EMAG 1_MATLAB TUTORIAL

MATLAB TUTORIAL 1

It is assumed that the software is installed on the computer, and the user starts the program. Once the program starts, the Matlab desktop window that opens contain three smaller windows which are the command window, the current directory window, and the command history window.

1.1 Command window is Matlab main window, and can be used for executing commands, opening other windows, running programs written by the user and managing the software.

Example 1:

>>2*(4+3)

Ans=

 14

>>a=5;

>>b=3;

>>a*b=

 15

>>

Notes for working in the command window:

1. To type a command the cursor must be placed next to the command prompt >>
2. Once a command is typed and the Enter key is pressed, the command is executed.

However, only the last command is executed. Everything executed previously is unchanged

3. Several commands can be typed in the same line. This is done by typing a comma between the commands. When the enter key is pressed the commands are executed in order from left to right. Example: >> a=5,b=3,a*b
4. A previously typed command can be recalled to the command prompt with the up arrow key. When the command is displayed at the command prompt, it can be modified if needed and executed.

5. When the symbol %(percent symbol) is typed in the beginning of a line, the line is designated as a comment.

6. The “CLC” command clears the command window. But the command does not change anything that was done before. They still exist and can be used.

1.2 Examples of arithmetic operations:
Addition: 5+3

Subtraction: 5-3

Multiplication: 5*3

Right division: 5/3

Exponentiation: 5^3

1.3 Order of Precedence:

Matlab executes the calculations according to the order of precedence. I recommend to use parentheses to mark the order of precedence. For nested parentheses, the innermost are executed first.

Example:

>> 27^(1/3)+32^0.2 %1/3 is executed first, 27^(1/3) and 32^0.2 are executed next, and + is executed last.

1.4 Elementary math functions

Square root: sqrt(x) example >> sqrt(81)
Absolute value abs(x) >> abs(-24)
Exponential (ex) exp(x) >> exp(5)
Natural logarithm log(x) >>log(1000)

Base 10 logarithm log10(x) >>log10(1000)

Sine of angle x (x in radians) sin(x) >>sin(pi/6)
Sine of angle x (x in degreees) sind(x) >> sind(30)
Round to the nearest integer Round(x) >> round(17/5)
1.5 The assignment operator

 Equal sign is called the assignment operator.

Example

X=15; The number 15 is assigned to the variable x

X=3*x-12; The new value is 3 times the previous value of x minus 12

1.6 Rules about variable names

. must begin with a letter
.Matlab is case sensitive
.cannot contain punctuation characters(e.g.period,comma, semicolon)

.No spaces are allowed between characters

.Avoid using the names of a built-in function for a variable (e.g. sin, exp,sqrt.etc)

1.7 useful commands for managing variables
“clear” removes all variables from the memory

“clear x y z” removes only variables x,y,and z from the memory

1.8 One-Dimensional array(vector)

The vector is created by typing the elements (numbers) inside square brackets[]
Variablename=[vector elements]

Example:

>> yr=[1994 1986 1988 1992] the list of years is assigned to a row vector named yr

>> pop=[127;130;136;145;158;178;211] the data is assigned to a column vector named pop

Creating a vector with constant spacing by specifying the first term: the spacing, and the last term
>> x=[1:2:13] %first element 1, spacing 2, last element 13

>> z=[-3:7] % first element -3,last term 7. If spacing is omitted, the default is 1

>> d=0.01:0.01:1

>> length(x)

1.9 Creating a two-dimensional array (matrix)

Variable name=[1st row elements; 2nd row elements; 3rd row elements;..;last row elements]

Example:

>> a=[5 35 43;4 76 81;21 32 40] %a semicolon is typed before a new line is entered

 Zeroes(m,n), ones(m,n), and eye(n) commands

They can be used to create matrices that have elements with special values. Zeroes(m,n) and ones(m,n) commands create a matrix with m rows and n columns, in which all the elements are the numbers 0 and 1, respectively. The eye(n) command creates a square matrix with n rows and n columns in which the diagonal elements are equal to 1, and the rest of the elements are 0 which is called the identity matrix.

