EE Problem 8

A lossless transmission line is terminated with a load Z_{L} , $Z_{L} = j100\Omega$ (see figure below). The characteristic impedance Z_{0} of the transmission line is unknown. The first voltage maximum $|V|_{max}$ is located at $z = -\lambda/8$ from load.

(1) Calculate the voltage standing wave ratio (VSWR);

(2) Find out the characteristic impedance Z_0 of the transmission line

Solution:

(1) The voltage reflection coefficient Γ is: $\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$, Therefore:

 $\left|\Gamma\right| = \left|\frac{Z_L - Z_0}{Z_L + Z_0}\right| = \frac{\sqrt{(100)^2 + Z_0^2}}{\sqrt{(100)^2 + Z_0^2}} = 1, \ Z_0 \text{ is real for a lossless transmission line.}$

The formula for voltage standing wave ratio (VSWR) is:

$$VSWR = \frac{1 + |\Gamma|}{1 - |\Gamma|} = \infty$$

(2) The first voltage maximum occurs at

 $2\beta(-\lambda/8) + \theta_r = 0$, θ_r is the angle of the reflection coefficient.

so,
$$2\frac{2\pi}{\lambda}(-\frac{\lambda}{8}) + \theta_r = 0$$
, $\Rightarrow \theta_r = 0.5\pi$

 $\Gamma = 1 \angle 0.5\pi = 0 + j1,$

$$Z_0 = Z_L \frac{1 - \Gamma}{1 + \Gamma} = j100 \frac{1 - j1}{1 + j1} = 100\Omega$$

Graphic solution:

