A 50 Ω lossless transmission line is terminated with an unknown load Z_L (see figure below). The phase velocity is 2.0×10^{10} cm/s at the frequency of 10GHz. The minimum voltages on the transmission line are zeros. The first voltage minimum is located at z = -d from load, d = 0.2 cm. Find out the impedance of the load.

Solution:

The formula for voltage minimum is:

$$\left|\widetilde{V}\right|_{\min} = \left|V_0^+\right|(1-\left|\Gamma\right|) = 0,$$

Therefore, $|\Gamma| = 1$.

 $\lambda f = v$, where λ is the wavelength, f = 10GHz is the frequency and v is the phase velocity. f = 10GHz and $v = 2.0 \times 10^{10}$ cm/s are given. Therefore, $\lambda = 1.0$ cm.

The first voltage minimum occurs at

 $2\beta(-d) + \theta_r = -\pi$, d = 0.2cm is given.

so,
$$2\frac{2\pi}{\lambda}(-d) + \theta_r = -\pi$$
, $\Rightarrow \theta_r = -\pi + 0.8\pi = -0.2\pi$,

 $\Gamma = 1 \angle -0.2\pi = 0.809 - j0.5878,$

$$Z_L = Z_0 \frac{1+\Gamma}{1-\Gamma} = 50 \frac{1+0.809 - j0.5878}{1-(0.809 - j0.5878)} = -j154\Omega$$

Graphic solution is on the next page.

