EE Problem 8

Solve the following problem using Smith chart
A $50-\Omega$ lossless transmission line of length 0.3λ is terminated with an unknown load impedance. The input end of the $50-\Omega$ line is attached to the load end of a $75-\Omega$ lossless transmission line with another load $Z_{L 1}=150+j 150 \Omega$. Find out the unknown load impedance on the $50-\Omega$ lossless transmission line that can make the reflection coefficient Γ of the $75-\Omega$ lossless transmission line is aero, i.e. $\Gamma=0$.

Solution:
(1) The load impedance $Z_{L 1}=150+j 150 \Omega$ on the $75-\Omega$ line is located at point $Z_{\mathrm{L} 1}$ on Smith chart. The normalized admittance of the load is $y_{L 1}=0.23-j 0.24$.
(2) Since the total normalized admittance $y_{\text {total }}=y_{L 1}+y_{L}$ needs to be 1 to make the reflection $\Gamma=0$, the normalized admittance corresponding to Z_{L} is therefore $y_{L}=0.77+j 0.24$.
(3) The normalized impedance is $z_{L}=1.35-j 0.35$
(4) The impedance is $Z_{L}=101-j 26 \Omega$. This corresponds to the input impedance of the 50- Ω line.
(5) The normalized input impedance is $z_{\text {in }}=2-j 0.5$, which is point B on Smith chart.
(6) The normalized load impedance of the $50-\Omega$ line $z_{L}=0.5-j 0.1$, point C on Smith chart
(7) The load impedance on the $50-\Omega$ line is therefore $Z_{L}=25-j 5 \Omega$.

