A 50 Ω lossless transmission line is terminated with an unknown load Z_L (see figure below). The minimum voltages on the transmission line are zeros. The first voltage minimum $|V|_{min}$ is located at z = -d from load, d = $\lambda/8$.

(1) Calculate the voltage standing wave ratio (VSWR);

- (2) Find out the load impedance Z_L ;
- (3) Find out the voltage reflection coefficient Γ

Solution:

(1) The formula for voltage standing wave ratio (VSWR) is:

$$VSWR = \frac{|V|_{\text{max}}}{|V|_{\text{min}}} = \frac{|V|_{\text{max}}}{0} = \infty,$$

Since $VSWR = \frac{1 + |\Gamma|}{1 - |\Gamma|} = \infty$, $|\Gamma| = 1$.

(2) The first voltage minimum occurs at

 $2\beta(-\lambda/8) + \theta_r = -\pi$, θ_r is the angle of the reflection coefficient.

so,
$$2\frac{2\pi}{\lambda}(-\frac{\lambda}{8}) + \theta_r = 0$$
, $\Rightarrow \theta_r = -0.5\pi$,

 $\Gamma = 1 \angle -0.5\pi = 0 - j1.$

(3) The normalized load is

$$\frac{Z_L}{Z_0} = \frac{1+\Gamma}{1-\Gamma} = \frac{1-j1}{1+j1} = -j,$$

Therefore, the load impedance $Z_L = -j50\Omega$.

Graphic solution:

