
2/26/06 1

Branch Pred ict ion (3 .4 , 3 .5)

Instructor: Prof. Yan Luo

2/26/06 2

W hy do we want to pred ict b ranches?

• MIPS based pipeline – 1 instruction issued per cycle, branch
hazard of 1 cycle.
– Delayed branch

• Modern processor and next generation – multiple instructions
issued per cycle, more branch hazard cycles will incur.
– Cost of branch misfetch goes up

– Pentium Pro – 3 instructions issued per cycle, 12+ cycle misfetch penalty
HUGE penalty for a misfetched path following a branch

2/26/06 3

Branch Pred ict ion

• Easiest (static prediction)
– Always taken, always not taken

– Opcode based

– Displacement based (forward not taken, backward taken)

– Compiler directed (branch likely, branch not likely)

• Next easiest
– 1 bit predictor – remember last taken/not taken per branch

Use a branch-prediction buffer or branch-history table

Use part of the PC (low-order bits) to index buffer/table
– Multiple branches may share the same bit

 Invert the bit if the prediction is wrong

Backward branches for loops will be mispredicted twice

2/26/06 4

2 -b it Branch Pred ict ion

• Has 4 states instead of 2, allowing for more information about
tendencies

• A prediction must miss twice before it is changed

• Good for backward branches of loops

2/26/06 5

Branch History Tab le

01

BHTbranch PC

• Has limited size

• 2 bits by N (e.g. 4K)

• Uses low-order bits of branch
PC to choose entry

2/26/06 6

Correlat ing or Two-level Pred ictors

• Correlating branch predictors also look at other branches for clues
if (aa==2) -- branch b1

aa = 0;

if (bb==2) --- branch b2

bb = 0;

if(aa!=bb) { … --- branch b3 – Clearly depends on the results of b1 and
b2

Prediction if the last branch is NT

Prediction if the last branch is T

(1,1) predictor – uses history of 1 branch and uses a 1-bit predictor

2/26/06 7

Another Example
If (d==0)

 d=1;

If (d=1) ---

Code Sequence assuming d is assigned to R1:

 BNEZ R1, L1 ; branch b1 (d!=0)

 DADDU R1,R0,#1 ; d==0, so d=1

L1: DADDIU R3,R1,#-1

 BNEZ R3,L2 ; branch b2 (d!=1)

Possible Execution Sequence for the code fragment;

Initial d d==0? B1 d before b2 d==1? b2

0 yes not taken 1 yes not taken

1 No taken 1 yes not taken

2 no taken 2 no taken

Clearly, if b1 is not taken b2 will not be taken => correlation

2/26/06 8

Correlat ing Branch Pred ictor

• If we use 2 branches as histories, then there are 4 possibilities
(T-T, NT-T, NT-NT, NT-T).

• For each possibility, we need to use a predictor (1-bit, 2-bit).

• And this repeats for every branch.

(2,2) branch prediction

2/26/06 9

Perform ance of Correlat ing Branch Pred ict ion

• With same number of
state bits, (2,2) performs
better than noncorrelating
2-bit predictor.

• Outperforms a 2-bit
predictor with infinite
number of entries

2/26/06 10

General (m ,n) Branch Pred ictors

• The global history register is an m-bit shift register that records
the last m branches encountered by the processor

• Usually use both the PC address and the GHR (2-level)

01

m-bit ghr

00

n-bit predictors

PC
Combining

funciton

2/26/06 11

Is Branch Pred ictor Enoug h?

• When is using branch prediction beneficial?
– When the outcome is known later than the target

– For example, in our standard MIPS pipeline, we compute the target in ID
stage but testing the branch condition incur a structure hazard in register
file.

• If we predict the branch is taken and suppose it is correct, what is
the target address?
– Need a mechanism to provide target address as well

• Can we eliminate the one cycle delay for the 5-stage pipeline?
– Need to fetch from branch target immediately after branch

2/26/06 12

Branch Targ et Buffer (BTB)

Is the current instruction a branch ?
• BTB provides the answer before the current instruction is decoded

and therefore enables fetching to begin after IF-stage .

What is the branch target ?
• BTB provides the branch target if the prediction is a taken direct

branch (for not taken branches the target is simply PC+4) .

2/26/06 13

BTB

2/26/06 14

BTB operations

• BTB hit, prediction correct →
0 cycle delay

• BTB hit, misprediction ≥ 2
cycle penalty

• BTB miss, branch ≥ 1 cycle
penalty

2/26/06 15

BTB Perform ance

• Two things can go wrong
– BTB miss (misfetch)

– Mispredicted a branch (mispredict)

• Suppose for branches, BTB hit rate of 85% and predict accuracy
of 90%, misfetch penalty of 2 cycles and mispredict penalty of 5
cycles. What is the average branch penalty?

2*(15%) + 5*(85%*10%)

see also the example on Pg. 211

• BTB and BPT can be used together to perform better prediction

2/26/06 16

Integ rated Instruction Fetch Unit

Separate out IF from the pipeline and integrate with the following

components. So, the pipeline consists of Issue, Read, EX, and WB

(scoreboarding) ; Or Issue, EX and WB stages (Tomasulo).

