
Network Processor: Architecture,
Performance Evaluation and Applications

Yan Luo
Yan_Luo@uml.edu

http://faculty.uml.edu/yluo/

Electrical and Computer Engineering
University of Massachusetts Lowell

12/18/05 Yan Luo, ECE of UMass Lowell 2

Outline
 Network Processor Architecture
 NePSim Simulator
 Low Power Designs
 Content-Aware Switch

12/18/05 Yan Luo, ECE of UMass Lowell 3

Packet Processing in the Future Internet

•High processing power
•Support wire speed
•Programmable
•Scalable
•Optimized for network
applications
• …

ASIC

General-
Purpose Processors

More packets
 &

Complex packet
processing

Future Internet

12/18/05 Yan Luo, ECE of UMass Lowell 4

What is Network Processor ?

 Programmable processors optimized for
network applications and protocol processing

 High performance

 Programmable & Flexible

 Fast time-to-market

 Main players: AMCC, Intel, Hifn, Ezchip,
Agere

Semico Research Corp. Oct. 14, 2003

12/18/05 Yan Luo, ECE of UMass Lowell 5

Applications of Network Processors

DSL modem

Wireless router

VoIP terminal

Printer server

Edge router

VPN gateway

Core router

12/18/05 Yan Luo, ECE of UMass Lowell 6

Commercial Network Processors

Multi-threaded, on-chip traffic
management

OC-192/
10 Gbps

PayloadPlusAgere

Multi-threaded multiprocessor
complex, h/w accelerators

OC-48/
2.5 Gbps

5NP4GHifn

Classification engines, traffic
managers

OC-192/
10 Gbps

NP-2EZchip

Intel

AMCC

Vendor

IXP2850

nP7510

Product

Multi-core, h/w multi-threaded,
coprocessor, h/w accelerators

OC-192/
10 Gbps

Multi-core, customized ISA,
multi-tasking

OC-192/
10 Gbps

FeaturesLine
speed

12/18/05 Yan Luo, ECE of UMass Lowell 7

Typical Network Processor Architecture
SDRAM
(e.g. packet buffer)

SRAM
(e.g. routing table)

Co-processor

Network interfaces

Network ProcessorBus

H/w accelerator

PE

12/18/05 Yan Luo, ECE of UMass Lowell 8

MEv2
6

MEv2
7

MEv2
5

MEv2
8

Intel®
XScale™

 Core
32K IC
32K DC

Rbuf
64 @ 128B

Tbuf
64 @ 128B

Hash
64/48/128

Scratch
16KB

QDR
SRAM

1

QDR
SRAM

2

DDRAM

G
A
S
K
E
T

PCI

(64b)
66 MHz

32b32b

32b32b

1818 18181818 1818

7272

64b64b

S
P
I
3
or
C
S
I
X

E/D Q E/D Q

MEv2
2

MEv2
3

MEv2
1

MEv2
4

CSRs
-Fast_wr -UART
-Timers -GPIO
-BootROM/Slow Port

IXP2400IXP2400

12/18/05 Yan Luo, ECE of UMass Lowell 9

Hardware Multithreading

Multithreading hides memory latency

Memory Access

Time

Thread 0

Thread 1

running
ready

sleeping
yield

mem req
mem done

ALU

p0
p1
p2
p3
p4

ME

12/18/05 Yan Luo, ECE of UMass Lowell 10

Network Processor Research Overview

 NPs have become popular and attracted
more and more attention

 Performance has been the primary interest
of the NP community

 Power consumption of NPs is becoming a
big concern

•A ST200 edge router can support up to 8 NP boards each of which consumes 95~150W,
The total power of such a 88.4cm x 44cm x 58cm router can reach 2700W when two
chasis are supported in a single rack! – Laurel Networks ST series router data sheet

12/18/05 Yan Luo, ECE of UMass Lowell 11

NP Research Tools
 Intel IXA SDK

 + accuracy, visualization
 - close-source, low speed, inflexibility, no power model

 SimpleScalar
 + open-source, popularity, power model (wattch)
 - disparity with real NP, inaccuracy

 NePSim
 + open-source, real NP, power model, accuracy
 - currently target IXP1200 only
 IEEE Micro Special Issue on NP, Sept/Oct 2004, Intel

IXP Summit, Sept 2004

12/18/05 Yan Luo, ECE of UMass Lowell 12

Objectives of NePSim
 An open-source simulator for a real NP

(Intel® IXP1200, later IXP2400/2800…)
 Cycle-level accuracy of performance

simulation
 Flexibility for users to add new instructions

and functional units
 Integrated power model to enable power

dissipation simulation and optimization
 Extensibility for future NP architectures
 Fast simulation speed

12/18/05 Yan Luo, ECE of UMass Lowell 13

NePSim Overview

ME C compiler
(SDK)

Benchmark program

NePSim

host C compiler

NePSim source code

IXP1200 Performance
Statistics

12/18/05 Yan Luo, ECE of UMass Lowell 14

NePSim Software Architecture

 Microengine (six)

 Memory (SRAM/SDRAM)

 Network Device

 Debugger

 Statistic

 Verification

Microengine SRAM

SDRAM Network Device

Stats

Debugger

Verification
NePSim

12/18/05 Yan Luo, ECE of UMass Lowell 15

NePSim Internals

P0 P1 P2 P3 P4

 I: instruction
C: command
E: event

I I I I
arbiter

SRAM controller

arbiter

SDRAM controller

C

C

Event Queue E
E

Wake up sleeping threads

E

Inst.
lookup

Inst.
decode

Read
operand

ALU, gen
mem
addr

Retire, gen
mem

Command
ME

12/18/05 Yan Luo, ECE of UMass Lowell 16

Verification of NePSim

NePSimIXP1200 Performance
Statistics

benchmarks

?=
23990 inst.(pc=129) executed

24008 sram req issued

24009 ….

23990 inst.(pc=129) executed

24008 sram req issued

24009 ….

Assertion Based Verification
(Linear Temporal Logic/Logic Of Constraint)

X. Chen, Y. Luo, H. Hsieh, L. Bhuyan, F. Balarin, "Utilizing Formal Assertions
for System Design of Network Processors," Design Automation and Test in
Europe (DATE), 2004.

12/18/05 Yan Luo, ECE of UMass Lowell 17

Power Model

See paperOrionMatrix, rr arbiterCommand bus arbiter, context
arbiter

See paperWattchArrayCommand FIFO, command
queue in controller, etc

32bitWattchALU and shifterALU , shifter

4KB, 4byte per block, direct
mapped, 10-bit address

XCactiCache w/o tag pathControl store, scratchpad

1 32-entry file, 1 read/write
port

XCactiArrayControl register per ME

4 32-entry files, 1 read/write
port per file

XCactiArrayXFER per ME

2 64-entry files, 1 read/write
port per file

XCactiArrayGPR per ME

ConfigurationsToolModel TypeH/W component

12/18/05 Yan Luo, ECE of UMass Lowell 18

Benchmarks

 Ipfwdr
 IPv4 forwarding(header validation, trie-based lookup)
 Medium SRAM access

 url
 Examing payload for URL pattern, used in content-aware routing
 Heavy SDRAM access

 Nat
 Network address translation
 medium SRAM acess

 Md4
 Message digest (compute a 128-bit message “signature”)
 Heavy computation and SDRAM access

12/18/05 Yan Luo, ECE of UMass Lowell 19

Performance implications
 More MEs do not necessarily bring performance gain
 More ME cause more memory contention
 ME idle time is abundant (up to 42%)
 Faster ME core results in more ME idle time with the same memory
 Non-optimal rcv/xmit configuration for NAT (transmitting ME is a bottleneck)

Throughput vs number
of MEs at 232MHz

Throughput vs number
of MEs at 464MHz

Idle time vs ME/memory
speed ratio

12/18/05 Yan Luo, ECE of UMass Lowell 20

Power breakdown
 Power dissipation by rcv and xmit MEs is similar across benchmarks
 Transmitting MEs consume ~5% more than receiving
 ALU consumes significant power ~45% (wattch model)
 Control store uses ~28% (accessed almost every cycle)
 GPRs burn ~13% , shifter ~7%, static ~7%

12/18/05 Yan Luo, ECE of UMass Lowell 21

Power efficiency observations
 Power consumption increases faster than

performance
 More MEs/threads bring more idle time

due to memory contention

Idle time vs # of MEs

We can reduce power consumption of
MEs while they waiting for memory
accesses

url ipfwdr

md4 nat

Power

Performance

Power

Power

Power

Performance

Performance

Performance

12/18/05 Yan Luo, ECE of UMass Lowell 22

Dynamic Voltage Scaling in NPs
 During the ME idle time, all threads are put

to ``wait'' state and the MEs are running with
the lowest activity.

