
Instructor: Prof. Yan Luo

UML 16.650 Advanced Computer Architecture

4/18/07 2

• Different measure: AMAT

• Average Memory Access time (AMAT)

= HitTime HitRate + MissTime MissRate = HitTime (1-MissRate)+ MissTime MissRate

= HitTime + (MissRate MissPenalty)

MissPenalty = MissTime - HitTime

• CPU time

= (CPU execution clock cycles w/o memory stalls+Memory stall clock cycles) x cc

• CPI = CPIideal + Memory stall per instruction

• Note: memory hit time is included in execution cycles.

4/18/07 3

• Suppose a processor executes at

– Clock Rate = 200 MHz (5 ns per cycle)

– Base CPI = 1.1

– 50% arith/logic, 30% ld/st, 20% control

• Suppose 10% miss rate in data memory and miss penalty is 50 cycles

• Suppose 1% miss rate in instructions memory, same miss penalty

• CPI = Base CPI + average stalls per instruction
1.1(cycles/ins) +

[0.30 (DataMops/ins)
x 0.10 (miss/DataMop) x 50 (cycle/miss)] +

[1 (InstMop/ins)
x 0.01 (miss/InstMop) x 50 (cycle/miss)]

= (1.1 + 1.5 + .5) cycle/ins = 3.1

• AMAT=1+(1/1.3 1% + 0.3/1.3 10%) 50 = 2.54

4/18/07 4

• Suppose a processor has the following parameters:

– CPI = 2 (w/o memory stalls)

– mem access per instruction = 1.5

• Compare AMAT and CPU time for a direct mapped cache and a 2-way set associative

cache assuming:

– AMATd = hit time + miss rate * miss penalty = 1*1 + 0.014*75 = 2.05 ns

– AMAT2 = 1*1.25 + 0.01*75 = 2 ns < 2.05 ns

– CPUd = (CPI*cc + mem. stall time)*IC = (2*1 + 1.5*0.014*75)IC = 3.575*IC

– CPU2 = (2*1.25 + 1.5*0.01*75)IC = 3.625*IC > CPUd !

• Change in cc affects all instructions while reduction in miss rate benefit only memory

instructions.

1

1

Hit cycle

1.0%75 ns1.25ns(why?)2-way associative

1.4%75 ns1nsDirect map

Miss rateMiss penaltycc

4/18/07 5

• In OOO processors, memory stall cycles are overlapped with

execution of other instructions. Miss penalty should not include

this overlapped part.

mem stall cycle per instruction = mem miss per instruction x

(total miss penalty – overlapped miss penalty)

• For the previous example. Suppose 30% of the 75ns miss

penalty can be overlapped, what is the AMAT and CPU time?

– Assume using direct map cache, cc=1.25ns to handle out of order

execution.

AMATd = 1*1.25 + 0.014*(75*0.7) = 1.985 ns

CPU time =(2*1.25 + 1.5 * 0.014 * (75*0.7))*IC = 3.6025 IC < CPU2

4/18/07 6

• In the past 10 years, there are over 5000 research papers on

reducing the gap between the CPU and memory speeds.

• We will address some them in four categories:

– Reducing the cache miss penalty

– Reducing the miss rate

– Reducing the cache miss penalty or miss rate via parallelism

– Reducing the hit time

4/18/07 7

• Types of cache misses

– the three Cs:

Compulsory: first access to a block is a miss.

Conflict: collision misses, blocks map to the same set.

Capacity: replaced blocks that are later referenced, cache too small.

– the fourth C:

Coherence: shared memory, invalid copies

• Relative effects

– Fully associative placement: no conflict misses.

– Larger block size might reduce compulsory misses.

– Larger caches have lower capacity misses.

Most of these have negative impacts on hit time and therefore cycle time.

– a direct mapped cache can be faster than a set associative one

4/18/07 8

1. Multilevel Caches – “the more the merrier”

– Add another level behind L1 cache to speed up access from memory

(why not combine the two levels into one? Because larger cache will

incur longer access time and could stretch cc to hurt all instructions!)

AMAT = Hit timeL1 + Miss rateL1

x (Hit timeL2 + Local miss rateL2 x Miss penaltyL2)

Average memory stall time = Miss rateL1 x Hit timeL2

 + Miss rateL1 x Local miss rateL2 x Miss penaltyL2

Average memory stalls per instruction = Miss per instructionL1 x Hit timeL2

+ Miss per instrucitonL2 x Miss penaltyL2

4/18/07 9

• For every 1000 instructions, 40 misses in L1 and 20 misses in L2;

Hit cycle in L1 is 1, L2 is 10; Miss penalty from L2 to memory is 100

cycles; there are 1.5 memory references per instruction. What is AMAT

and average stall cycles per instruction?

