EE Problem 8

A lossless transmission line is terminated with an unknown capacitor C . The characteristic impedance Z_{0} of the transmission line is 50Ω. The length of transmission line is 0.5λ. The transmission line is connected to a signal source $V_{g}=5 \cos \left(2 \pi \times 10^{9} t\right)$ with a resistance of 20Ω (see figure below). The first voltage minimum $|\mathrm{V}|_{\text {min }}$ is located at $\mathrm{z}=-0.125 \lambda$ from load.
(1) Calculate the voltage standing wave ratio (VSWR);
(2) Find out the capacitance of the capacitor
(3) Calculate the voltage maximum $|\mathrm{V}|_{\max }$ and its location

Solution:
(1) The voltage reflection coefficient Γ is: $\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}$,

Therefore:
$|\Gamma|=\left|\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}\right|=\frac{\sqrt{\left(\frac{1}{j \omega C}\right)^{2}+Z_{0}^{2}}}{\sqrt{\left(\frac{1}{j \omega C}\right)^{2}+Z_{0}^{2}}}=1, Z_{0}$ is real for a lossless transmission line.
The formula for voltage standing wave ratio (VSWR) is:
$V S W R=\frac{1+|\Gamma|}{1-|\Gamma|}=\infty$
(2) The first voltage minimum occurs at
$2 \beta(-0.125 \lambda)+\theta_{r}=-\pi, \theta_{r}$ is the angle of the reflection coefficient.
so, $2 \frac{2 \pi}{\lambda}(-0.125 \lambda)+\theta_{r}=-\pi,=>\theta_{r}=-0.5 \pi$,

$$
\begin{aligned}
& \Gamma=1 \angle-0.5 \pi=0-j 1, \\
& Z_{L}=Z_{0} \frac{1+\Gamma}{1-\Gamma}=50 \frac{1-j 1}{1+j 1}=-j 50 \Omega \\
& Z_{L}=\frac{1}{j \omega C}=-j 50 \Omega, C=\frac{1}{50 \omega}=20 p F .
\end{aligned}
$$

(3) The voltage phasor of the source is $\tilde{V}_{g}=5(V)$, voltage at the beginning of the transmission line is:

$$
\begin{aligned}
& V(z=-0.5 \lambda)=\frac{Z_{\text {in }}}{Z_{\text {in }}+R_{g}} \tilde{V}_{g}=\frac{-j 50}{-j 50+20}=V_{0}^{+}\left(e^{j \beta 0.5 \lambda}+\Gamma e^{-j \beta 0.5 \lambda}\right)=V_{0}^{+}(-1+j) \\
& \left|V_{0}^{+}\right|=\frac{250 / \sqrt{(50)^{2}+(20)^{2}}}{\sqrt{2}} \\
& |V|_{\max }=2\left|V_{0}^{+}\right|=\frac{250 \sqrt{2}}{\sqrt{(50)^{2}+(20)^{2}}}
\end{aligned}
$$

Graphic solution:

