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Outline
 Network Processor Architecture
 NePSim Simulator
 Low Power Designs
 Content-Aware Switch
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Packet Processing in the Future Internet

•High processing power
•Support wire speed
•Programmable
•Scalable
•Optimized for network
applications
• …

ASIC

General-
Purpose Processors 

More packets
 &

Complex packet 
processing

Future Internet
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What is Network Processor ?

 Programmable processors optimized for
network applications and protocol processing

 High performance

 Programmable & Flexible

 Fast time-to-market

 Main players: AMCC, Intel, Hifn, Ezchip,
Agere

Semico Research Corp. Oct. 14, 2003
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Applications of Network Processors

DSL modem

Wireless router

VoIP terminal

Printer server

Edge router

VPN gateway

Core router
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Commercial Network Processors

Multi-threaded, on-chip traffic
management

OC-192/
10 Gbps

PayloadPlusAgere

Multi-threaded multiprocessor
complex, h/w accelerators

OC-48/
2.5 Gbps

5NP4GHifn

Classification engines, traffic
managers

OC-192/
10 Gbps

NP-2EZchip

Intel

AMCC

Vendor

IXP2850

nP7510

Product

Multi-core, h/w multi-threaded,
coprocessor, h/w accelerators

OC-192/
10 Gbps

Multi-core, customized ISA,
multi-tasking

OC-192/
10 Gbps

FeaturesLine
speed
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Typical Network Processor Architecture
SDRAM
(e.g. packet buffer)

SRAM
(e.g. routing table)

Co-processor

Network interfaces

Network ProcessorBus

H/w accelerator

PE
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MEv2
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MEv2
7

MEv2
5

MEv2
8

Intel®
XScale™

 Core
32K IC
32K DC

Rbuf
64 @ 128B

Tbuf
64 @ 128B

Hash
64/48/128

Scratch
16KB

QDR
SRAM

1

QDR
SRAM

2

DDRAM

G
A
S
K
E
T

PCI

(64b)
66 MHz

32b32b

32b32b
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64b64b
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4

CSRs 
-Fast_wr -UART
-Timers -GPIO
-BootROM/Slow Port

IXP2400IXP2400
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Hardware Multithreading

Multithreading hides memory latency

Memory Access

Time

Thread 0

Thread 1

running
ready

sleeping
yield

mem req
mem done

ALU

p0
p1
p2
p3
p4

ME
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Network Processor Research Overview

 NPs have become popular and attracted
more and more attention

 Performance has been the primary interest
of the NP community

 Power consumption of NPs is becoming a
big concern

•A ST200 edge router can support up to 8 NP boards each of which consumes 95~150W, 
The total power of such a 88.4cm x 44cm x 58cm router can reach 2700W when two 
chasis are supported in a single rack!     – Laurel Networks ST series router data sheet
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NP Research Tools
 Intel IXA SDK

 + accuracy, visualization
 - close-source, low speed, inflexibility, no power model

 SimpleScalar
 + open-source, popularity, power model (wattch)
 - disparity with real NP, inaccuracy

 NePSim
 + open-source, real NP, power model, accuracy
 - currently target IXP1200 only
  IEEE Micro Special Issue on NP, Sept/Oct 2004, Intel

IXP Summit,  Sept 2004
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Objectives of NePSim
 An open-source simulator for a real NP

(Intel® IXP1200, later IXP2400/2800…)
 Cycle-level accuracy of performance

simulation
 Flexibility for users to add new instructions

and functional units
 Integrated power model to enable power

dissipation simulation and optimization
 Extensibility for future NP architectures
 Fast simulation speed
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NePSim Overview

ME C compiler
(SDK)

Benchmark program

NePSim

host C compiler

NePSim source code

IXP1200 Performance
Statistics
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NePSim Software Architecture

 Microengine (six)

 Memory (SRAM/SDRAM)

 Network Device

 Debugger

 Statistic

 Verification

Microengine SRAM

SDRAM Network Device

Stats

Debugger

Verification
NePSim
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NePSim Internals

P0 P1 P2 P3 P4

 I: instruction
C: command
E: event      

I I I I
arbiter

SRAM controller

arbiter

SDRAM controller

C

C

Event Queue E
E

Wake up sleeping threads

E

Inst.
lookup

Inst.
decode

Read
operand

ALU, gen
mem
addr

Retire, gen
mem

Command
ME
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Verification of NePSim

NePSimIXP1200 Performance
Statistics

benchmarks

?=
23990  inst.(pc=129) executed

24008   sram req issued

24009      ….

