
1

2/13/06 Lec 1 1

Umass Lowell 16.671
Advanced Computer Architecture

Instructor: Prof. Yan Luo

Lecture 1
Fundamentals of Computer Design

2/13/06 Lec 1 2

Instructor Information

Prof. Yan Luo
Office: Ball Bldg Room 413
E-mail: yan_luo@uml.edu
Tel: (978) 934-2592
Office Hours: Wed, Fri 9:30-11am

2

2/13/06 Lec 1 3

Course Syllabus

• Pipeline and Hazards - Appendix A
• Instruction level parallelism, Dynamic scheduling,
Branch Prediction and Speculation – Ch 3 Text

• ILP with Software Approaches – Ch 4
• Memory Hierarchy – Ch 5
• VLIW, Multithreading, CMP and Network
processor architectures – From papers

Text: Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, Morgan
Kaufman Publisher, 3rd Ed. ISBN 1558605967

Prerequisite: 16.561 Computer Architecture

2/13/06 Lec 1 4

Course Details

Grading
Quiz 1: 15%
Quiz 2: 15%
Class Participation: 20%
Project: 50%

3

2/13/06 Lec 1 5

What is *Computer Architecture*

Computer Architecture =
Instruction Set Architecture +
Organization +
Hardware + …

2/13/06 Lec 1 6

The Instruction Set: a Critical Interface

instruction set

software

hardware

The actual programmer visible instruction set

4

2/13/06 Lec 1 7

Instruction-Set Processor Design

• Architecture (ISA) programmer/compiler view
– “functional appearance to its immediate user/system

programmer”
– Opcodes, addressing modes, architected registers, IEEE

floating point
• Implementation (µarchitecture) processor designer/view

– “logical structure or organization that performs the
architecture”

– Pipelining, functional units, caches, physical registers
• Realization (chip) chip/system designer view

– “physical structure that embodies the implementation”
– Gates, cells, transistors, wires

2/13/06 Lec 1 8

Hardware

• Machine specifics:
– Feature size (10 microns in 1971 to 0.18 microns in 2001,

90nm in 2003)
• Minimum size of a transistor or a wire in either the x or y

dimension
– Logic designs
– Packaging technology
– Clock rate
– Supply voltage
…

5

2/13/06 Lec 1 9

Relationship Between the Three Aspects

• Processors having identical ISA may be
very different in organization.
– e.g. NEC VR 5432 and NEC VR 4122

• Processors with identical ISA and nearly
identical organization are still not nearly
identical.
– e.g. Pentium II and Celeron are nearly identical but

differ at clock rates and memory systems

Architecture covers all three aspects.

2/13/06 Lec 1 10

Applications and Requirements

• Scientific/numerical: weather prediction, molecular
modeling
– Need: large memory, floating-point arithmetic

• Commercial: inventory, payroll, web serving, e-
commerce
– Need: integer arithmetic, high I/O

• Embedded: automobile engines, microwave, PDAs
– Need: low power, low cost, interrupt driven

• Home computing: multimedia, games, entertainment
– Need: high data bandwidth, graphics

6

2/13/06 Lec 1 11

Classes of Computers

• High performance (supercomputers)
– Supercomputers – Cray T-90
– Massively parallel computers – Cray T3E

• Balanced cost/performance
– Workstations – SPARCstations
– Servers – SGI Origin, UltraSPARC
– High-end PCs – Pentium quads

• Low cost/power
– Low-end PCs, laptops, PDAs – mobile Pentiums

2/13/06 Lec 1 12

Why Study Computer Architecture

• Aren’t they fast enough already?
– Are they?
– Fast enough to do everything we will EVER want?

• AI, protein sequencing, graphics
– Is speed the only goal?

• Power: heat dissipation + battery life
• Cost
• Reliability
• Etc.

Answer #1: requirements are always changing

7

2/13/06 Lec 1 13

Why Study Computer Architecture

• Annual technology improvements (approx.)
– Logic: density + 25%, speed +20%
– DRAM (memory): density +60%, speed: +4%
– Disk: density +25%, disk speed: +4%

• Designs change even if requirements are
fixed. But the requirements are not fixed.

Answer #2: technology playing field is always changing

2/13/06 Lec 1 14

Example of Changing Designs

• Having, or not having caches
– 1970: 10K transistors on a single chip, DRAM

faster than logic → having a cache is bad
– 1990: 1M transistors, logic is faster than DRAM
→ having a cache is good

– Will caches ever be a bad idea again?

8

2/13/06 Lec 1 15

Performance Growth in Perspective

• Same absolute increase in computing power
– Big Bang – 2001
– 2001 – 2003

• 1971 – 2001: performance improved
35,000X!!!
– What if cars improved at this rate?

2/13/06 Lec 1 16

Measuring Performance

• Latency (response time, execution time)
– Minimize time to wait for a computation

• Throughput (tasks completed per unit time, bandwidth)
– Maximize work done in a given interval
– = 1/latency when there is no overlap among tasks
– > 1/latency when there is

• In real processors there is always overlap (pipelining)

• Both are important

9

2/13/06 Lec 1 17

Performance Terminology

“X is n times faster than Y’’ means:
Execution timeY

Execution timeX

= n

“X is m% faster than Y’’ means:

Execution timeY - Execution timeX

 Execution timeX

= mX 100%

2/13/06 Lec 1 18

Execution time w/o E (Before)

Execution time w E (After)

Compute Speedup – Amdahl’s Law

Speedup is due to enhancement(E):

Speedup (E) =

TimeBefore

Suppose that enhancement E accelerates a fraction F
of the task by a factor S, and the remainder of the task
is unaffected, what is the Execution Execution timetimeafterafter and
Speedup(E) Speedup(E) ?