1. Integrated Branch Prediction – Branch predictor is part of the IFU.

2. Instruction Prefetch – Fetch instn from IM ahead of PC with the help of
branch predictor and store in a prefetch buffer.

3. Instruction Memory Access and Buffering - Keep on filling the Instruction
Queue independent of the execution.

2/26/06 17

Branch Pred ict ion Summary

• The better we predict, the higher penalty we might incur

• 2-bit predictors capture tendencies well

• Correlating predictors improve accuracy, particularly when
combined with 2-bit predictors

• Accurate branch prediction does no good if we don’t know there
was a branch to predict

• BTB identifies branches in IF stage

• BTB combined with branch prediction table identifies branches to
predict, and predicts them well

2/26/06 18

Speculat ion
Exp loring ILP w ith Mult i-Issue

(3 .6)

2/26/06 19

How to obtain CPI> 1 ?

• Issue more than one instruction per cycle

• Compiler needs to do a good job in scheduling code (rearranging code
sequence) – statically scheduled

• Fetch up to n instructions as an issue packet if issue width is n

• Check hazards during issue stage (including decode)
– Issue checks are too complex to perform in one clock cycle

– Issue stage is split and pipelined

– Needs to check hazards within a packet, between two packets, among current and
all the earlier instructions in execution.

In effect an n-fold pipeline with complex issue logic and large set of bypass paths.

Type Pipe Stages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

2/26/06 20

Superscalar w ith Speculat ion

• Speculative execution – execute control dependent instructions
even when we are not sure if they should be executed

• With branch prediction, we speculate on the outcome of the
branches and execute the program as if our guesses were
correct. Misprediction? Hardware undo
– Instructions after the branch can be fetched and issued, but can not

execute before the branch is resolved

– Speculation allows them to execute with care.

• Multi-issue + branch prediction + Tomasulo

• Implemented in a number of processors:

PowerPC 603/604/G3/G4, Pentium II/III/4, Alpha 21264, AMD
K5/K6/Athlon, MIPS R10k/R12k

2/26/06 21

Hardware Modif icat ions

• Speculated instructions execute and generate results. Should they
be written into register file? Should they be passed onto dependent
instructions (in reservation stations)?

• Separate the bypassing paths from actual completion of an
instruction. Do not allow speculated instructions to perform any
updates that cannot be undone.

• When instructions are no longer speculative, allow them to update
register or memory – instruction commit.
– Out-of-order execution, in-order commit (provide precise exception handling)

• Then where are the instructions and their results between execution
completion and instruction commit? Instructions may finish
considerably before their commit.

• Reorder buffer (ROB) holds the results of instructions that have
finished execution but have not committed.
– ROB is a source of operands for instructions, much like the store buffer

2/26/06 22

HW support for More ILP• Speculation: allow an instruction to issue that is dependent on
branch predicted to be taken without any consequences (including
exceptions) if branch is not actually taken (“HW undo”); called
“boosting”

• Combine branch prediction with dynamic scheduling to execute before
branches resolved

• Separate speculative bypassing of results from real bypassing of
results
– When instruction no longer speculative,

write boosted results (instruction commit)
or discard boosted results

– execute out-of-order but commit in-order
to prevent irrevocable action (update state or exception)
until instruction commits

HW support for More ILP

2/26/06 23

HW support for More ILP
• Need HW buffer for results of uncommitted

instructions: reorder buffer
– 3 fields: instr, destination, value
– Reorder buffer can be operand source => more

registers like RS
– Use reorder buffer number instead of reservation

station when execution completes
– Supplies operands between execution complete

& commit
– Once operand commits,

result is put into register
– Instructions commit in order
– As a result, its easy to undo speculated

instructions
on mispredicted branches
or on exceptions

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

2/26/06 24

Four Steps of Speculat ive Tomasulo
Alg orithm

1. Issue— get instruction from FP Op Queue
 If reservation station and reorder buffer slot free, issue instr & send operands &

reorder buffer no. for destination (this stage sometimes called “dispatch”)
2. Execution— operate on operands (EX)

 When both operands ready then execute; if not ready, watch CDB for result; when
both in reservation station, execute; checks RAW (sometimes called “issue”)

3. Write result— finish execution (WB)
 Write on Common Data Bus to all awaiting FUs

& reorder buffer; mark reservation station available.
4. Commit— update register with reorder result

 When instr. at head of reorder buffer & result present, update register with result (or
store to memory) and remove instr from reorder buffer. Mispredicted branch flushes
reorder buffer (sometimes called “graduation”)

2/26/06 25

Addit ional Functionalit ies of ROB

• Dynamically execute instructions while maintaining precise interrupt model.
– In-order commit allows handling interrupts in-order at commit time

• Undo speculative actions when a branch is mispredicted
– In reality, misprediction is expected to be handled as soon as possible. Flushing all the

entries that appear after the branch, allowing those preceding instructions to continue.

– Performance is very sensitive to branch-prediction mechanism
Prediction accuracy, misprediction detection and recovery

• Avoids hazards through memory (memory disambiguation)
– WAW and WAR are removed since updating memory is done in order

– RAW hazards are maintained by 2 restrictions:
A load’s effective address is computed after all earlier stores

A load can not read from memory if there is an earlier store in ROB having the same
effective address (some machine simply bypass the value from store to the load)

