16.311 Electronics Laboratory
 Experiment
 Bipolar Transistor Characteristics

Objective:

To display and record the collector characteristics of the 2 N3904 transistor.
Use the characteristic curves to determine the B_{dc} of the transistor.

Materials Needed:

One 2N3904 NPN transistor
Transistor Curve tracer

Reference data:

Sedra \& Smith chapter 4 fig. 4.15, 4.34, 4.36

Engineering Problem:

1. Wire the common emitter configuration shown below. Start with both power supplies at 0 volts. Resistor R_{B} is to limit bias current and to determine the base current.

- Slowly increase $V_{B B}$ until voltage across R_{B} is 1.65 volts. This gives you a base current of 50 uA , to check this apply ohms law to R_{B}.

2. Without adjusting the setting of $V_{B B}$, slowly increase $V_{C C}$ until 2.0 volts is across the transistor's collector and emitter. This voltage is VCE Then measure and record VCC for this setting, compute the collector current by applying ohms law to voltage across Rc
3. Without adjusting the base current repeat with $V_{C E}$ of $4 \mathrm{v}, 6 \mathrm{v}, 8 \mathrm{v}, 10 \mathrm{volts}$ as above.
4. Reset $V_{C C}$ to 0 volts and adjust $V_{B B}$ until $V_{R B}$ is 3.3 volts. The base current should be 100 uA .
5. Without adjusting the setting of $V_{B B}$, slowly increase $V_{C C}$ until 2.0 volts is across the transistor's collector and emitter. This voltage is VCE Then measure and record VCC for this setting, compute the collector current by applying ohms law to voltage across Rc
6. Without adjusting the base current repeat with $\mathrm{V}_{\text {CE }}$ of $4 \mathrm{v}, 6 \mathrm{v}, 8 \mathrm{v}, 10 \mathrm{volts}$ as above
7. Reset $V_{C C}$ to 0 volts and adjust $V_{B B}$ until $V_{B B}$ is 4.95 volts. The base current should be 150 uA .
8. Without adjusting the setting of $V_{B B}$, slowly increase $V_{C C}$ until 2.0 volts is across the transistor's collector and emitter. This voltage is $\mathrm{V}_{\text {CE }}$ Then measure and record VCC for this setting, compute the collector current by applying ohms law to voltage across Rc
9. Plot three collector characteristic curves using the data recorded. The collector characteristic curve is a graph of VCE versus Ic for a constant base current. Lable each curve with the base current it represents, graph the date in your notebook, show the Load Line on the graph.
10. Use the characteristic curves you plotted to determine the B_{dc} at $\mathrm{V}_{\text {CE }}$ of 5 volts
11. Place your transistor on the curve tracer and get a family of the same curves you
plotted.