 Applying DVS while MEs are not very
active can reduce the total power
consumption substantially.

 DVS control scheme
 Observes the ME idle time (%) periodically.
 When idle > threshold, scale down the

voltage and frequency (VF in short) by one
step unless the minimum allowable VF is hit.

 Idle < threshold, scale up the VF by one step
unless they are at maximum allowable values.

12/18/05 Yan Luo, ECE of UMass Lowell 23

DVS Power-performance
 Initial VF=1.3V, 600MHz
 DVS period: every 15K,

20K or 30K cycles make a
DVS decision to reduce or
increase FV.

 Up to 17% power savings
with less than 6%
performance loss

 On average 8% power
saving with <1%
performance degradation

Power and performance reduction by DVS

12/18/05 Yan Luo, ECE of UMass Lowell 24

Real-time Traffic Varies Greatly

 Shutdown unnecessary PEs, re-activate
PEs when needed

 Clock gating retains PE instructions
Yan Luo, Jia Yu, Jun Yang, Laxmi Bhuyan, Low Power Network
Processor Design Using Clock Gating, IEEE/ACM Design Automation
Conference (DAC), Anaheim, California, June 13-17, 2005

12/18/05 Yan Luo, ECE of UMass Lowell 25

Indicators of Gating/Activating PEs

PE

PE

Co-processor

Network Interface

Network Processor

Bus

H/w accelerator

Receive buffer

scheduler

Thread Queue

 Length of thread queue

 Fullness of internal buffers

12/18/05 Yan Luo, ECE of UMass Lowell 26

PE Shutdown Control Logic

counter > threshold

+

M
U

X + alpha

- alpha

T

Thread queue Internal Buffer

true

-PE

If (counter exceeds threshold)

 { turn-off-a-PE;

 decrement threshold }

Length > T

If (thread_queue_length > T)

 increment counter;

+PE

Buffer full

If (buffer is full)

 { turn-on-a-PE;

 increment threshold }

12/18/05 Yan Luo, ECE of UMass Lowell 27

Challenges of Clock Gating PEs
 Terminating threads safely

 Threads request memory resources
 Stop unfinished threads result in resource leakage

 Reschedule packets to avoid “orphan” ports
 Static thread-port mapping prohibits shutting down

PEs
 Dynamically assign packets to any waiting threads

 Avoid “extra” packet loss
 Burst packet arrival can overflow internal buffer
 Use a small extra buffer space to handle burst

12/18/05 Yan Luo, ECE of UMass Lowell 28

Experiment Results of Clock Gating

<4% reduction on system throughput

12/18/05 Yan Luo, ECE of UMass Lowell 29

NePSim 2.0

 Extension of NePSim to
model IXP2400/2800

 ME instruction set V. 2
 Modularized Network-On-

Chip (bus, crossbar etc.)
 Power modeling of

SRAM/DRAM
 Graphical user interface

for debugging and
monitoring

Design and
Implementation of A
Content-aware Switch
using A Network
Processor

Li Zhao, Yan Luo, Laxmi Bhuyan
University of California, Riverside

 Ravi Iyer
Intel Corporation

12/18/05 Yan Luo, ECE of UMass Lowell 31

Outline
 Motivation
 Background
 Design and Implementation
 Measurement Results
 Conclusions

12/18/05 Yan Luo, ECE of UMass Lowell 32

Content-aware Switch

Switch

Media Server

Application Server

HTML Server

www.yahoo.com
Internet

GET /cgi-bin/form HTTP/1.1
Host: www.yahoo.com…

 APP. DATATCPIP

 Front-end of a web cluster, one VIP
 Route packets based on layer 5 information

 Examine application data in addition to IP& TCP
 Advantages over layer 4 switches

 Better load balancing: distribute packets based on content type
 Faster response: exploit cache affinity
 Better resource utilization: partition database

12/18/05 Yan Luo, ECE of UMass Lowell 33

Processing Elements in
Content-aware Switches

 ASIC (Application Specific Integrated Circuit)
 High processing capacity
 Long time to develop
 Lack the flexibility

 GP (General-purpose Processor)
 Programmable
 Cannot provide satisfactory performance due to overheads on

interrupt, moving packets through PCI bus, ISA not optimized
for networking applications

