A 50Ω lossless transmission line is terminated with an unknown load Z_{L} (see figure below). The phase velocity is $2.0 \times 10^{10} \mathrm{~cm} / \mathrm{s}$ at the frequency of 10 GHz . The minimum voltages on the transmission line are zeros. The first voltage minimum is located at $\mathrm{z}=-\mathrm{d}$ from load, $\mathrm{d}=0.2 \mathrm{~cm}$. Find out the impedance of the load.

Solution:
The formula for voltage minimum is:
$|\tilde{V}|_{\text {min }}=\left|V_{0}^{+}\right|(1-|\Gamma|)=0$,

Therefore, $|\Gamma|=1$.
$\lambda f=v$, where λ is the wavelength, $f=10 \mathrm{GHz}$ is the frequency and v is the phase velocity. $f=10 \mathrm{GHz}$ and $v=2.0 \times 10^{10} \mathrm{~cm} / \mathrm{s}$ are given. Therefore, $\lambda=1.0 \mathrm{~cm}$.

The first voltage minimum occurs at
$2 \beta(-d)+\theta_{r}=-\pi, \mathrm{d}=0.2 \mathrm{~cm}$ is given.
so, $2 \frac{2 \pi}{\lambda}(-d)+\theta_{r}=-\pi,=>\theta_{r}=-\pi+0.8 \pi=-0.2 \pi$,
$\Gamma=1 \angle-0.2 \pi=0.809-j 0.5878$,
$Z_{L}=Z_{0} \frac{1+\Gamma}{1-\Gamma}=50 \frac{1+0.809-j 0.5878}{1-(0.809-j 0.5878)}=-j 154 \Omega$

Graphic solution is on the next page.