23990  inst.(pc=129) executed

24008      sram req issued

24009      ….

Assertion Based Verification
(Linear Temporal Logic/Logic Of Constraint)

X. Chen, Y. Luo, H. Hsieh, L. Bhuyan, F. Balarin, "Utilizing Formal Assertions
for System Design of Network Processors," Design Automation and Test in
Europe (DATE), 2004.
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Power Model

See paperOrionMatrix, rr arbiterCommand bus arbiter, context
arbiter

See paperWattchArrayCommand FIFO, command
queue in controller, etc

32bitWattchALU and shifterALU , shifter

4KB, 4byte per block, direct
mapped, 10-bit address

XCactiCache w/o tag pathControl store, scratchpad

1 32-entry file, 1 read/write
port

XCactiArrayControl register per ME

4 32-entry files, 1 read/write
port per file

XCactiArrayXFER per ME

2 64-entry files, 1 read/write
port per file

XCactiArrayGPR per ME

ConfigurationsToolModel TypeH/W component
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Benchmarks

 Ipfwdr
 IPv4 forwarding(header validation, trie-based lookup)
 Medium SRAM access

 url
 Examing payload for URL pattern, used in content-aware routing
 Heavy SDRAM access

 Nat
 Network address translation
 medium SRAM acess

 Md4
 Message digest (compute a 128-bit message “signature”)
 Heavy computation and SDRAM access
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Performance implications
 More MEs do not necessarily bring performance gain
 More ME cause more memory contention
 ME idle time is abundant (up to 42%)
 Faster ME core results in more ME idle time with the same memory
 Non-optimal rcv/xmit configuration for NAT (transmitting ME is a bottleneck)

Throughput vs number
of MEs at 232MHz

Throughput vs number
of MEs at 464MHz

Idle time vs ME/memory
speed ratio
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Power breakdown
 Power dissipation by rcv and xmit MEs is similar across benchmarks
 Transmitting MEs consume ~5% more than receiving
 ALU consumes significant power ~45% (wattch model)
 Control store uses ~28% (accessed almost every cycle)
 GPRs burn ~13% , shifter ~7%, static ~7%
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Power efficiency observations
 Power consumption increases faster than

performance
 More MEs/threads bring more idle time

due to memory contention

Idle time vs # of MEs

We can reduce power consumption of
MEs while they waiting for memory
accesses

url ipfwdr

md4 nat

Power

Performance

Power

Power

Power

Performance

Performance

Performance
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Dynamic Voltage Scaling in NPs
 During the ME idle time, all threads are put

to ``wait'' state and the MEs are running with
the lowest activity.

 Applying DVS while MEs are not very
active can reduce the total power
consumption substantially.

 DVS control scheme
 Observes the ME idle time (%) periodically.
 When idle > threshold, scale down the

voltage and frequency (VF in short) by one
step unless the minimum allowable VF is hit.

 Idle < threshold, scale up the VF by one step
unless they are at maximum allowable values.
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DVS Power-performance
 Initial VF=1.3V, 600MHz
 DVS period: every 15K,

20K or 30K cycles make a
DVS decision to reduce or
increase FV.

 Up to 17% power savings
with less than 6%
performance loss

 On average 8% power
saving with <1%
performance degradation

Power and performance reduction by DVS
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Real-time Traffic Varies Greatly

 Shutdown unnecessary PEs, re-activate
PEs when needed

 Clock gating retains PE instructions
Yan Luo, Jia Yu, Jun Yang, Laxmi Bhuyan, Low Power Network
Processor Design Using Clock Gating, IEEE/ACM Design Automation
Conference (DAC), Anaheim, California, June 13-17, 2005
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Indicators of Gating/Activating PEs

PE

PE

Co-processor

Network Interface

Network Processor

Bus

H/w accelerator

Receive buffer

scheduler

Thread Queue

 Length of thread queue

 Fullness of internal buffers
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PE Shutdown Control Logic

counter > threshold

+

M
U

X + alpha

- alpha

T

Thread queue Internal Buffer

true

-PE

If (counter exceeds threshold)

   { turn-off-a-PE;

     decrement threshold }

Length > T

If (thread_queue_length > T)

   increment counter;

+PE

Buffer full

If (buffer is full)

   { turn-on-a-PE;

     increment threshold }
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Challenges of Clock Gating PEs
 Terminating threads safely

 Threads request memory resources
 Stop unfinished threads result in resource leakage

 Reschedule packets to avoid “orphan” ports
 Static thread-port mapping prohibits shutting down

PEs
 Dynamically assign packets to any waiting threads

 Avoid “extra” packet loss
 Burst packet arrival can overflow internal buffer
 Use a small extra buffer space to handle burst
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Experiment Results of Clock Gating

<4% reduction on system throughput
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NePSim 2.0

 Extension of NePSim to
model IXP2400/2800

 ME instruction set V. 2
 Modularized Network-On-

Chip (bus, crossbar etc.)
 Power modeling of

SRAM/DRAM
 Graphical user interface

for debugging and
monitoring



Design and
Implementation of A
Content-aware Switch
using A Network
Processor

Li Zhao, Yan Luo, Laxmi Bhuyan
University of California, Riverside

 Ravi Iyer
Intel Corporation
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Outline
 Motivation
 Background
 Design and Implementation
 Measurement Results
 Conclusions
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Content-aware Switch

Switch

Media Server

Application Server

HTML Server

www.yahoo.com
Internet

GET /cgi-bin/form HTTP/1.1 
Host: www.yahoo.com…

 APP. DATATCPIP

 Front-end of a web cluster, one VIP
 Route packets based on layer 5 information

 Examine application data in addition to IP& TCP
 Advantages over layer 4 switches

 Better load balancing: distribute packets based on content type
 Faster response: exploit cache affinity
 Better resource utilization: partition database
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Processing Elements in
Content-aware Switches

 ASIC (Application Specific Integrated Circuit)
 High processing capacity
 Long time to develop
 Lack the flexibility

 GP (General-purpose Processor)
 Programmable
 Cannot provide satisfactory performance due to overheads on

interrupt, moving packets through PCI bus, ISA not optimized
for networking applications

 NP (Network Processor)
 Operate at the link layer of the protocol, optimized ISA for

packet processing, multiprocessing and multithreading  high
performance

 Programmable so that they can achieve flexibility
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Outline
 Motivation
 Background

 NP architecture
 Mechanism to build a content-aware switch

 Design and Implementation
 Measurement Results
 Conclusion
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Background on NP
 Hardware

 Control processor (CP):
embedded general purpose
processor, maintain control
information

 Data processors (DPs): tuned
specifically for packet
processing

 Communicate through shared
DRAM

 NP operation on packets
 Packet arrives in receive buffer
 Header Processing
 Transfer the packet to transmit

buffer

CP

DP
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Mechanisms to Build a CA Switch
 TCP gateway

 An application level proxy
 Setup 1st connection w/ client,

parses request server, setup 2nd

connection w/ server
 Copy overhead

 TCP splicing
 Reduce the copy overhead
 Forward packet at network level

between the network interface
driver and the TCP/IP stack

 Two connections are spliced
together

 Modify fields in IP and TCP header

kernel

user

kernel

user

server

server

client

client
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Operations on a Content-Aware Switch
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Outline
 Motivation
 Background
 Design and Implementation

 Discussion on design options
 Resource allocation
 Processing on MEs

 Measurement Results
 Conclusion
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Design Options

 Option 0: GP-based (Linux-based) switch
 Option 1: CP setup & and splices connections, DPs process

packets sent after splicing
 Connection setup & splicing is more complex than data forwarding
 Packets before splicing need to be passed through DRAM queues

 Option 2: DPs handle connection setup, splicing & forwarding
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IXP 2400 Block Diagram
 XScale core
 Microengines(MEs)

 2 clusters of 4
microengines each

 Each ME
 run up to 8 threads
 16KB instruction

store
 Local memory

 Scratchpad
memory, SRAM &
DRAM controllers

ME ME

MEME

ME ME

MEME

Scratch
Hash
CSR

IX bus
interface

SRAM 
controller

XScale

SDRAM 
controller

PCI
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Resource Allocation

 Client-side control block list: record states for connections between
clients and switch, states for forwarding data packets after splicing

 Server-side control block list: record state for connections between
server and switch

 URL table: select a back-end server for an incoming request

Client port

Server port
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Processing on MEs

 Control packets
 SYN
 HTTP request

 Data packets
 Response
 ACK
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Outline
 Motivation
 Background
 Design and Implementation
 Measurement Results
 Conclusion
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Experimental Setup
 Radisys ENP2611 containing an IXP2400

 XScale & ME: 600MHz
 8MB SRAM and 128MB DRAM
 Three 1Gbps Ethernet ports: 1 for Client port and

