EE Problem 8

Solve the following problem using Smith chart

A 50- Ω lossless transmission line of length 1.1 λ is terminated with an unknown load impedance. The input end of the 50- Ω line is attached to the load end of a 75- Ω lossless transmission line. A voltage standing wave ratio (VSWR) of 4.0 is measured on the 75- Ω line. The first voltage maximum occurs at a distance of 0.2 λ in front of the junction between the two lines. Use Smith chart to find out the unknown load impedance on the 50- Ω lossless transmission line.

Solution:

(1) the load impedance on the 75- Ω line is located at point A on Smith chart. The normalized load impedance is $z_L = 0.25 + j0.31$. The load impedance is therefore $Z_L = 18.7 + 23.2 \ \Omega$

(2) the normalized input impedance on the 50- Ω line is: $z_{in} = 0.375 + j0.465$, which is point B on Smith chart.

(3) the normalized load impedance $z_L = 0.39 - j0.18$, point C on Smith chart

(4) The load impedance on the 50- Ω line is therefore $Z_L = 20 - j9 \ \Omega$.

