
1

1

Chapter 3 and Appedix A

Pipeline and Hazard

Instructor: Prof. Yan Luo

UML 16.671
Advanced Computer Architecture

Some slides are adapted from Roth

2

A pipeline with multi-cycle FP operations

2

3

Pipeline Hazards

• Hazards are caused by conflicts between
instructions. Will lead to incorrect behavior
if not fixed.
–Three types:

• Structural: two instructions use same h/w in the same
cycle – resource conflicts (e.g. one memory port,
unpipelined divider etc).

• Data: two instructions use same data storage
(register/memory) – dependent instructions.

• Control: one instruction affects which instruction is
next – PC modifying instruction, changes control flow
of program.

4

Handling Hazards

• Force stalls or bubbles in the pipeline.
– Stop some younger instructions in the stage

when hazard happen
– Make younger instr. Wait for older ones to

complete

• Flush pipeline
– Blow instructions out of the pipeline
– Refetch new instructions later – solving control

hazards
– Implementation: assert clear signals on pipeline

registers

3

5

Structural Hazards

• Example
– Assume unified cache memory, i.e., instruction and data

are stored in a single cache, and each cycle only one
request can be processed (either instruction or data) –
this cache has only one port

wmxdfinst3
wmxdfinst2

wmxdfinst1
wmxdfLoad

987654321

6

Fixing Structural Hazards Using Stalls
• Stall Pipeline

m
w

9

w

10

mxdf-inst3
xdf--inst4

wmxdfinst2
wmxdfinst1

wmxdfLoad
87654321

• Duplicate Resource – Separate IM and DM

4

7

Data Hazards

• Two different instructions use the same storage
location
– It must appear as if they executed in sequential order

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

read-after-write
(RAW)

write-after-read
(WAR)

write-after-write
(WAW)

True dependence
(real)

anti dependence
(artificial)

output dependence
(artificial)

What about read-after-read dependence ?

8

Reducing RAW Hazards: Bypassing

• Data available at the end of EX stage, why wait until WB
stage?
 Bypass (forward) data directly to input of EX
+ Reduces/avoids stalls in a big way

• Large fraction of input operands are bypassed
– Complex
 Important: does not relieve you from having to perform WB

wmxdfsub R2, R4, R1

wmxdfadd R1, R2, R3

987654321

 Can bypass from MEM also

5

Minimizing Data Hazard Stalls by Forwarding

10

But …

• Even with bypassing, not all RAWs stalls can be
avoided
– Load to an ALU immediately after
– Can be eliminated with compiler scheduling

wmxd-fsub R2, R4, R1

wmxdflw R1, 16(R3)

987654321

You can also stall before EX stage, but it is better to
separate stall logic from bypassing logic

6

11

Compiler Scheduling

• Compiler moves instructions around to reduce
stalls
– E.g. code sequence: a = b+c, d = e-f

before scheduling after scheduling
lw Rb, b lw Rb, b

lw Rc, c lw Rc, c

add Ra, Rb, Rc //stall lw Re, e

sw Ra, a add Ra, Rb, Rc//no stall

lw Re, e lw Rf, f

lw Rf, f sw Ra, a

sub Rd, Re, Rf //stall sub Rd, Re, Rf//no stall

sw Rd, d sw Rd, d

12

WAR: Why do they exist?
(Antidependence)

• Recall WAR
addR1, R2, R3

subR2, R4, R1

or R1, R6, R3

• Problem: swap means introducing false RAW
hazards

• Artificial: can be removed if sub used a different
destination register

• Can’t happen in in-order pipeline since reads
happen in ID but writes happen in WB

• Can happen in out-of-order reads, e.g. out-of-
order execution

7

13

WAW (Output Depndence)

add R1, R2, R3
sub R2, R4, R1
or R1, R6, R3

• Problem: scheduling would leave wrong
value in R1 for the sub

• Artificial: using different destination
register would solve

• Can’t happen in in-order pipeline in which
every instruction takes same cycles since
writes are in-order

• Can happen in the presence of multi-cycle
operations, i.e., out-of-order writes

14

I1. Load R1, A /R1 Memory(A)/
I2. Add R2, R1 /R2 (R2)+(R1)/
I3. Add R3, R4 /R3 (R3)+(R4)/
I4. Mul R4, R5 /R4 (R4)*(R5)/
I5. Comp R6 /R6 Not(R6)/
I6. Mul R6, R7 /R6 (R6)*(R7)/

 Due to Superscalar Processing, it is possible that I4 completes before
I3 starts. Similarly the value of R6 depends on the beginning and end of I5
and I6. Unpredictable result!
 A sample program and its dependence graph, where I2 and I3 share the
adder and I4 and I6 share the same multiplier. These two dependences can
be removed by duplicating the resources, or pipelined adders and multipliers.

