1: grating

For the grating, $d = 1.0\mu m$, f = 20cm. m = 20.

(1) What's the first maximum angle and ΔL for the wavelength λ =0.5µm (green)?

 $d^*sin(\theta_m) = m \lambda$

 $\theta_1 \sim \sin(\theta_1) = \lambda/d$

 $\theta_1 \sim 0.5 rad$

- $\Delta L = f \theta_1 = 10 cm$
- (2) What's the first maximum angle and ΔL for the wavelength λ =0.6µm (red)?

 $d^* sin(\theta_m) = m \lambda$ $\theta_1 \sim sin(\theta_1) = \lambda/d$

 $\theta_1 \sim 0.6$ rad $\Delta L = f \theta_1 = 12$ cm

1: grating

For the grating, $d = 1.0\mu m$, f = 20cm. m = 20.

(3) What's you conclusion from the two lights? That's why CDs show beautiful colors.

The maximum of different wavelengths appear at different locations. Gratings are dispersive optical elements.

(4) for the wavelength λ =0.5µm, m = 10, what's the first dark angle and Δ L ?

Dark positions: kmd*sin(θ_m) = 2n π + π

 $2md*sin(\theta_1) = \lambda$

 $\theta_1 \sim \sin(\theta_1) = \lambda/(md)$

For m = 10, $\theta_1 \sim 0.05$ rad

 $\Delta L = f \theta_1 = 1 cm$

For m = 100, $\theta_1 \sim 0.005 \text{rad}$

$$\Delta L = f \theta_1 = 0.1 cm$$

<u>2</u>: reflective grating

For the grating, $d = 1.0\mu m$, incident angle is 10°.

(1) What's the first maximum angle λ =0.5µm (green)?

 $d^*sin(\theta_m) - dsin(\phi) = m \lambda$

- $\theta_1 \sim \sin(\theta_1) = \lambda/d + \sin(\phi)$
- $\theta_1 \sim 0.5 + 0.17 = 0.67$ rad $\Delta L = f \theta_1 = 13.4$ cm

3: photon

 $h = 6.67 \times 10^{-34}$. $c = 3 \times 10^{8}$ (m/s)

(1) For the light with wavelength λ=0.6µm (red), what's the energy of a single photon? What's the frequency of the light? What's the momentum of the photon? What's the k vector of the light?

 $v = c/\lambda = 5 \times 10^{14} Hz$

 $E = hv = 6.67 \times 10^{-34} \times 5 \times 10^{14} = 3.3 \times 10^{-19} = 2eV$

```
k = 2\pi/\lambda = 1.1 \times 10^7 \text{ m}^{-1}
```

 $p = E/c = 1.1 \times 10^{-27} Ns$

(2) For the wavelength λ=0.5µm, what's the energy of a single photon? What's the frequency of the light? What's the momentum of the photon? What's the k vector of the light?

 $v = c/\lambda = 6 \times 10^{14} Hz$

$$E = hv = 6.67 \times 10^{-34} \times 6 \times 10^{14} = 4.0 \times 10^{-19} = 2.5 \text{ eV}$$

 $k = 2\pi/\lambda = 1.3 \times 10^7 \text{ m}^{-1}$

 $p = E/c = 1.3 \times 10^{-27} \text{ Ns}$

4: phase matching

5: phase matching

- For the left grating, if the incident angle is $\phi = 10^{\circ}$, d = 1µm,
- (1) For $\lambda = 1.5 \mu m$, determine the output angle using the phase matching condition.
- (2) For $\lambda = 0.6 \mu m$, determine the output angle using the phase matching condition.

 $k_{out} *sin(\theta) - k_{in} *sin(\phi) = k_{grating} = 2\pi/d$ sin(θ) = sin(φ) + λ/d

for the wavelength λ =0.6µm, θ = 0.87 rad

for the wavelength λ = 1.5µm, no diffration

6: DFB grating

For the DFB grating grating,

- (1) For λ = 1.5 µm, determine the grating period for effective reflection.
- (2) For λ = 0.6 µm, determine the grating period for effective reflection.

(1) $k_{\Lambda} = 2k_{in}$, $\Lambda = \lambda/2 = 0.75 \mu m$

(2) $k_{\Lambda} = 2k_{in}$, $\Lambda = \lambda/2 = 0.3 \mu m$