– AMAT = [1 + 40/1000 * (10 + 20/40 * 100)] *cc = 3.4cc

– Average stall cycles per instruction = 1.5 * 40/1000 * 10 + 1.5 * 20/1000 * 100 =

3.6 cycles

• Note: We have not distinguished reads and writes. Access L2 only on

L1 miss, i.e. write back cache

4/18/07 10

2. Critical word first – “impatience”

L2 cache block:

Requested word: 5

Critical word first:

(wrapped fetch)

3. Serves reads before writes have been completed – “preference”

– Recall: In ooo processor, the reorder buffer contains loads/stores

(waiting for address computation or memory) in program order.

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

Ld

r4, 1000

St

35, 1000
to memoryld/st enqueue

4/18/07 11

– Complications with write buffer: it stores updated blocks but the L2 hasn’t

seen them yet! What will happen on a L1 read miss?

Conventionally, read miss stalls and waits until write buffer flushes its

content to L2 and then access L2 (slow).

Alternatively, L1 read miss should check write buffer before going to L2

(faster).

4. Improving write buffer (in write through) efficiency –

“companionship”

– Two writes with the same address are coalesced.

– Writes stall if no empty entries are present -> utilize the entries efficiently

using write merge.

4/18/07 12

4/18/07 13

• Victim Cache – “recycling”

– Holds victim blocks discarded from the L1 cache due to replacement.

– Small (otherwise an L2) and fully associative.

– Checked on a L1 miss. If found, block is swapped back to L1 (the block

previously took its place is put into victim cache).

– Works better for small L1 caches since it saves victim blocks from conflict

misses.

– Effective: a 4-entry vc can reduce of the misses in a 4KB L1 cache

[Jouppi, 1990].

L1 L2hit in victim

cache

4/18/07 14

1. Larger block size

• Takes advantage of locality

• But, longer miss penalty and maybe more conflict misses (w/ same cache size)

• Block size increase should not reach the point where miss rate increases.

2. Larger cache size

• Longer hit time – suitable for lower level caches.

3. Higher associativity

• 2:1 cache rule of thumb: a direct-mapped cache of size N has about the same

miss rate as a 2-way set-associative cache of size N/2 (for cache size <

128KB)

• Longer hit time

Improving an aspect of AMAT comes at the expense of another!

4/18/07 15

4. Pseudoassociative cache – a direct-mapped cache having same hit

rate as a 2-way set-associative cache

• If the first access is a miss, try an alternative block (by modifying an

address portion)

• A normal hit time and a pseudohit time – in addition to the miss penalty

4/18/07 16

1. Use small and simple L1 cache

– Small hardware is faster

– Direct map cache is faster

2. Pipeline writes

– In writes: must check tag BEFORE write is done.

– Separate tag check and data write, delay data write with respect to tag

check: back to back writes (Alpha 21064).

3. Trace cache, another type of I-cache (Pentium 4)

– Stores dynamic instruction sequence (trace) instead of static sequence.

– Include multiple taken branches and make them into straight line code

Reduce I-cache misses due to fetch branch target since the target now is

just the next instruction

– Downside:

Instruction may repeatedly occur in trace cache – wasting space

4/18/07 17

4. Avoid address translation

– Addresses sent to cache need to be translated from virtual addresses to physical
addresses – done by translation lookaside buffer (TLB)

– Translation occur before going to the L1 cache – cost time

– Virtually addressed cache:

+ Index the cache using virtual addresses, avoid TLB accesses, save time

Context switch causes flushing the entire cache

Alias: different virtual addresses may map into same physical address – need
protection mechanism!

5. Way prediction – approaching hit time of a direct-mapped cache for set associative
caches

• Do not compare all the tags.

• Predict one and access the way just as a direct-mapped cache.

• Prediction is done in the previous cache access (extra prediction bits are
maintained).

• On a miss, all the rest ways are compared as a normal set-associative cache –
takes longer time.

• Alpha 21264 instruction cache

4/18/07 18

1. Nonblocking cache (lockup-free)

– Continue to service cache accesses during a miss – works for ooo processors.

– Significantly increase the complexity of the cache controller.

2. Hardware prefetching

– Get the data or instruction before it is accessed

– Does not slow down other cache activities

Continue to serve other instructions or data while waiting for the prefetched data –

normally nonblocking.

– Never replace useful data (use additional buffers).

– Stream buffer for instructions

On I-cache miss, check stream buffer.

Stream buffer hit move the block into I-cache, refill (prefetch) stream buffer with

next block.

Stream buffer miss fetch target block into I-cache and next block into stream

buffer

4/18/07 19

3. Compiler-controlled prefetching

– Compiler inserted prefetch instructions; two types:

register prefetch: data loaded to registers

cache prefetch: data to CM.

– Either type can be

faulting or

non-faulting, i.e. allowed to cause a page fault or not.

– The most effective is “semantically invisible” prefetches

Does not change register content and non-faulting.

– Prefetching is effective with loop unrolling (if miss penalty is low)

or software pipelining (large penalty).

– But,

instruction overhead (such overhead can not exceed the benefits)

Maybe the data or instruction is already in the cache

Is the prefetch early enough for the data to arrive by the time it is needed