I1 I3 I5

I6I4I2

RAW WAR WAW and
RAW

Flow
dependence

Anti-
dependence

Output
dependence,

also flow
dependence

Pr
og

ra
m

 o
rd

er

 EXAMPLE

8

15

Register Renaming
Rewrite the previous program as:
• I1. R1b Memory (A)
• I2. R2b (R2a) + (R1b)
• I3. R3b (R3a) + (R4a)
• I4. R4b (R4a) * (R5a)
• I5. R6b -(R6a)
• I6. R6c (R6b) * (R7a)
Allocate more registers and rename the registers

that really do not have flow dependency. The
WAR hazard between I3 and I4, and WAW
hazard between I5 and I6 have been removed.

These two hazards also called Name dependencies

16

Control Hazards

• Branch problem:
– branches are resolved in EX stage
→ 2 cycles penalty on taken branches
Ideal CPI =1. Assuming 2 cycles for all branches and 32%

branch instructions → new CPI = 1 + 0.32*2 = 1.64

• Solutions:
– Reduce branch penalty: change the datapath – new adder

needed in ID stage.
– Fill branch delay slot(s) with a useful instruction.
– Fixed branch prediction.
– Static branch prediction.
– Dynamic branch prediction.

9

17

Control Hazards – branch delay slots

• Reduced branch penalty:
– Compute condition and target address in the ID

stage: 1 cycle stall.
– Target and condition computed even when

instruction is not a branch.
• Branch delay slot filling:

move an instruction into the slot right after the
branch, hoping that its execution is necessary.
Three alternatives (next slide)

Limitations: restrictions on which instructions can
be rescheduled, compile time prediction of
taken or untaken branches.

18

Example Nondelayed vs. Delayed Branch

add M1 ,M2,M3

sub M4, M5,M6

beq M1, M4, Exit

or M8, M9 ,M10

xor M10, M1,M11

Nondelayed Branch

Exit:

add M1 ,M2,M3

sub M4, M5,M6

beq M1, M4, Exit

or M8, M9 ,M10

xor M10, M1,M11

Delayed Branch

Exit:

10

19

Control Hazards: Branch Prediction

• Idea: doing something is better than waiting
around doing nothing
o Guess branch target, start executing at guessed position
o Execute branch, verify (check) your guess
+ minimize penalty if guess is right (to zero)
– May increase penalty for wrong guesses
o Heavily researched area in the last 15 years

• Fixed branch prediction.
Each of these strategies must be applied to all branch

instructions indiscriminately.
– Predict not-taken (47% actually not taken):

• continue to fetch instruction without stalling;
• do not change any state (no register write);
• if branch is taken turn the fetched instruction into no-op,

restart fetch at target address: 1 cycle penalty.

20

Control Hazards: Branch Prediction

– Predict taken (53%): more difficult, must know target
before branch is decoded. no advantage in our simple 5-
stage pipeline.

• Static branch prediction.
– Opcode-based: prediction based on opcode itself and

related condition. Examples: MC 88110, PowerPC
601/603.

– Displacement based prediction: if d < 0 predict taken, if
d >= 0 predict not taken. Examples: Alpha 21064 (as
option), PowerPC 601/603 for regular conditional
branches.

– Compiler-directed prediction: compiler sets or clears a
predict bit in the instruction itself. Examples: AT&T
9210 Hobbit, PowerPC 601/603 (predict bit reverses
opcode or displacement predictions), HP PA 8000 (as
option).

11

21

Control Hazards: Branch Prediction

• Dynamic branch prediction
– Later

22

MIPS R4000 FP Pipe Stages

FP Instr 1 2 3 4 5 6 7 8 …
Add, Subtract U S+A A+R R+S
Multiply U E+M M M M N N+A R
Divide U A R D28 … D+A D+R, D+R, D+A, D+R, A,

R
Square root U E (A+R)108 … A R
Negate U S
Absolute value U S
FP compare U A R
Stages:

M First stage of multiplier
N Second stage of multiplier
R Rounding stage
S Operand shift stage
U Unpack FP numbers

A Mantissa ADD stage
D Divide pipeline stage
E Exception test stage

12

23

Example: Multiple and Add

R+SA+RS+AUIssue

R+SA+RS+AUIssue

R+SA+RS+AUStall

R+SA+RS+AUStall

R+SA+RS+AUIssue

R+SA+RS+AUIssue

R+SA+RS+AUIssueAdd

RN+ANMMME+MUIssueMultiple

11109876543210Issue/
Stall

Op

24

R4000 Performance
• Not ideal CPI of 1:

– Load stalls (1 or 2 clock cycles)
– Branch stalls (2 cycles + unfilled slots)
– FP result stalls: RAW data hazard (latency)
– FP structural stalls: Not enough FP hardware

(parallelism)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

e
q
n
to

tt

e
sp

re
ss

o

g
cc l

i

d
o
d
uc

n
a
sa

7

o
ra

sp
ic

e
2
g
6

s
u
2

c
o
r

to
m

ca
tv

Base Load stalls Branch stalls FP result stalls FP structural

stalls