TimeAfter

10

2/13/06 Lec 1 19

Amdahl’s Law

Execution Execution timetimeafterafter

Speedup(E)Speedup(E)

= ExTimebefore x [(1-F) + F
S]

=
ExTimebefore

ExTimeafter

=
1

F
S][(1-F) +

2/13/06 Lec 1 20

Amdahl’s Law – An Example

Q: Floating point instructions improved to run 2X;
but only 10% of execution time are FP ops. What is
the execution time and speedup after improvement?

Ans:
F = 0.1, S = 2

ExTimeafter = ExTimebefore x [(1-0.1) + 0.1/2] = 0.95 ExTimebefore

Speedup =
ExTimebefore

ExTimeafter

=
1

0.95
= 1.053

Read examples in the book!

11

2/13/06 Lec 1 21

Corollary: Make the common case fast

• All instructions require an instruction fetch, only a
fraction require a data fetch/store.
– Optimize instruction access over data access

• Programs exhibit locality
– Spatial Locality
– Temporal Locality

• Access to small memories is faster
– Provide a storage hierarchy such that the most frequent

accesses are to the smallest (closest) memories.

Cache Memory Disk/TapeRegisters

2/13/06 Lec 1 22

CPU Performance

• The Fundamental Law

• Three components of CPU performance:
– Instruction count
– CPI
– Clock cycle time

cycle

seconds

ninstructio

cycles

program

nsinstructio

program

seconds
 time CPU !!==

 Inst. Count CPI Clock

Program X

Compiler X X

Inst. Set
Architecture

X X X

ìArch X X

Physical Design X

12

2/13/06 Lec 1 23

CPI - Cycles per Instruction

Average CPI:

!
=

="=

=

n

1i

i
iii

Countn Instructio

IC
F whereFCPI

Countn Instructio Total

Cycle Total
 CPI

)IC (CPI timeCycle timeCPU
n

1i

ii!
=

""=

Instruction type ALU Load Store Branch

Frequency 43% 21% 12% 24%

Clock cycles 1 2 2 2

Example:

average CPI = 0.43 + 0.42 + 0.24 + 0.48 = 1.57 cycles/instruction

2/13/06 Lec 1 24

Example

• Instruction mix of a RISC architecture.

• Add a register-memory ALU instruction format?

• One op. in register, one op. in memory

• The new instruction will take 2 cc but will also
increase the Branches to 3 cc.

Q: What fraction of loads must be eliminated for this
to pay off?

Inst. ALU Load Store Branch

Freq. 50% 20% 10% 20%

C. C. 1 2 2 2

13

2/13/06 Lec 1 25

Solution

Exec Time = Instr. Cnt. x CPI x Cycle time

(1.7-X)/(1-X)1-XCPI=1.51.0

2X2XReg/Mem
.63.2.42.2Branch
.22.1.22.1Store

.4-2X2.2-X.42.2Load
.5-X1.5-X.51.5ALU

CPIixIiCPIiIiCPIixFiCPIiFiInstr.

Instr. Cntold x CPIold x Cycle timeold >= Instr. Cntnew x CPInew x Cycle timenew

1.0 x 1.5 >= (1-X) x (1.7-X)/(1-X)

X >= 0.2
ALL loads must be eliminated for this to be a win!

2/13/06 Lec 1 26

Benchmarks

• “program” as unit of work
– There are millions of programs
– Not all are the same, most are very different
– Which ones to use?

• Benchmarks
– Standard programs for measuring or comparing

performance
Representative of programs people care about

repeatable!!

14

2/13/06 Lec 1 27

Choosing Programs to Evaluate Perf.

• Toy benchmarks
– e.g., quicksort, puzzle
– No one really runs. Scary fact: used to prove the value of RISC

in early 80’s
• Synthetic benchmarks

– Attempt to match average frequencies of operations and
operands in real workloads.

– e.g., Whetstone, Dhrystone
– Often slightly more complex than kernels; But do not represent

real programs
• Kernels

– Most frequently executed pieces of real programs
– e.g., livermore loops
– Good for focusing on individual features not big picture
– Tend to over-emphasize target feature

• Real programs
– e.g., gcc, spice, SPEC89, 92, 95, SPEC2000 (standard

performance evaluation corporation)

2/13/06 Lec 1 28

MIPS and MFLOPS
• MIPS: millions of instructions per second:

– MIPS = Inst. count/ (CPU time * 10**6) = Clock
rate/(CPI*106)

– easy to understand and to market
– inst. set dependent, cannot be used across machines.
– program dependent
– can vary inversely to performance! (why? read the book)

• MFLOPS: million of FP ops per second.
– less compiler dependent than MIPS.
– not all FP ops are implemented in h/w on all machines.
– not all FP ops have same latencies.
– normalized MFLOPS: uses an equivalence table to even

out the various latencies of FP ops.