 NP (Network Processor)
 Operate at the link layer of the protocol, optimized ISA for

packet processing, multiprocessing and multithreading high
performance

 Programmable so that they can achieve flexibility

12/18/05 Yan Luo, ECE of UMass Lowell 34

Outline
 Motivation
 Background

 NP architecture
 Mechanism to build a content-aware switch

 Design and Implementation
 Measurement Results
 Conclusion

12/18/05 Yan Luo, ECE of UMass Lowell 35

Background on NP
 Hardware

 Control processor (CP):
embedded general purpose
processor, maintain control
information

 Data processors (DPs): tuned
specifically for packet
processing

 Communicate through shared
DRAM

 NP operation on packets
 Packet arrives in receive buffer
 Header Processing
 Transfer the packet to transmit

buffer

CP

DP

12/18/05 Yan Luo, ECE of UMass Lowell 36

Mechanisms to Build a CA Switch
 TCP gateway

 An application level proxy
 Setup 1st connection w/ client,

parses request server, setup 2nd

connection w/ server
 Copy overhead

 TCP splicing
 Reduce the copy overhead
 Forward packet at network level

between the network interface
driver and the TCP/IP stack

 Two connections are spliced
together

 Modify fields in IP and TCP header

kernel

user

kernel

user

server

server

client

client

12/18/05 Yan Luo, ECE of UMass Lowell 37

Operations on a Content-Aware Switch

12/18/05 Yan Luo, ECE of UMass Lowell 38

Outline
 Motivation
 Background
 Design and Implementation

 Discussion on design options
 Resource allocation
 Processing on MEs

 Measurement Results
 Conclusion

12/18/05 Yan Luo, ECE of UMass Lowell 39

Design Options

 Option 0: GP-based (Linux-based) switch
 Option 1: CP setup & and splices connections, DPs process

packets sent after splicing
 Connection setup & splicing is more complex than data forwarding
 Packets before splicing need to be passed through DRAM queues

 Option 2: DPs handle connection setup, splicing & forwarding

12/18/05 Yan Luo, ECE of UMass Lowell 40

IXP 2400 Block Diagram
 XScale core
 Microengines(MEs)

 2 clusters of 4
microengines each

 Each ME
 run up to 8 threads
 16KB instruction

store
 Local memory

 Scratchpad
memory, SRAM &
DRAM controllers

ME ME

MEME

ME ME

MEME

Scratch
Hash
CSR

IX bus
interface

SRAM
controller

XScale

SDRAM
controller

PCI

12/18/05 Yan Luo, ECE of UMass Lowell 41

Resource Allocation

 Client-side control block list: record states for connections between
clients and switch, states for forwarding data packets after splicing

 Server-side control block list: record state for connections between
server and switch

 URL table: select a back-end server for an incoming request

Client port

Server port

12/18/05 Yan Luo, ECE of UMass Lowell 42

Processing on MEs

 Control packets
 SYN
 HTTP request

 Data packets
 Response
 ACK

12/18/05 Yan Luo, ECE of UMass Lowell 43

Outline
 Motivation
 Background
 Design and Implementation
 Measurement Results
 Conclusion

12/18/05 Yan Luo, ECE of UMass Lowell 44

Experimental Setup
 Radisys ENP2611 containing an IXP2400

 XScale & ME: 600MHz
 8MB SRAM and 128MB DRAM
 Three 1Gbps Ethernet ports: 1 for Client port and

2 for Server ports
 Server: Apache web server on an Intel

3.0GHz Xeon processor
 Client: Httperf on a 2.5GHz Intel P4 processor
 Linux-based switch

 Loadable kernel module
 2.5GHz P4, two 1Gbps Ethernet NICs

12/18/05 Yan Luo, ECE of UMass Lowell 45

Measurement Results

0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256 1024

Request file size (KB)

L
a

te
n

c
y

 o
n

 t
h

e
 s

w
it

c
h

 (
m

s
)

Linux-based

NP-based

 Latency reduced significantly
 83.3% (0.6ms 0.1ms) @ 1KB

 The larger the file size, the higher the reduction
 89.5% @ 1MB file

12/18/05 Yan Luo, ECE of UMass Lowell 46

Analysis – Three Factors

IXP processing:
Optimized ISA
6.5 us

Linux processing: OS overheads
Processing a data packet in
splicing state: 13.6 us

