EMag I. Prof. Xingwei Wang

Homework #4

Due day: Oct. 10(Wednesday) before class.

Problem 2.47 Use the Smith chart to find the reflection coefficient corresponding to a load impedance of

(a)
$$Z_L = 3Z_0$$

(b)
$$Z_{\rm L} = (2 - j2)Z_0$$

(c)
$$Z_{L} = -j2Z_{0}$$

(d)
$$Z_L = 0$$
 (short circuit)

Solution: Refer to Fig. P2.47.

(a) Point *A* is
$$z_L = 3 + j0$$
. $\Gamma = 0.5e^{0^{\circ}}$

(b) Point *B* is
$$z_L = 2 - j2$$
. $\Gamma = 0.62e^{-29.7^{\circ}}$

(c) Point C is
$$z_L = 0 - j2$$
. $\Gamma = 1.0e^{-53.1^{\circ}}$

(d) Point *D* is
$$z_L = 0 + j0$$
. $\Gamma = 1.0e^{180.0^{\circ}}$

Problem 2.49 Use the Smith chart to find the normalized load impedance corresponding to a reflection coefficient of

(a)
$$\Gamma = 0.5$$

(b)
$$\Gamma = 0.5 \angle 60^{\circ}$$

(c)
$$\Gamma = -1$$

(d)
$$\Gamma = 0.3 \angle -30^{\circ}$$

(e)
$$\Gamma = 0$$

(f)
$$\Gamma = j$$

(a) Point A' is
$$\Gamma = 0.5$$
 at $z_L = 3 + j0$.

(b) Point B' is
$$\Gamma = 0.5e^{j60^{\circ}}$$
 at $z_L = 1 + j1.15$.

(c) Point
$$C'$$
 is $\Gamma = -1$ at $z_L = 0 + j0$.

(d) Point D' is
$$\Gamma = 0.3e^{-j30^{\circ}}$$
 at $z_L = 1.60 - j0.53$.

(e) Point E' is
$$\Gamma = 0$$
 at $z_L = 1 + j0$.

(f) Point
$$F'$$
 is $\Gamma = j$ at $z_L = 0 + j1$.

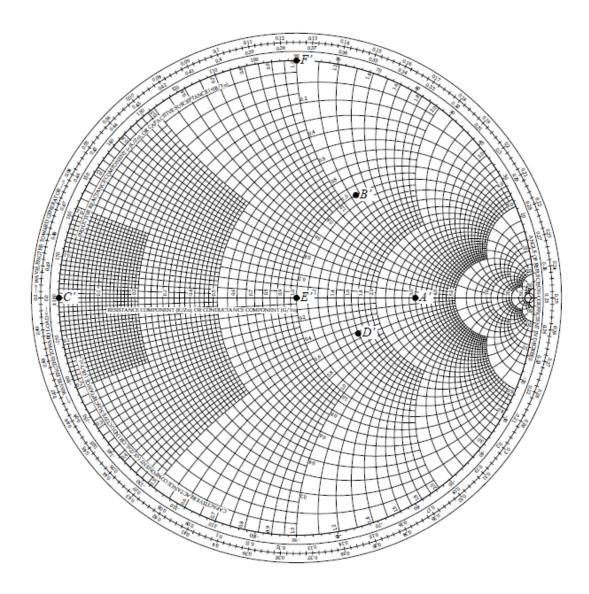


Figure P2.49: Solution of Problem 2.49.

Solution: Refer to Fig. P2.49.