Example:

 >> zr=zeros(3,4)
>> ne=ones(4,3)
>> idn=eye(5)
2.0 array operation

The transpose operator

The transpose operator, when applied to a vector, switches a row (column) vector to a column (row)vector. When applied to a matrix, it switches the rows (columns) to columns (rows).

Example:

>> aa=[3 8 1] % define a row vector aa.

>> bb=aa' %define a column vector bb as the transpose of vector aa

>> c=[2 55 14 8;21 5 32 11;41 64 9 1] % define a matrix c with 3 rows and 4 columns

>> d=c' %define a matrix D as the transpose of matrix c

Addition and subtraction

The operations can be used to add (subtract) arrays of identical size (the same number of rows and columns), and to add (subtract) a scalar to an array.

Example:

>> vecta=[8 5 4];vectb=[10 2 7]; %define two vectors
>> vectc=vecta+vectb %define a vector vectc that is equal to vecta+vectb

>> a=[5 -3 8;9 2 10] %define two 2*3 matrices a and b

>> b=[10 7 4; -11 15 1]
>> a-b % subtracting matrix b from a.

>> c=a+b %define a matrix c that is equal to A+B

>> c-8 % the number 8 is subtracted from the matrix c

 %when a scalar and an array are involved in the addition

(subtraction) operation, the scalar is added to (or subtracted from) all the elements in the matrix.

Multiplication of arrays

>> a=[1 4 2;5 7 3;9 1 6;4 2 8] %define a 4*3 matrix a
>> b=[6 1;2 5;7 3] %define a 3*2 matrix b

>> c=a*b %multiply matrix a by matrix b and assign the result to variable c

>> d=b*a

Error using * % since the number of columns in b is 2 and the number of rows in a is 4.
Inner matrix dimensions must agree.

>> a=[2 5 7 0;10 1 3 4;6 2 11 5]
>> b=3
>> b*a %each element in the array is multiplied by the number

Inverse of a matrix

Example

>> a=[2 1 4;4 1 8;2 -1 3]
>> b=inv(a) % use the inv function to find the inverse of a and assign it to b

Solve the form AX=B

Example

>> A=[4 -2 6;2 8 2;6 10 3]
>> B=[8;4;0]
>> X=inv(A)*B
2.1 element-by-element operations

.* multiplication ./division .^exponentiation

Example

>> a=[2 6 3;5 8 4]
>> b=[1 4 10;3 2 7]
>> c=a+b;

>> c=a-b;
>> a.*b %element-by-element multiplication of array a by b

>> c=a./b %element-by-element multiplication of array a by b

 >> b.^3 % element-by-element exponentiation of array b. the result is an array in which each term is the corresponding term in b raised to the power of 3

 3. Generation of random numbers

 The “rand” command generates uniformly distributed numbers with values between 0 and 1.

Rand(n) generates an n element row vector of random numbers between 0 and 1

Example

>> b=rand(2,4)

Rand(m,n) generate an m*n matrix with random numbers between 0 and 1

>> b=rand(2,4)
>> v=15*rand(1,10)-5
For-end loops
For k = f:s:t

………

A group of matlab commands

…..

end

K: loop index variable

F: the value of k in the first pass

S: the increment in k after each pass. If s is omitted, the value is 1

T: the value of k in the last pass

Example 1:

for m = 1:4

ei(m) = 0;

end

%result: 0 0 0 0

Example 2:

b=rand(2,4);

for m = 1:length(b)

ei(m) = 0;

end
Example 3: Copy the flowing code in a new m file and run it.

clear;% clear variable in Ram
clf;% clear image windows
epx = 1;
d = 0.01:0.01:1;
e = 0:0.01:100;
for m = 1:length(d)
 ei(m) = 0;
 for n = 1:length(e)
 p= epx.*d(m)+e(n);
 ei(m) = ei(m)+p;
 end
end
plot(d, ei,'r');
PAGE
6