No copy: Packets are
processed inside w/o
two copies

NIC-to-mem copy
Xeon 3.0Ghz Dual processor w/
1Gbps Intel Pro 1000 (88544GC)
NIC, 3 us to copy a 64-byte packet
by DMA

pollingInterrupt: NIC raises an interrupt
once a packet comes

NP-basedNP-basedLinux-basedLinux-based

12/18/05 Yan Luo, ECE of UMass Lowell 47

Measurement Results

 Throughput is increased significantly
 5.7x for small file size @ 1KB, 2.2x for large file @ 1MB

 Higher improvement for small files
 Latency reduction for control packets > data packets
 Control packets take a larger portion for small files

0

100

200

300

400

500

600

700

800

1 4 16 64 256 1024

Request file size (KB)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Linux-based

NP-based

12/18/05 Yan Luo, ECE of UMass Lowell 48

An Alternative Implementation
 SRAM: control blocks, hash tables, locks

 Can become a bottleneck when thousands of
connections are processed simultaneously; Not
possible to maintain a large number due to its
size limitation

 DRAM: control blocks, SRAM: hash table
and locks
 Memory accesses can be distributed more

evenly to SRAM and DRAM, their access can
be pipelined; increase the # of control blocks
that can be supported

12/18/05 Yan Luo, ECE of UMass Lowell 49

Measurement Results

 Fix request file size @ 64 KB, increase the
request rate

 665.6Mbps vs. 720.9Mbps

400

450

500

550

600

650

700

750

800

1000 1100 1200 1300 1400 1500 1600

Request Rate (requests/second)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

SRAM

DRAM

12/18/05 Yan Luo, ECE of UMass Lowell 50

Conclusions
 Designed and implemented a content-

aware switch using IXP2400
 Analyzed various tradeoffs in

implementation and compared its
performance with a Linux-based switch

 Measurement results show that NP-
based switch can improve the
performance significantly

12/18/05 Yan Luo, ECE of UMass Lowell 51

Backups

12/18/05 Yan Luo, ECE of UMass Lowell 52

TCP Splicing
client content switch

server
step1

step2

SYN(CSEQ)

SYN(DSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(DSEQ+1)
step3

step7

step8

step4
step5

step6

SYN(CSEQ)
SYN(SSEQ)

ACK(CSEQ+1)
DATA(CSEQ+1)
ACK(SSEQ+1)

DATA(SSEQ+1)
ACK(CSEQ+lenR+1)

DATA(DSEQ+1)
ACK(CSEQ+LenR+1)

ACK(DSEQ+lenD+1) ACK(SSEQ+lenD+1)

lenR: size of http request.
lenD: size of return document.

12/18/05 Yan Luo, ECE of UMass Lowell 53

TCP Handoff
client content switch server

step1

step2

SYN(CSEQ)

SYN(DSEQ)

ACK(CSEQ+1)

DATA(CSEQ+1)

ACK(DSEQ+1)
step3

step4
step5

step6

DATA(DSEQ+1)
ACK(CSEQ+lenR+1)

ACK(DSEQ+lenD+1) ACK(DSEQ+lenD+1)

Migrate
(Data, CSEQ, DSEQ)

• Migrate the created TCP connection from the switch to the back-end sever
– Create a TCP connection at the back-end without going through the TCP

three-way handshake
– Retrieve the state of an established connection and destroy the connection

without going through the normal message handshake required to close a
TCP connection

• Once the connection is handed off to the back-end server, the switch must
forward packets from the client to the appropriate back-end server

12/18/05 Yan Luo, ECE of UMass Lowell 54

NePSim Overview

ME C compiler
SDK

ME C program

Parser

Compiler-
generated
microcode

Microcode
assembler

Microcode program

NePSim

Internal format

host C compiler

NePSim source code

Stats Results

12/18/05 Yan Luo, ECE of UMass Lowell 55

NePSim Internals (I)
 Instruction

 Opcode: ALU, memory ref., CSR access etc.
 operands: GPR, XFER, immed,
 Shift: shift amount
 Optional token: ctx_swap, ind_ref, …

 Command (for memory, fbi accesses)
 Opcode: sram_read, sram_write, sdram_read, …
 Thread id: ME, thread
 Functional unit: sram, sdram, scratchpad, fbi
 Address: source or destination address
 Reg: source or destination XFER register
 Optional token: ctx_swap, ind_ref, …

 Event
 <cycle time, command>

