16.650 Advanced Computer Architecture

Multithreading

Instructor: Prof. Yan Luo

Multithreading

Consider the following sequence of
Instructions through a pipeline

LW rl, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12

SW 12(r1) r5 t0 .t1 ,t2 ,t3 . t4 . t5 . t6 .t7 .t8 ,t9 t10 t11 t12 t13 t14
| FlD[X|M[w
Flpo[D|D|D[X MW
FIF|F|F|D|D|D|D|X MW
FIFIF|IF|D|D|[D[D

Multithreading

« How can we guarantee no dependencies between
instructions in a pipeline?
— One way is to interleave execution of instructions from
different program threads on same pipeline — Micro
context switching

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

T1: LWrl, 0(r2)
T2: ADDr7,r1, r4

T3: XORIr5, 14, #12 0 t1 2 3 t4 t5 16 {7 18 19
- [I

T4 SWO(rv), 5 FIDIXIMIW]._i_ i Lastinstruction

TLLWrS, 12(rl) - [Flo]xmw | = H in a thread
P . always completes
= : ,F DIXIMIW] | : writeback before
o0 .F DiX MW —hnext instruction
E : : : F | in same thread

reads regfile .

Avoiding Memory Latency

General processors switch to another context on
1/0 operation => Multithreading,
Multiprogramming, etc. An O/S function. Large
overhead! Why?

Why not context switch on a cache miss? =>
Hardware multithreading.

Can we afford that overhead now? => Need
changes in architecture to avoid stack operations.
How to achieve It?

Have many contexts CPU resident (not memory
resident) by having separate PCs and registers for
each thread. No need to store them in stack on
context switching.

Simple Multithreaded Pipeline

~ —ox—o]
]— 1$ —IR—I| gpRr1 =
Y N DS

Al

+1} 1
A
I_—D ’l -|_| ’1 —l >
2 Thread A 2 A

select

« Have to carry thread select down pipeline to
ensure correct state bits read/written at each pipe
stage

Multithreading Costs

Appears to software (including OS) as
multiple slower CPUs

Each thread requires its own user state
Also, needs own OS control state

Other costs?

What “Grain” Multithreading?

e So far assumed fine-grained
multithreading
— CPU switches every cycle to a different thread
— When does this make sense?

e Coarse-grained multithreading

— CPU switches every few cycles to a different
thread

— When does this make sense (Ex - Memory
Access? — NPs)?

Superscalar Machine Efficiency

Issue width
Instruction
issue *
Completely idle cycle
(vertical waste)
ﬁ + |
Time +
Partially filled cycle,
f-ﬁ — i.e,IPC<4

(horizontal waste)

RN

 Why horizontal waste?
 Why vertical waste?

Vertical Multithreading

Issue width

Instruction
issue P9 o4
+
Second thread interleaved
cycle-by-cycle
beis
Time tf;?
Partially filled cycle,
| le—"ie,IPC<4
Y F (horizontal waste)
S

 Cycle-by-cycle interleaving of second
thread removes vertical waste

ldeal Multithreading for Superscalar

Issue width

Time

- " L N
\I'\\ - \\
-
D mDBDm I I \“\‘
- ; " e
“ N
“ ~\ - - -

* Interleave multiple threads to multiple
IsSsue slots with no restrictions

Simultaneous Multithreading

 Add multiple contexts and fetch engines
to wide out-of-order superscalar
processor

« OOO instruction window already has most

of the circuitry required to schedule from
multiple threads

 Any single thread can utilize whole
machine

Comparison of Issue Capabilities
Courtesy of Susan Eggers; Used with Permission

Traditional Single-chip

hori7fntu€:lr:vc:];:: Multithreading Multiprocessor ShEE
‘ LESSREERS 111 5) Issue slots Issue slots Issae slots
mEO0|~ mmO0 EEEE EEED
P oo mmO0 0 OO0 mmEO
5 mECI] | | EEEN HEEEN
g | W]] Wl]
Z] mEC0] LRI HEC]C]
e HEEN HENERN] . HENEN
| OO0 EEE0 SEES §SS0
mmC] 1] mme]
]] I N HEN[C]
/ B Thread1 B Threadd
B Thread2

vertical waste B Thread3

From Superscalar to SMT

e Small items
— per-threac program counters
—per-thread return stacks

— per-thread bookkeeping for instruction
retirement, trap & instruction dispatch
gueue flush

—thread identifiers, e.g., with BTB & TLB
entries

Simultaneous Multithreaded
Processor

ri.......? —

P Fetch[™ Decode & |, Reorder Buffer [*|Commit
1 Rename

i

00O execution unit Physical Reg. File

does not see thread 1
identifiers, only Branch Store
physical register ALU (MEM

Ic Unit Buffer
specifiers Execute

Intel Xeon Processor

Dual core: two cores on chip
Hyperthreading == SMT

Logical processors share nearly all resources of
the physical processor

Die area overhead of hyperthreading ~5 %

When one logical processor is stalled, the other
can make progress

A processor running only one active software
thread to run at the same speed with or without
hyperthreading

