} t+\frac{2 \pi}{\lambda} z-\frac{2 \pi}{3}\right)$
(3) $\tilde{y}(z)=1.2 \pi e^{j\left(\frac{2 \pi}{150} z-\frac{2 \pi}{3}\right)}$

