EE Problem 8

Solve the following problem using Smith chart
A lossless transmission line is shorted at the load point. The characteristic impedance Z_{0} of the transmission line is 50Ω. The length of the transmission line is unknown. A load is connected to the transmission line at the point A. The impedance of the load is $\mathrm{Z}=50+\mathrm{j} 25 \Omega$. Find out: (1) where is the load connected? (2) the length of the transmission line?

Solution:
(1) the normalized input impedance $z_{i n}=\frac{Z_{i n}}{Z_{0}}=2+j 2$, point C on Smith Chart
(2) the normalized input admittance $y_{i n}$ is at point D on Smith chart.
(3) the normalized load impedance $z=\frac{Z}{Z_{0}}=1+j 0.5$, point E on Smith chart
(4) the normalized load admittance is at point F on Smith chart.
(5) Since the short circuit doesn't contribute to the real part of the admittance, the total real part of the admittance at point A is 0.9 .
(6) The distance from point A to the input is therefore $0.46-0.334 \lambda=0.126 \lambda$
(7) The imaginary part of the total admittance at point A is -1.3 . The contribution from the short circuit is therefore $-1.3-(-0.42)=-0.88$.
(8) the length from the Short to point A is $0.386-0.25 \lambda=0.136 \lambda$.

