
Multithreading

Instructor: Prof. Yan Luo

16.650 Advanced Computer Architecture

Multithreading

Consider the following sequence of

instructions through a pipeline

 LW r1, 0(r2)

LW r5, 12(r1)

ADDI r5, r5, #12

SW 12(r1), r5

Multithreading
• How can we guarantee no dependencies between

instructions in a pipeline?

– One way is to interleave execution of instructions from
different program threads on same pipeline – Micro
context switching

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

T1: LW r1, 0(r2)

T2: ADD r7, r1, r4

T3: XORI r5, r4, #12

T4: SW 0(r7), r5

T1: LW r5, 12(r1)

Avoiding Memory Latency

• General processors switch to another context on
I/O operation => Multithreading,
Multiprogramming, etc. An O/S function. Large
overhead! Why?

• Why not context switch on a cache miss? =>
Hardware multithreading.

• Can we afford that overhead now? => Need
changes in architecture to avoid stack operations.
How to achieve it?

• Have many contexts CPU resident (not memory
resident) by having separate PCs and registers for
each thread. No need to store them in stack on
context switching.

Simple Multithreaded Pipeline

• Have to carry thread select down pipeline to

ensure correct state bits read/written at each pipe

stage

Multithreading Costs

• Appears to software (including OS) as
multiple slower CPUs

• Each thread requires its own user state
– GPRs

– PC

• Also, needs own OS control state
– virtual memory page table base register

– exception handling registers

• Other costs?

What “Grain” Multithreading?

• So far assumed fine-grained

multithreading

– CPU switches every cycle to a different thread

– When does this make sense?

• Coarse-grained multithreading

– CPU switches every few cycles to a different

thread

– When does this make sense (Ex - Memory

Access? – NPs)?

Superscalar Machine Efficiency

• Why horizontal waste?

• Why vertical waste?

Vertical Multithreading

• Cycle-by-cycle interleaving of second
thread removes vertical waste

Ideal Multithreading for Superscalar

• Interleave multiple threads to multiple
issue slots with no restrictions

Simultaneous Multithreading

• Add multiple contexts and fetch engines

to wide out-of-order superscalar

processor

– [Tullsen, Eggers, Levy, UW, 1995]

• OOO instruction window already has most

of the circuitry required to schedule from

multiple threads

• Any single thread can utilize whole

machine

Comparison of Issue Capabilities
Courtesy of Susan Eggers; Used with Permission

From Superscalar to SMT

• Small items

– per-thread program counters

– per-thread return stacks

– per-thread bookkeeping for instruction

retirement, trap & instruction dispatch

queue flush

– thread identifiers, e.g., with BTB & TLB

entries

Simultaneous Multithreaded

Processor

Intel Xeon Processor

• Dual core: two cores on chip

• Hyperthreading == SMT

• Logical processors share nearly all resources of
the physical processor

– Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~5 %

• When one logical processor is stalled, the other
can make progress

– No logical processor can use all entries in
queues when two threads are active

• A processor running only one active software
thread to run at the same speed with or without
hyperthreading