2 for Server ports
 Server: Apache web server on an Intel

3.0GHz Xeon processor
 Client: Httperf on a 2.5GHz Intel P4 processor
 Linux-based switch

 Loadable kernel module
 2.5GHz P4, two 1Gbps Ethernet NICs
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Measurement Results
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 Latency reduced significantly
 83.3% (0.6ms  0.1ms) @ 1KB

 The larger the file size, the higher the reduction
 89.5% @ 1MB file
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Analysis – Three Factors

IXP processing:
Optimized ISA
6.5 us

Linux processing: OS overheads
Processing a data packet in
splicing state: 13.6 us

No copy: Packets are
processed inside w/o
two copies

NIC-to-mem copy
Xeon 3.0Ghz Dual processor w/
1Gbps Intel Pro 1000 (88544GC)
NIC, 3 us to copy a 64-byte packet
by DMA

pollingInterrupt: NIC raises an interrupt
once a packet comes

NP-basedNP-basedLinux-basedLinux-based
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Measurement Results

 Throughput is increased significantly
 5.7x for small file size @ 1KB, 2.2x for large file @ 1MB

 Higher improvement for small files
 Latency reduction for control packets > data packets
 Control packets take a larger portion for small files
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An Alternative Implementation
 SRAM: control blocks, hash tables, locks

 Can become a bottleneck when thousands of
connections are processed simultaneously; Not
possible to maintain a large number due to its
size limitation

 DRAM: control blocks, SRAM: hash table
and locks
 Memory accesses can be distributed more

evenly to SRAM and DRAM, their access can
be pipelined; increase the # of control blocks
that can be supported
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Measurement Results

 Fix request file size @ 64 KB, increase the
request rate

 665.6Mbps vs. 720.9Mbps
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Conclusions
 Designed and implemented a content-

aware switch using IXP2400
 Analyzed various tradeoffs in

implementation and compared its
performance with a Linux-based switch

 Measurement results show that NP-
based switch can improve the
performance significantly
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Backups
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TCP Splicing
client content switch  

server 
step1 

step2 

SYN(CSEQ) 

SYN(DSEQ) 

ACK(CSEQ+1)
 

DATA(CSEQ+1) 

ACK(DSEQ+1)
step3 

step7 

step8 

step4 
step5 

step6 

SYN(CSEQ) 
SYN(SSEQ) 

ACK(CSEQ+1) 
DATA(CSEQ+1) 
ACK(SSEQ+1) 

DATA(SSEQ+1) 
ACK(CSEQ+lenR+1) 

DATA(DSEQ+1)  
ACK(CSEQ+LenR+1)

 
ACK(DSEQ+lenD+1) ACK(SSEQ+lenD+1) 

lenR: size of http request. 
lenD: size of return document. 
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TCP Handoff
client content switch  server

 
step1 

step2

SYN(CSEQ) 

SYN(DSEQ) 

ACK(CSEQ+1)
 

DATA(CSEQ+1) 

ACK(DSEQ+1)
step3

step4 
step5

 

step6
  

 
 

 
 

DATA(DSEQ+1) 
ACK(CSEQ+lenR+1) 

 
ACK(DSEQ+lenD+1) ACK(DSEQ+lenD+1) 

Migrate
(Data, CSEQ, DSEQ)

• Migrate the created TCP connection from the switch to the back-end sever
– Create a TCP connection at the back-end without going through the TCP

three-way handshake
– Retrieve the state of an established connection and destroy the connection

without going through the normal message handshake required to close a
TCP connection

• Once the connection is handed off to the back-end server, the switch must
forward packets from the client to the appropriate back-end server
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NePSim Overview

ME C compiler
SDK

ME C program

Parser

Compiler-
generated
microcode

Microcode 
assembler

Microcode program

NePSim

Internal format

host C compiler

NePSim source code

Stats Results
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NePSim Internals (I)
 Instruction

 Opcode: ALU, memory ref., CSR access etc.
 operands: GPR, XFER, immed,
 Shift: shift amount
 Optional token: ctx_swap, ind_ref, …

 Command ( for memory, fbi accesses)
 Opcode: sram_read, sram_write, sdram_read, …
 Thread id: ME, thread
 Functional unit: sram, sdram, scratchpad, fbi
 Address: source or destination address
 Reg: source or destination XFER register
 Optional token: ctx_swap, ind_ref, …

 Event
 <cycle time, command>


